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Leon Horsten and Matteo Zicchetti

4.1 Introduction

proof-theoretic reflection principles have been discussed in proof theory
ever since Godel’s discovery of the incompleteness theorems. But these
reflection principles have not received much attention in the philosoph-
ical community. The aim of the present chapter is to survey some of the
principal meta-mathematical results on the iteration of proof-theoretic
reflection principles, and also to investigate these results from a logico-
philosophical perspective; we will concentrate on the epistemological sig-
nificance of these technical results and on the epistemic notions involved
in the proofs. In particular, we will focus on the notions of commitment
to and acceptance of a theory. Special attention is given to the connec-
tion between proof-theoretic reflection and axiomatic truth theories.

After distinguishing between different types of proof-theoretic reflec-
tion principles, we review some proof-theoretic results concerning exten-
sions of formal theories by (iterated) reflection principles. As basis
theories we concentrate on standard arithmetical and elementary axiom-
atic truth theories. We then go on to explore the epistemological signifi-
cance of these results. In this investigation we aim at showing that
epistemic notion of acceptance of (or commitment to) a theory plays a
crucial role in the philosophical argumentation for reflection principles
and their iteration.

The structure of this chapter is as follows. In Sections 4.2 and 4.3, iter-
ated reflection over arithmetical theories is discussed. In Section 4.4, we
discuss reflection over axiomatic truth theories—here we concentrate on
theories of disquotational and of compositional truth. The philosophical
background for our discussion in Sections 4.3 and 4.4 is given by Fefer-
man’s theory of implicit commitment. However, as we will show, the
epistemic notions involved in the investigation of reflection principles
presented in Sections 4.2, 4.3, and 4.4 are never made explicit; they
are employed only informally in the philosophical argumentation for
reflection principles. In Section 4.5 we turn to Cieslifiski’s formal analy-
sis of the process of reflection on implicit acceptance of a formal theory.



70 Leon Horsten and Matteo Zicchetti

As we will show, in this approach the epistemic notion of acceptance of a
theory is made fully explicit via the use of a modal predicate. We wil]
analyse Cieslifnski’s approach and indicate some problems and questions.
We close this chapter with some general philosophical remarks on the
nature and role of reflective processes in mathematics.

We try to keep our notation as standard as possible. Concerning
proof-theoretical background, we presuppose some familiarity with a
few basic formal systems of arithmetic, such as Peano Arithmetic (PA,
and its language L,,) and Elementary Arithmetic (EA). Moreover,
although we will present some basic facts about Kleene’s notation
system O, we will presuppose some familiarity with ordinal notations,
the Veblen hierarchy, and related notions. Concerning truth theory, we
assume a passing acquaintance with a handful of the main truth theories,
such as the compositional theory CT, the Kripke-Feferman system KF,
and the Partial Kripke-Feferman system PKF. Nevertheless, for the
benefit of readers who are not familiar with these systems, we include
footnote references to places where they are defined and discussed.

4.2 Reflection Principles and Progressions of Theories

We concentrate on theories that are formulated in the language of first-
order arithmetic or an extension thereof, and at least as strong as Elemen-
tary Arithmetic (EA). We are interested in the iteration of proof-theoretic
reflection principles over these theories, where a proof-theoretic reflec-
tion principle for a given theory § is a formalised soundness statement
for S: it expresses that everything provable in § is also true.

By Tarski’s theorem of the undefinability of truth, the language of
arithmetic does not contain its own truth predicate. So in the language
of arithmetic this guiding idea can only be approximated to varying
degrees. We can distinguish the following types of reflection principles
(for a given theory S):

(i) Cong (consistency)
(ii) Provs "¢" — ¢ (local reflection)
(iti) Provs "(x)™ — ¢(x) (uniform reflection)

Here Provgis a standard provability predicate for the given theory S. The
formula Cong expresses the consistency of § in terms of Provg: it can be
taken to be the formula

Provs"0=1"—0=1.
Local reflection for a theory S is denoted as Rfng, and uniform reflec-

tion is denoted as RENj. Restricted versions for these principles are also
considered: one can consider Rfng (RFN;) for sentences (formulae) of a
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specific syntactic complexity. I1]-Rf#g, for instance, is local reflection for
che TI* fragment of § and is equivalent to Cons.

We can iterate the procedure of adding a reflection principle to a given
cheory S. For a given theory S and a given reflection principle R we let
R[S] mean “the reflection principle R over $”. Then we can define the
ireration of reflection in the following way by letting:

R[S] be S;
for a a successor ordinal, R**'[S] be R[R*[S]];
for A a limit ordinal, R*[S] be the union of all R[] for a < A.

The first proof-theoretic results that we will discuss concern progressions of
theories generated via iteration (into the transfinite) of reflection principles.

However, before presenting the notion of a progression of theories and
the results, we introduce a few notions concerning Kleene’s O. We call lal
the ordinal denoted by an ordinal notation @ in Kleene’s notation system
0, which is partially ordered by the relation <o. We have a <o b, for two
ordinal notations @ and b, if and only if lal < 16l

A path P is a subset of O such that (i) for any a, b € P either a<ob
or b<pa, (i) if b € P and c<ob then ¢ € P. For any a ¢ O, a set
P ={b|b <o a} is called a path within O. The length of a path P is
the ordinal of the restriction of <o to P. For any path P within O, the
order type of P, denoted as IPl, is less than w . A path P is a path
through O if |P| = 0¥, where 0 = sup{|a|:a € O}. The relation
<o is not recursively enumerable; indeed, it is II}-complete. However,
for any a, the restriction of <o to {b|b <oa} is recursively enumerable.

Now we introduce the notion of a progression of theories. A progression
of a theory § is a primitive recursive mapping taking any ordinal notation a
in some path in Kleene’s ordinal notation system O to a X{-formula ¢, that
recursively enumerates the axioms of a theory S,, such that

1. S() = S,
2- Smc(a) — Sa + Rﬂ [S];
3. Slim(a) = U[) <a Sb'

In words: the starting theory S is just S, the successor stage of the
progression is, for any notation 4, just the previous theory S, plus a
reflection principle R’ for S, and at limit stages we take unions.

Any transfinite progression yields a progressive reflection sequence,
which is a sequence of theories of the form

S0, Sty Suy Sorsty e Say- e

where S, , 1 is an extension by reflection of S, and S;, for limit ordinals
A, has as axioms the union of the axioms of earlier theories.
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In the following section we will survey two main results: Turing’s
completeness theorem for consistency progressions and Feferman’s com-
pleteness theorem for uniform reflection progressions. Moreover, we will
briefly touch upon Feferman’s results about autonomous progressions of
formal theories.

4.3 Mathematical Reflection

Turing used consistency progressions in an attempt to reduce incom-
pleteness in arithmetic. He proved the following theorem:

THEOREM 4.3.1 (Turing, 1939). For any true H? sentence ¢ thereisana € O
such that lal =@ + 1 and S, - ¢. Moreover, there is a primitive recursive
function that associates such an a with each true II} sentence ¢.

Turing (1939) suggests that the transition from a theory S, t0 Ssuc(4)
invokes some sort of reflection:

We were able, however, from a given system to obtain a more com-
plete one by the adjunction as axioms of formulae, seen intuitively to
be correct, but which the Godel theorem shows are unprovable in
the original system; from this we obtained a yet more complete
system by a repetition of the process, and so on.

(p. 198)

However, the epistemological import of Turing’s completeness theorem
is limited. Theorem 4.3.1 only tells us that for any true IT) sentence ¢
there is a consistency progression with length @ + 1, such that S, ,
proves ¢. As Franzén (2004b, Section 6) already pointed out, Turing’s
result does not provide us with a method of recognising, for any true
1Y sentence ¢, that it is true. Turing’s proof indeed associates with
every true II) sentence ¢ a consistency reflection sequence of length
® + 1 that ends in a theory S, , | that proves ¢. However, the axioms
of S, have a non-canonical definition; the trick of Turing’s proof consists
in defining S, in such a way that its consistency entails that ¢ is true.
Even though Turing’s clever definition of @ and “canonical” definitions
of @ extensionally coincide, no S, proves that this is so.

Feferman realised that in order to strengthen Turing’s completeness
result, uniform reflection progressions rather than consistency or local
reflection progressions are needed. He proved:

TrEOREM 4.3.2 (Feferman, 1962). There is a uniform reflection progres-
sion based on PA such that for any true arithmetical sentence ¢ there is

an a € O such that |a| < 0°”"" with S, I ¢.2

This is known as Feferman’s completeness theorem. His proof

generates a path P within O of length »*"" such that the union of
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Al theories associated with the notations in this path is arithmetically
complete.

As with Turing’s completeness theorem, and for the same reasons, the
epistemological import of Feferman’s completeness proof is limited. Fol-
lowing Franzén, we can see that it would be wrong to say that Turing’s
and Feferman’s results show that we will eventually obtain every arith-
metical truth by iterating reflection principles.?

4.3.1 Autonomous Progressions

The proof of Turing’s completeness theorem (and the proof of Feferman’s
completeness theorem) shows that there is a sense in which progressions as
defined in the previous section fail to capture how systems of a higher
ordinal level are warranted “from below”. For this reason, Kreisel
(1958) argued that progressions should satisfy an additional autonomy
requirement: for every S, that is in a progression, it should be provable
in some S, with b <o a that a is in O. A progression that satisfies this addi-
tional criterion is called an autonomous progression. Before surveying the
results about the autonomous progressions, we will introduce briefly the
notions of Veblen functions and Veblen hierarchy.

Veblen functions are a hierarchy of normal functions (continuous strictly
increasing functions from ordinals to ordinals). If ¢ is any normal function,
then for any ordinal a > 0, ¢, is the function enumerating the common fixed
points of ¢, for B < a. These functions are all normal. In the special case
when go(e) = @* this family of functions is known as the Veblen hierarchy.
The function ¢y is the same as the £ function: ¢1(a) = £,. The first £ ordinal
number £ is sup {1, ®,@?, ..., %, ..., }and is the least fixed point of
9o, 50 that @* = o And then ¢,(0) is the least ordinal @, such that &, = a.

The Feferman—Schiitte ordinal I'y can be defined as the smallest ordinal
that cannot be obtained by starting with 0 and using the operations of
ordinal addition and the Veblen functions (). That is, it is the smallest
a such that ¢,(0) = . Feferman (1964) and Schiitte (1964, 1965) investi-
gated autonomous progressions of predicative theories of analysis. In par-
ticular, Feferman (1964) investigated autonomous progressions via uniform
reflection based on the systems H and R,* determining the limit of predica-
tive reasoning. In a nutshell, he showed that the ordinal Ty is the least
ordinal that “cannot be reached” predicatively. Or in other words, it is
the least ordinal greater than all autonomous @ in the progression.’

But one can also consider autonomous reflection progressions over
first-order arithmetic. The following is a typical result, which is appar-
ently “folkore”:®

THEOREM 4.3.3. The autonomous uniform reflection progression based
on Peano Arithmetic is the first-order fragment of the system of Ramified
Analysis up to (but not including) level @, and the length of this progres-
sion is ¢,(0).
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These theorems are epistemologically more significant than the com-
pleteness theorems of Turing and Feferman. In contrast to the non-auton-
omous progressions, the autonomy condition assures that we recognise by
means of a proof in a previous stage of the progression that for a limit g,
a is an ordinal notation. In this sense, propositions such as Theorem 4.3.3
show what we can come to know in reflection progressions. Of course a
strong idealisation is involved here: we are only able to go through a finite
number of stages of an autonomous progression before we die.”

In this chapter we are interested in the informal notions involved in the
transition from a theory S, to Sq,(a), that is, in the addition of the reflec-
tion principles. Like Turing, Feferman (1962) claims that the transition
from a theory S, to Se.c( is obtained via a process of reflection. He
states that our acceptance of a reflection principle for our base theory
(and iterating this procedure) rests on our pre-theoretic attitude:

In contrast to an arbitrary procedure for moving from A to Ag,q, a
reflection principle provides that the axioms of Ak, shall express a
certain trust [our emphasis] in the system of axioms Ag.

(p. 261)

We observe that Feferman’s appeal to trust differs from Turing’s appeal
to mathematical intuition; if we look at the previous quote by Feferman,
we see that a reflection principle for a theory S does not only express the
soundness of S, but has also an epistemic component. In later work,
Feferman (1991) continued to emphasise in that reflection principles
have an epistemic component:

Godel’s theorems show the inadequacy of single formal systems [for
the purpose of formal analysis of mathematical thought]. However
at the same time they point to the possibility of systematically gen-
erating larger and larger systems whose acceptability is implicit in
acceptance of the starting theory.

(p. 2, our emphasis)

Feferman here sketches an epistemological route from knowledge of
the axioms of a weaker system to knowledge of the axioms of a stronger
system. One starts by believing the axioms of a system S. If one’s reasons
for doing so are good and § is true, then these beliefs amount to knowl-
edge of the axioms of S. When one is in such a situation, one is implicitly
committed to reflection principles for S, such as Cons. By explicitly
endorsing such implicit commitments, one can come to accept, and
perhaps even to know, the axioms of a stronger system S

4.4 Reflecting on Truth

We will now leave reflection over purely arithmetical theories behind,
and concentrate on the iteration of reflection principles over theories
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of truth (and falsity) that are formulated in an expansion of the language
of PA or EA with a fresh truth (and falsity) predicate.

4.4.1 Axiomatic Truth Theories

pioneers of the investigation of proof-theoretic reflection principles
pointed out that the concept of truth is involved in the concept of
reflection:

By a “reflection principle” for a formal system § we mean, roughly,
the formal assertion stating the soundness of S:

If a statement ¢ (in the formalism S) is provable in S then ¢ is
valid.
(Kreisel and Lévy, 1968, p. 98)

This was regarded as a problem:

Literally speaking, the intended reflection principle cannot be formu-
lated in S itself by means of a single statement. This would require a
truth definition Ts, with a variable a over (Godel numbers of, or,
simply, over) formulas of S, and a definition of the proof relation
Provs(p, a) (read: p is (the Godel number of) a proof of 4 in S).
The reflection principle for S would be

VpVa[Provs(p,a) — Ts(a)].

Such a truth definition Ts, does not exist.
(Kreisel and Lévy, 1968, p. 98)

This difficulty can be (and was) circumvented by approximating the
intended reflection principle by means of the purely arithmetical princi-
ples Rfns and RFNy. But this is not the only possible way forward.
Instead, a primitive truth predicate T can be added to the language of
arithmetic, thus generating the language Ly = Lp, U{T}, and new
axioms governing the behaviour of the truth predicate can be added to
the background arithmetical theory. This is what some proof theorists
started to do in the late 1970s. Moreover, the resulting formal systems
were related to a philosophical discussion about the function or role of
the concept of truth.

One important role for the concept of truth is to express and reason
with generalisations over statements. For this purpose, the use of the
truth predicate as a device of quotation and of disquotation is
essential. This means that Tarski-biconditionals, i.e., formulae of the
form T "¢ <> ¢, play a pivotal role in truth theory.

A distinction is made between typed and untyped (or type-free) Tarski-
biconditionals. In the typed case, the truth predicate is not itself allowed
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to occur in ¢. If we start with PA as a base theory and add to PA the col-
lection of all typed Tarski-biconditionals T "¢ « ¢ for ¢ € Lpy, the
resulting theory is called TB.? If one wants to add to PA a collection
of untyped Tarski-biconditionals, then, in order to avoid the liar
paradox, one can either weaken the background logic, or restrict the
collection of Tarski-biconditionals and preserve full classical reasoning,
One consistent way of weakening the logic that keeps the full Tarskj-
biconditidnals is to work in Basic De Morgan logic (BDM).)®
The untyped truth theory formulated in BDM, where the Tarski-
biconditionals are completely unrestricted, is called TS, and is dis-
cussed in Fischer et al. (2017).

If one wants to preserve classical logic, then there are different
options for restricting the Tarski-biconditionals to avoid inconsistency.
Here we discuss two such possible restrictions. One possibility is to
restrict the Tarski-biconditional scheme to the sentences ¢ in which
the truth predicate only occurs positively (i.e., in the scope of an even
number of negation symbols). If we add this collection to PA, the result-
ing truth theory is called PTB.'? A natural way of extending this theory
is to expand the language of the truth theory (Lr) with a primitive
falsity predicate, thus generating the language Lt 5. We then consider
the sublanguage L ., which is obtained by allowing the negation
symbol from Lr ¢ only to prefix atomic arithmetical formulas. More-
over, we consider the truth biconditionals T "¢ < ¢ with ¢ restricted
to L7 ;, and the falsity biconditionals F "¢ « ¢, where ¢ is the dual
of 9. We can define duals recursively: the dual of an atomic arithmetical
formula is its negation; the dual of an atomic formula of the form Tt is
Ft, and vice versa, the dual of A A B is the disjunction of the dual of A
and the dual of B, and so on.!! PA plus these two collections of bicon-
ditionals is called TFB.

4.4.2 Compositionality and Implicit Commitment

The philosophical question now arises whether the content of the concept
of truth is given by some such collection of Tarski-biconditionals. An
affirmative answer to this question is defended, for instance, in
Horwich (1990), Halbach (2001), and Horsten and Leigh (2016). This
position is called disquotationalism, as it asserts that the content of
the concept of truth is captured by a relatively simple and natural
collection of Tarski-biconditionals, i.e., by a disquotational theory of
teuth. If disquotationalism is correct, then the concept of truth really is
at bottom merely a device for quotation and disquotation, as Quine
maintained.

A standard objection against this, which traces back to Davidson, is
that truth is compositional. According to this view, truth theories
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should be able to prove intuitive semantic principles, for instance that
any conjunction is true if and only if its conjuncts are both true, and
so forth. But these compositional truth clauses cannot be derived from
a set of Tarski-biconditionals. In this way it seems that disquotationalist
views fall short of capturing the content of the concept of truth.

The standard typed compositional truth theory is called CT.}2 The
most popular compositional type-free truth theory in classical logic is
KF; the most popular type-free compositional truth theory in non-
classical logic is PKF.!? The Davidsonian objection against disquota-
tional truth theories applies to all the theories mentioned above:
the message is that compositional typed (type-free) truth outstrips
disquotational typed (type-free) truth by proving core principles govern-
ing the concept of truth that disquotational theories cannot prove.
without further resources, it seems that there is no way out for the
disquotationalist.

At this point, reflection principles enter the philosophical debate. The
idea is that the compositional principles might be inplicit in some collec-
tion of Tarski-biconditionals and that reflection can bridge the gap
between disquotational and compositional truth.

This is indeed the case. In the typed context, Halbach observed that
iterating uniform reflection over TB twice recovers typed compositional
truth (Halbach, 2001, Section 4):

THEOREM 4.4.1. RFN?[TB] I~ CT.

This phenomenon extends to the classical type-free context (Horsten
and Leigh, 2016, Theorem 7):

Treorem 4.4.2. REN?[TFB] + KF.

Theorem 4.4.2 has to be taken, however, with a grain of salt. Even
though the version of KF that is used by Horsten and Leigh (2016) is
closely related to the usual formulations of KF (for instance, the
version given in Halbach, 2014, Definition 15.2), it is not outright equiv-
alent to them. In Pos(KF) (positive KF), the version of KF derivable via
two iterations of reflection from TFB, the compositional axioms are
restricted to the positive fragment of the language, whereas in the case
of the usual KF the compositional axioms are completely unrestricted.
Therefore, although these two versions of KF are equivalent for the arith-
metical part of the language, their truth predicate behaves somewhat dif-
ferently. In Zicchetti (2020) it has been shown that TFB and the version
of KF adopted in Horsten and Leigh (2016), i.¢., the version of KF that
we obtain in Theorem 4.2.2 via reflection from the theory TFB, can be
consistently closed under unrestricted rules of Necessitation and Cone-
cessitation for the truth and falsity predicates to the theory Pos(KF)*,
whereas the version of KF given in Halbach (2014) is inconsistent with
the addition of the two rules.
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The recovery of compositionality through reflection also extends to
the type-free non-classical context (Fischer et al., 2017, Corollary 1,
Section 3.2):

THEOREM 4.4.3. R*[TS] - PKF,

where the uniform reflection principle R is formulated as a rule instead
of an axiom. The reflection principle used in the proof of Theorem 4.3.3
is the following:

= Provig,"T'(x) = A(%), ®(x) = Y(x)" I'(x) = Ax)
D(x) = Y(x)

where the Provyg expresses that the rule from I'{x) = A(x) to ®{x) = ¥(x)

is an admissible rule of TS,.

Again, following the general idea that the acceptance of a theory gen-
erates the possibility to accept stronger theories of which the acceptabil-
ity is implicit in the acceptance of the weaker theory, we can see that, if
we commit ourselves to disquotational typed (type-free) truth theories,
then we implicitly commit ourselves to compositional typed (type-free)
truth theories.*

However, iterating reflection does not only recover compositional
principles from disquotational ones. As it is shown in Leigh (2016,
Theorem 1.4, Theorem 1.5, Section 1), iterating the process of reflection
also increases the amount of provable transfinite induction.

We fix a natural notation system for ordinals up to and not including
Ty that can be presented as an elementary ordinal notation system in the
sense of Rathjen (1997), and call it O. Then both O and the ordering
relation < on ordinals defined by elements of O are definable in first-
order arithmetic.

DemniTIoN 4.4.4 [Transfinite induction]. Let A be a formula.

1. Transfinite induction for A up to any a < I'y, denoted as TI(A, a), is
the formula

Prog(AxA)—Alt),

where 1 is a notation in O for «, and Prog(AxA) states that A is pro-
gressive along <, i.e.,

Vx € Oy < xA(y/x)—A(x)].

2. For a language £ and ordinal a < I'y, the schema of transfinite
induction up to a, Tl (< a), is the collection of formulae

{TIA,B) | A e LA < a}.
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DEFINITION 4.4.5. For a theory § and an (elementary) ordinal x, let §¥
denote the extension of S by TI.(< ).

DEFINITION 4.4.6. For a theory S and (elementary) ordinal «, let REN*[S]
denote the theory EA + x times iterated uniform reflection over S.

Now suppose that we start from a disquotational theory that is based
on the weak arithmetical theory EA instead of on full PA. In particular,
let TBo, TFBy be just like TB, TFB, respectively, except that they have EA
instead of PA as their arithmetical background component. Then we
have (Leigh, 2016, Theorem 1.4):

TueoreMm 4.4.7. For all x € O with ¥ > 0:

1. CT* = REN™[TB];
2. KF% = REN'*[TFBy].

Moreover, if we look at the consequences of these theories for the
restricted language Lp,, then we have the following result (Leigh, 2016,
Theorem 6.24):

TueoreM 4.4.8. For all £ € O with « > 0:

1. If Aisan £Lp,-formula provable in REN'**[TBg], RENX[CT], or CT*,
then A is a theorem of EA + TI(< &, ).

2. 1f A is an Lp,-formula provable in REN'*[TFBy], RFN*[KF], or
KF*, then A is a theorem of EA 4+ TI(< ¢,.(0)).

The situation in the non-classical settings is similar. In Fischer et al.
(2017, Proposition 3.3.3) it is shown that two acts of uniform reflection
over the theory called Basic, which is EA formulated in the language
with the truth predicate £r with an induction rule for Aj-formulae and
in BDM logic,'® proves the principle of transfinite induction for the lan-
guage L for all ordinals up to and including ©®:

TreoreM 4.4.9. R*[Basic| b Tl (w”).

Iterating reflection into the transfinite proves even more transfinite induc-
tion, as it is shown in Fischer et al. (2017, Corollary 3, Subsection 3.3):

THEOREM 4.4.10. R?[Basic] b Tl (< o'@).

In other words, transfinitely many iterations of uniform reflection over a
non-classical truth theory still proves much less transfinite induction
than just two iterations of uniform reflection over classical logic. This is
because Basic is formulated in the non-classical logic BDM. Some interpret
this as a defect of (truth) theories in non-classical logic: they cannot repro-
duce (possibly not even with reflection) the same mathematical reasoning
that classical theories offer (Halbach and Nicolai, 2018).
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4.4.3 Global Reflection

The reflection principles involved in the theorems that have been dis-
cussed so far merely approximate the correct way of formalising sound-
ness. This correct way of formalising soundness was already articulated
by Kreisel ‘and Lévy (1968):16 it is the Global Reflection Principle
(GRP), which can be defined as follows:

DEFNITION 4.4.11. The global reflection principle for a theory S, denoted
as GRPs, is the formula

Vx[Sents(x) A Provs(x) — T(x)].

From a “typed” perspective on truth, one mark against global reflec-
tion is the fact that already one iteration of global reflection over a typed
truth theory violates typing. But from a “type-free” perspective, GRPg
may be a plausible way of making the commitment that is implicit in
accepting type-free truth theory S explicit.

If we look at theories formulated in non-classical logic such as TS,
then we get (Fischer et al., 2017, Proposition 1):

THEOREM 4.4.12. The uniform reflection principle and the global reflec-
tion principle are provably equivalent over TS,.

Since TSy is arithmetically sound when uniform reflection is added,
global reflection over TSy is likewise sound. Moreover, this procedure
can then consistently be repeated. In other words, TS, is coberent with
its implicit commitment.

The situation in classical logic is different. The closure of classical truth
theories under GRP- for the whole language often forces some kind of
inconsistency. This can either be outright inconsistency, or what is
called internal inconsistency, i.c., the existence of a sentence ¢, such
that it is provable that T A —¢. In Halbach (2014) it is shown that FS
is inconsistent with GRPgg[FS]; in Fischer et al. (forthcoming, p. 8) it is
observed that the standard axiomatisation of KF is internally inconsistent
with GRPke[KF].'” Indeed, KF is internally inconsistent even with
GRPzor, where FOL is first-order logic formulated in £. This phenome-
non has been interpreted by some to indicate that standard theories of
type-free truth in classical logic are implicitly incoherent.

In our discussion so far, we have taken the implicit acceptance of
or commitment to a theory S to be made explicit via the addition
(and iteration) of reflection principles. However, in the previous
approaches the epistemic notion of acceptance had been only made indi-
rectly explicit via the notions of provability and truth. In what follows,
we will discuss a different procedure to make the implicit acceptance of a
theory explicit.
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4.5 Reflecting on Acceptance

Instead of taking for granted the idea that proof-theoretic reflection prin-
ciples express trust or acceptance, one might decide to investigate
the notion of acceptance of a given theory T directly, with the aim of
spelling it out without the help of reflection principles or the concept of
cruth. In this case, the concept of accepting a theory T should be made
precise.

An attempt at doing this was made by Galinon (2014), who focusses
on the weakest reflection principle: consistency. In his explication of
the reflection process, Galinon uses two key principles. The first of
these is the Principle of (first-person) Responsibility:

If a rational agent accepts a collection T of propositions, then she
must accept “T is acceptable”.
(Galinon, 2014, p. 328)

Second, he endorses the following principle:

A rational agent must accept that if a collection propositions is
acceptable, then that collection is coherent.
(Galinon, 2014, p. 325)

Using these principles, Galinon (2014) develops the following argu-
ment for the acceptance of consistency statements. Suppose a rational
agent unconditionally accepts a mathematical theory T. Then, using
the Principle of Responsibility, she must accept “T is acceptable”. And
from this, using the second principle, the agent is rationally obliged to
infer that T is consistent {p. 329).

In this chapter we cannot do justice to the philosophical complexity
of the issues that are relevant here, so we restrict ourselves to a brief
discussion of one of Galinon’s key principles.'® The Principle of
Responsibility seems a demanding requirement. One might wonder if
reflecting on one’s acceptance of T might not, in some cases, lead one
to abandon rather than to accept one’s acceptance of T. Of course
this does not exclude that there are cases where we reflect on our accep-
tance of a theory T and legitimately conclude that T is acceptable. If
that is so, then maybe Galinon and Feferman go too far when they
claim that one is rationally obliged to accept reflection principles for
theories that one accepts. Perhaps the claim should rather be that
there are cases where an agent is rationally permitted to accept, on
the basis of reflecting on a theory T that she already accepts, reflection
principles for T.1°

Cieslinski (2018, 2017) provides an alternative analysis of reflection
on one’s mathematical beliefs. He first spells out which informal
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notion of acceptance of S is relevant, and then proposes the following
informal understanding of acceptance of S:

For any sentence ¢, if I believed that ¢ has a proof in § and I had no
independent reason to disbelieve ¢, then I would be ready to accept ¢,
(Ciesliaski, 2018, p. 1087, notation has been adapted to ours)

Cieslinski (2018) provides an axiomatic theory of believability that
employs the informal notion of acceptance presented in the quote
above. He makes this notion of acceptance of § explicit by extending §
to a new theory S*, which captures the informal notion expressed
above. He does this by presenting a theory of believability, which
extends the theory S that we accept with a fresh predicate B(x) for believ-
ability and with axioms that govern its behaviour.

The thought is that when a person reflects on the implicit commit-
ments involved in her acceptance of a theory K, she comes to accept a
theory of believability Bel(K)~ over K.2% Ciesliaski explains how this
process is structured, and he spells out Be/[K]™ as an axiomatic theory
(Cieslifiski, 2018, p. 254).

Suppose we start with a theory K, formulated in a language Lx. Let
Lxp = LxU{B}. And let KB be the theory which is just like K except
that its schemata range over all formulas of Lxs. The theory of believ-
ability Bel[K]™ is an extension of KB with the following axioms and
rules (Cieslinski, 2018, Definition 13.4.1):?!

(Ax1) VW € Lig|Provis(Y) — B)],
(Axz) Yo, € Lxs[(B(p) A Blp — ¥)) — B(W)],

FVa: Ble(n))

(NEC) —-¥—" (GEN) e

F B(g)

Let us now apply Cieslifiski’s general theory to a concrete example.
Consider the “weak” typed disquotational truth theory TB~, which is
like the disquotational theory TB except that the truth predicate is not
allowed to occur in the induction schema. Suppose that we accept TB™.
Then if we make the acceptance of TB™ explicit via Bel[TB7]", we
recover compositional principles for typed truth (Ciesliaski, 2018, p. 264):

THEOREM 4.5.1. Bel [TBT]” F B(CT),

where B(CT) consists of all sentences B(g) such that ¢ is an axiom of CT.
In particular we obtain the believability of mathematical induction for
Lr from a situation where we only accepted induction for Lp,.
Analogous results hold in type-free settings. Consider the typed dis-
quotational truth theory TFB, which is like TFB except that the truth
predicate is not allowed to occur in the induction schema. Suppose
that we accept TFB™. Then if we make the acceptance of TFB™ explicit
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via Bel[TFB7]~, we recover compositional principles for type-free truth
(Cieslinskip, 2018, p. 266):

TheoREM 4.5.2. Bel [TEB-| - B(KF).

So, taking stock: if we are committed to typed (type-free) disquotational
gruth and if this commitment is made explicit via a theory of believabil-
ity, then this theory proves that the compositional principles for typed
(type-free) truth are indeed believable.

The believability theory over the disquotational truth theory does not
contain a factivity principle or rule (“B-Out”) for the believability pred-
ijcate B. Indeed, the inference from the believability of a statement to
the statement itself is a defeasible rule. For this reason, we do not have
Bel[TB™]™ I CT. Nonetheless, according to Cieslinski’s informal defini-
tion of acceptance of a theory, this then means that, in the absence of
independent reasons for disbelieving compositional principles of typed
(type-free) truth, we should be ready to accept them. In this sense Cie-
slinski’s results provide and argument for the thesis that our commitment
to compositional truth principles is not greater than the commitment to
disquotational truth principles.

It would take us too far to give a detailed evaluation of Cie§lifiski’s
position, so again we confine ourselves to a few cautiously critical
remarks. Cielifiski argues that processes of reflection on one’s accep-
tance of a theory K can be described as proofs in a believability theory
Bel[K]™ for K. But it is not clear that all principles of Bel[K]™ are in all
circumstances correct. In particular, for the same reasons as why Gali-
non’s Principle of Responsibility might not in all cases be correct, it 1s
not clear that axiom Axq of Bel[K]™ is always true. Might there not be
circumstances where the agent starts out by accepting K, but by reflect-
ing on K comes to abandon parts of K—perhaps because in the reflective
process she comes to realise that K is actually quite strong—rather than
to judge that K is believable? It seems to us that a deeper phenomenolog-
ical analysis of reflection processes than has been given thus far is needed
to decide this question.??

4.6 Reflective Processes

The reflection principles that we have discussed in the previous sections
take the form of conditional statements. These conditional statements
express the result of reflective processes, which have an argumentative
structure. They aim systematically to draw out consequences from hypo-
thetical situations. The resulting formal reflection principles intend to
express a necessary connection between the “input” of a reflection
process and the “output” of that process.

Because of this, reflection principles have played a role in debates in
the foundations of mathematics about the justification of mathematical
theories. However, the extent to which proof theoretic reflection
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principles can play a justificatory role in this context, is contested. On
the one hand, Horsten and Leigh (2016) argue that if accepting a
theory S is justified, then accepting a proof-theoretic reflection principle
for S is also epistemically warranted.?®> On the other hand, Dean (2014)
urges caution. He argues that even in a context where accepting a theory
S is justified, justification for proof-theoretic reflection principles for §
must be obtained before we are warranted to accept them. Getting to
the bottom of this requires deeper philosophical reflection on the
nature of proof-theoretic reflection than has been carried out so far.
Indeed, we believe that reflection processes that underpin formal reflec-
tion principles deserve more attention from philosophers of mathematics
than has hitherto been accorded to them.

In this chapter we have concentrated on reflection principles that are
connected with reflective processes that start from hypothetical facts
about provability in a formal system. Some such reflective processes ter-
minate in propositions that attribute truth to statements (Section 4.4);
others terminate in propositions about rational believability (Section
4.5). However, there exists a class of reflection principles that are
related to reflective processes that do not terminate in, but rather start
from, hypothetical propositions that attribute truth to statements. Such
principles are called set theoretic reflection principles.**

It can be argued that proof-theoretic reflection principles are related
to set theoretic reflection principles.?® Consider, for instance, local
reflection for a theory S. For theories S that prove the completeness
theorem, Rfng is equivalent to the scheme

¢ —IM:MES+oe,

which is a set theoretic reflection principle.?® Of course this principle is so
weak that it is hardly mentioned in discussions of set theoretic reflection.
Indeed, the weakest set theoretic reflection principle that is widely dis-
cussed is Montague-Levy reflection. The Montague-Levy reflection princi-
ple is provable in ZFC. Nonetheless, the fact that it has proof-theoretic
strength is shown by the fact that over the remaining axioms of ZFC, it
is equivalent to the axiom of infinity plus the axiom of replacement.

It is commonly assumed that “set theoretic reflection principles can be
very strong, but proof-theoretic reflection principles are always weak”.
But in an absolute sense, this is not quite correct, as can be seen as
follows.?” The axiom MC, which expresses that there exists a measurable
cardinal, can be expressed as an embedding principle (the existence of a
non-trivial embedding from Godel’s L to L). And such embedding prin-
ciples are often (but not always) informally described as set theoretic
reflection principles. But even though ZFC + MC proves the consistency
of ZFC, it is easy to see that ZFC + MC I/ ZFC + Rfnzgc. So there is a
sense in which even local reflection is strong.
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The discussion of set theoretic reflection principles falls outside the
scope of this chapter. The same holds for the discussion of the nature
of our epistemic warrant for set theoretic reflection principles. We
restrict ourselves here to observing that it should not automatically be
assumed that our epistemic warrant for even moderately strong set the-
oretic reflection principles is of the same nature as our warrant for proof
theoretic reflection principles. We have seen that our warrant for a proof
theoretic reflection principle for a theory S is often taken somehow to be
implicit in our warrant for S. But it is hard to see how something like this
might be true for set theoretic reflection principles, since even the modest
ones (such as Montague-Levy reflection) make no explicit reference to a
packground theory.
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Notes

1. For more on the philosophical significance of the use of non-canonical defi-
nitions, see Franzén (2004a,b).

2. Feferman’s completeness theorem can be strengthened. Using the notion of
smooth progression developed in Beklemishev (1995) it can be shown that
the length of this path can be shortened to @ *'. For an idea of the proof
of this improvement, see Franzén (2004b).

3. It is also known that completeness depends on the choice of the path in O.
Feferman and Spector (1962) showed for instance that there are paths
through O, such that corresponding uniform reflection progression does
not even prove every true II] sentence.

4. H is the extension of first-order Peano Arithmetic, PA, with Kreisel’s hyper-
arithmetic comprebension rule (HCR): see Fererman (1964, p. 17) for Fefer-
man’s original formulation of the system H and of HCR. R is a system of
Ramified analysis: see Feferman (1964, pp. 21-22).

5. See Feferman (1964, p. 23, Theorem 6.10) for Feferman’s original formula-
tion of the theorem.

6. The claim has been made in Feferman (1964). Thanks to Kentaro Fujimoto
for pointing this out to us.

7. For a discussion of the role of idealisation in the epistemological discussion
of transfinite progressions of formal theories, see Antonutti Marfori and
Horsten (2019).

8. In TB the induction scheme is extended to allow also formulae that contain
the truth predicate.

9. Of course there are also other non-classical logics that one can opt for, such
as Strong, Weak Kleene Logic, etc. For background on these non-classical
logics, see for instance Priest {(2008).
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10. See Halbach (2014, Section 19.3).

11. See Leigh (2016, Section 3).

12. See Halbach (2014, chapter 8).

13. See Halbach and Horsten (2006) and Halbach (2014, chapters 15, 16).

14. Although, as we pointed out, in the classical case a restricted version of com-
positionality is obtained, starting with positive biconditionals.

15. See Fischer et al. (2017, Section 2.2) for more details.

16. See Section 4.4.1 above.

17. No claim of originality for this result is made in this chapter. Indeed, this ele-
mentary observation is folklore.

18. Galinon argues for the Principle of Responsibility on the basis of norms of
rationality (Galinon, 2014, Section 7), and he argues for the second principle
on the basis of a “Godelian Dutch book argument” (Galinon, 2014, Section §).

19. This stance is taken in Fischer et al. (forthcoming).

20. Cieslifiski also considers a believability theory Bel(K) over K that is stronger
than Bel(K)~, We do not discuss this stronger theory Bel(K) here.

21. In the interest of readability we are sloppy with the Godel coding in what
follows.

22. An attempt to provide such an analysis is given in (Horsten, forthcoming).

23. In this connection, see also Fischer et al. (forthcoming).

24. In the literature on predicativity, reflection principles are considered that
take facts about definability as input: see Lorenzen (1958). Discussion of
these principles falls outside the scope of this chapter.

25. Kreisel and Levy are undecided whether proof theoretic and set theoretic
reflection are related: see Kreisel and Lévy (1968, p. 101).

26. Thanks to Kentaro Fujimoto for putting it this way.

27. Thanks to Karl-Georg Niebergall for pointing this out to us.

References

Antonutti Marfori, M. and Horsten, L. (2019). Human-effective computability.
Philosophia Mathematica, 27(1): 61-87.

Beklemishev, L. (1995). Iterated local reflection versus iterated consistency.
Annals of Pure and Applied Logic, 75(1): 25-48.

Cicslinski, C. (2017). The Epistemic Lightness of Truth. Deflationism and its
Logics. Cambridge University Press.

Cicslinski, C. (2018). Minimalism and the generalisation problem: On Horwich’s
second solution. Synthese, 195: 1077-1101.

Dean, W. (2014). Arithmetical reflection and the provability of soundness. Phi-
losophia Mathematica, 23(1): 31-64.

Feferman, S. (1962). Transfinite recursive progressions of axiomatic theories.
The Journal of Symbolic Logic, 27(3): 259-316.

Feferman, S. (1964). Systems of predicative analysis. The Journal of Symbolic
Logic, 29(1): 1-30.

Feferman, S. (1991). Reflecting on incompleteness. The Journal of Symbolic
Logic, 56(1): 1-49.

Feferman, S. and Spector, C. (1962). Incompleteness along paths in progressions
of theories. Journal of Symbolic Logic, 27(4): 383-390.

Fischer, M., Nicolai, C., and Horsten, L. (2017). Iterated reflection overfull dis-
quotational truth. Journal of Logic and Computation, 27(8): 2631-2651.



Truth, Reflection, and Commitment 87

fischer, M., Nicolai, C., and Horsten, L. (forthcoming). Hypathia’s silence.
Truth, justification, and entitlement. No#s.

Franzén, T. (2004a). Inexhaustibility: A Non-exhaustive Treatment. Association
of Symbolic Logic.

Franzén, T. (2004b). Transfinite progressions: A second look at completeness.
The Bulletin of Symbolic Logic, 10(3): 367-389.

Galinon, H. (2014). Acceptation, cohérence et responsabilité. In Liber Ami-
corum Pascal Engel. J. Dutant, D. Fassio, and A. Meylan, editors, Université
de Geneéve.

Halbach, V. (2001). Disquotational truth and analyticity. Journal of Symbolic
Logic, 66(4): 1959-1973.

Halbach, V. (2014). Axiomatic Theories of Truth. Cambridge University Press.

Halbach, V. and Horsten, L. (2006). Axiomatizing Kripke’s theory of trath.
Journal of Symbolic Logic, 71(2): 677-712.

Halbach, V. and Nicolai, C. (2018). On the costs of nonclassical logic. Journal of
Philosophical Logic, 47: 227-257.

Horsten, L. (forthcoming). On reflection. Philosophical Quarterly.

Horsten, L. and Leigh, G. E. (2016). Truth is simple. Mind, 126(501): 195-232.

Horwich, P. (1990). Truth. Clarendon Press.

Kreisel, G. (1958). Ordinal logics and the characterization of informal concepts
of proof. In Proceedings of the International Congress of Mathematicians
(1958), pages 289-299. J. A. Todd, editor, Cambridge University Press, 1960.

Kreisel, G. and Lévy, A. (1968). Reflection principles and their use for establish-
ing the complexity of axiomatic systems. Mathematical Logic Quarterly, 14:
97-142.

Leigh, G. E. (2016). Reflecting on truth. IFCoLog Journal of Logics and their
Applications, 3: $57-593.

Lorenzen, P. (1958). Logical reflection and formalism. The Journal of Symbolic
Logic, 23(3): 241-249.

Priest, G. (2008). An Introduction to Non-Classical Logic From If to Is. Cam-
bridge University Press. .

Rathjen, M. (1997). The realm of ordinal analysis. In Cooper, S. B. and Truss,
J. K., editors, Sets and Proofs, pages 219-279. Cambridge University Press.
Schiitte, K. (1964). Eine Grenze fiir die Beweisbarkeit der transfiniten Induktion
in der verzweigten Typenlogik. Archiv fiir Mathematische Logik und Grundla-

genforschung, 7: 45-60.

Schiitte, K. (1965). Predicative well-orderings. In Crossley, J. and Dummett, M.,
editors, Formal Systems and Recursive Functions, volume 40 of Studies in
Logic and the Foundations of Mathematics, pages 280-303. Elsevier.

Turing, A. M. (1939). Systems of logic based on ordinals. Proceedings of the
London Mathematical Society, s2-45(1): 161-228.

Zicchetti, M. (2020). Truth, Trustworthiness and Reflection. Submitted for
publication.



