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L. HORSTEN 

PLATONISTIC FORMALISM 

ABSTRACT. The present paper discusses a proposal which says, roughly and with sev? 

eral qualifications, that the collection of mathematical tmths is identical with the set of 

theorems of ZFC. It is argued that this proposal is not as easily dismissed as outright false 

or philosophically incoherent as one might think. Some morals of this are drawn for the 

concept of mathematical knowledge. 

1. INTRODUCTION 

In the introduction to his book on set theory, Saharon Shelah writes: 

If we interpret "true" by "is provable in ZFC" (the usual axioms of set theory), as I do, then 

a large part of set theory which is done today does not deal directly with true theorems 
- 

it deals, rather, with a huge machinery for building counterexamples (forcing possible 

universes) or with "thin" universes (inner models). Very often the answer to the question 
"can this happen?" is "it depends". (1994, xi) 

These are the sort of statements one would expect being made by someone 

who holds a formalist or combinatorial view about mathematical truth. But 

Shelah is well known to be, like many set theorists, a straightforward pla 
tonist about sets. So this passage raises a philosophical question: Is there 

any coherent way, compatible with platonism 
- 

or, better still, with many 

positions in the philosophy of mathematics - of defending the position 
that the class of set-theoretic truths coincides with the class of theorems of 

ZFC? 
It will be argued that, contrary to first appearances and with some qual? 

ifications, the thesis that the class of mathematical truths coincides with 

the class of theorems of ZFC is philosophically defensible. The defense 

of this thesis that will be given here is based on a distinction between 

mathematical and philosophical proofs of mathematical propositions. This 

defense will not presuppose taking a specific stance on deeper ontological 
and epistemological questions about mathematics, such as Benacerraf s 

problems. An attempt will be made to show that the thesis and its defense 

are in line with a relatively mild form of mathematical naturalism. 

The structure of this paper is as follows. First, an explication is given 
of the content of the thesis that is put up for scrutiny (Section 2). Then an 
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objection that immediately comes to mind is formulated (Section 3). This 

objection says, roughly, that if ZFC contains only mathematical truths, 
then statements such as the G?del sentence for ZFC ought likewise to 

count as mathematical truths. It will be shown that the objection can be 

avoided if an important conceptual distinction is kept in mind, viz., the dis? 

tinction between philosophical and mathematical proofs of mathematical 

propositions (Section 4). Specifically, it is argued that we have today no 

convincing mathematical reasons for taking sentences such as the G?del 

sentence for ZFC to be mathematical truths. It is pointed out that there is a 

deep connection between this claim and the position that Daniel Isaacson 

has developed on arithmetical truth. In Section 5, it is shown that positions 
which entail that much less, or that much more than what is provable in 

ZFC is mathematically true are not compatible with mathematical natural? 

ism, while the thesis that mathematical truth coincides with ZFC is in line 

with naturalism. Analogous to the distinction between truth of a mathe? 

matical sentence and mathematical truth, a distinction is then made 

between knowledge of a mathematical proposition and mathematical 

knowledge (Section 6). The paper ends with some closing remarks (Sec? 
tion 7). 

2. THE THESIS 

This paper addresses the question: which sentences are mathematical 

truths? In particular, it discusses one proposal for giving a non-trivial 

characterization of the collection of mathematical truths. There are some 

qualifications which need to be made at the outset in order to make the 

question that is addressed more precise. 

First, what will be explored is one possible answer to the question 
what our best guess today (2000) would be for answering this question. 
The possibility that some of our future best guesses will be different from 

today's best guess is left open. In fact, in view of the history of mathematics 

it seems likely that our best guess now differs from our best guess in the 

year 2100. Nevertheless, our question asks for more than an answer to 

the question: which sentences do we now know, explicitly or implicitly, to 

be mathematical truths? (even though our answers to these questions may 

coincide). In addition, it has to be at least possible, as far as we know today, 
that this collection of sentences constitutes from a timeless perspective the 

collection of mathematical truths. It is admissible to politely decline to 

answer this question, on the grounds that we can make no 'informative 

good guess' that meets this additional requirement. But it would then have 

to be explained why this cannot be done. 
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Second, the we in 'our best guess' is the mathematical community. 
This presupposes a mild form of naturalism in the philosophy of math? 

ematics, which will be taken for granted in this paper.1 The form of 

naturalism that is presupposed here says that the best reasons we have for 

accepting or rejecting mathematical principles are internal to mathematical 

practice. Decisions about the acceptance and rejection of mathematical 

principles are and should be made by the mathematical community on 

the basis of mathematical as opposed to philosophical reasons. It is the 

task of the philosopher of mathematics (or of the mathematician, when in 

a foundational mood) to identify and analyze these basic principles and 

mathematical reasons for accepting or rejecting them. But every philo? 

sophical attempt to argue that a substantial body of mathematics that is 

generally accepted by the mathematical community is nevertheless funda? 

mentally flawed has to be regarded with much suspicion. And the same 

holds for philosophical attempts to show that certain principles, not gen? 

erally accepted by the contemporary mathematical community, are in fact 

basic mathematical truths and are henceforth to be taken as axioms. 

Third, our attention will be confined to truths of pure mathematics. 

If the boundary between pure and applied mathematics is vague, then 

a corresponding vagueness in the characterization of the collection of 

mathematical truths has to be allowed for. 

Finally, the question taken up here does not ask for a semantics for 

mathematical language, nor for an ontological account of what makes 

mathematical statements true, nor for a philosophical account of how we 

can have knowledge of basic mathematical truths.2 It asks merely for an 

informative description of the class of mathematical sentences that are 

mathematical truths. 

The thesis that is put up for scrutiny here is that insofar as we can tell 

today (in 2000), the collection of mathematical truths coincides with the 

collection of theorems of ZFC, formalized Zermelo-Fraenkel set theory 
with the Axiom of Choice. This thesis needs some fairly obvious qualifica? 
tions, which are stated below. But substantially this is the proposal that will 

be explored. Henceforth this thesis, with the appropriate qualifications, 
will be referred to as the Thesis (with capital T). 

Here are the necessary qualifications. First, mathematical truths are 

sentences of the informal language of mathematics (of which formalized 

ZFC is a proper part). So if we want to be a little more precise, then we 

would have to say that, as far as we can tell today, ZFC, when interpreted 
in the normal way,3 provides a good model of the set of mathematical 

truths. Second, the Thesis is not intended to imply that numbers are re? 

ducible to sets. It may well be that natural numbers, real numbers, etc. 
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are not sets.4 But there are well-known ways of representing the natural 

numbers, real numbers, etc. and number-theoretical facts about them in 

ZFC. To say that a number-theoretic statement is provable in ZFC would 

then be to speak loosely. It would be short for saying that there is a routine 

translation from number-theoretic to set-theoretic sentences under which 

the number-theoretic statement is provable in ZFC.5 This then is a second 

sense, closely related to the first sense, in which ZFC should be taken as 

a model for representing mathematical truths. Third, there is the question 
whether first- or second-order ZFC (ZFC1 or ZFC2), or perhaps third- or 

fourth-order, etc. is intended. This question can be left open here. What 

will be said in the sequel should by and large hold (or fail to hold) on each 

of these interpretations.6 

3. THE OBVIOUS OBJECTION 

There is an objection that immediately comes to mind. If all theorems 

of ZFC are mathematical truths, then surely the G?del sentence for ZFC 

(Gzfc) and the sentence expressing the consistency of ZFC (ConZFc) are 

mathematical truths? G?del showed us that while they are unprovable in 

ZFC, they are nevertheless both true. Therefore ZFC does not exhaust the 

collection of mathematical truths. And since something like this can be 

said about any even remotely plausible proposal for identifying mathemat? 

ical truth with provability in an axiomatic system, should we not conclude 

that it is impossible to give an informative characterization of the collection 

of mathematical truths? 

One could try to resist this line of reasoning in the following way. 

Gzfc and ConZFC are not mathematical but metamathematical sentences, 

metamathematics being the mathematical investigation of formal systems.7 
Since formal systems do not belong to the domain of pure mathematics, 

metamathematics is a branch of applied, and not of pure mathematics. In 

sum, sentences such as GZFC and ConZFc are not even candidates for being 

counterexamples to the Thesis. 

But this does not help much. Aside from the disputable assertion that 

formal systems do not belong to the domain of pure mathematics, GZFc 

and ConZFC are in the final analysis combinatorial statements. Given a 

suitable coding scheme, metamathematical assertions can be "expressed" 

by sentences of the language of ZFC (or even by sentences of the language 
of elementary arithmetic). Such sentences are clearly of a purely mathe? 

matical nature. And since these set-theoretic equivalents of GZFc and 

ConZFc are evidently true but unprovable in ZFC, aren't we compelled 
to admit that they are mathematical truths? 
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I think many mathematicians' gut feeling is that they are not mathema? 

tical truths8 - 
although they are very likely to then go on losing the res? 

ulting dispute with a philosophically inclined logician. But there is a way 
in which a defender of the Thesis can hold her ground. The defense which 

will be constructed here depends on a distinction between mathematical 

and philosophical proofs of mathematical propositions. To this distinction 

we now turn. 

4. MATHEMATICAL AND PHILOSOPHICAL DEMONSTRATIONS 

4.1. The Soundness and Consistency of ZFC 

Sure enough GZFc and ConZFC are true: G?del proved them to be true 

(although these proofs are not formalizable in ZFC). A G?del-style proof 
of the consistency of ZFC, for example, goes roughly as follows:9 

The axioms of ZFC are tme of the set-theoretic universe; the rules of inference of ZFC are 

truth-preserving. Hence every theorem of ZFC is true of the set-theoretic universe. So no 

sentence of the form A A -> A is a theorem of ZFC. 

Formally, consider the language of ZFC plus a new one-place truth predi? 
cate T. From the axioms of ZFC formulated in this extended language (so 
that T is allowed to occur in instances of the comprehension scheme) plus 
the axioms of Tarski's inductive theory of truth, GZFc and ConZFc can be 

derived.10 

Now quite a few mathematicians do not accept the above proof as a 

convincing proof of ConZFC, e.g., because they feel that their intuition of 

the set-theoretic universe is not strong enough to produce the conviction 

that all axioms of ZFC are true in this structure. These mathematicians 

regard the question of the consistency of ZFC as genuinely open. 
Other mathematicians do find the above consistency proof convincing. 

But even if it is a sound proof, the defender of the Thesis will insist that 

to be a mathematical truth it is not sufficient to belong to the language of 
mathematics and to be true. G?delian proofs of GZFc and ConZFc are cer? 

tainly partly mathematical in nature. The proof cited above, for example, 
involves an instance of the principle of mathematical induction, which is a 

mathematical principle if there ever was one. It is just that such G?delian 

proofs are not purely mathematical proofs. For they essentially contain 

the notion of truth, which is itself not a mathematical but a philosophical 
notion. This is not to deny that mathematics can be applied to produce 

interesting theories of truth.11 It is just that mathematical theories of truth 

do, on this view, belong not to pure mathematics but at best to applied 
mathematics, or to the more mathematical part of philosophy. 
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In the absence of a purely mathematical proof of GZFc and of ConZFC, 
we should not count them as mathematical truths. Comes a time when we 

accept mathematical axioms from which GZFc and ConZFc follow, then we 

will take them to be mathematical truths. Until then, not. So, for example, 
the consistency of Z,12 which is provable in ZFC, is a mathematical truth.13 

And of course many of the statements of the form Conx 
? 

Conx+Y are 

mathematical truths, since many such statements are provable in weak 

fragments of ZFC. But the consistency of V = L, the independence of 

the continuum hypothesis, the independence of the existence of strongly 
inaccessible cardinals, etc. are not, as far as we can say today, mathematical 

truths. Hence the feeling of many mathematicians that by producing almost 

nothing but independence proofs set theory has in recent decades alienated 

itself from mainstream mathematics.14 

It could be retorted that since we are convinced of the truth of GZFc and 

of ConZFC, we might as well take them as new axioms. But the point is that 

we do not even consider doing this. It is not sufficient for a sentence of the 

language of set theory to be recognized to be true for it to be eligible to 

become a new axiom. Whatever the additional necessary requirements are 

for a principle to be considered an axiom candidate for set theory, GZFc 
and ConZFC do not meet all of them.15 

Given that GZFc and ConZFc are not mathematical truths, and given 
the partly philosophical arguments that purport to establish their truth, 

should these sentences be seen as metamathematical truths? What the cor? 

rect answer to this question is depends on whether truth is a metamathe 

matical notion. Metamathematics is usually regarded as a branch of pure 
mathematics.16 If that is so, then truth is not a metamathematical no? 

tion. Hence, as long as there exists no mathematical proof of GZFc or of 

ConZFC, these sentences are not mathematical truths. If truth is taken as a 

metamathematical notion, then metamathematics is not, strictly speaking, 
a branch of pure mathematics. In that case, if the above consistency proof 
and the related argument for the truth of GZFc are convincing, then these 

sentences should be taken to be metamathematical truths. 

4.2. Mathematical Truth as a Philosophical Notion 

It may be useful at this point to briefly contrast the defense of the Thesis 

that was mounted above with Hartry Field's position on this matter. He too 

claims that we do not have a mathematical proof of the G?del sentence and 

the consistency statement for our most comprehensive mathematical the? 

ory M.17 But his arguments for this claim are very different from those that 

were proposed in the previous section. According to Field, the language of 

M contains a primitive truth predicate and M contains axioms governing 
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this truth predicate.18 So the language of our most comprehensive math? 

ematical theory is sufficiently strong to express a G?del-style proof of the 

consistency of M. But the premises of this argument, expressing the truth 

of the axioms of M, will not be provable in M - otherwise M would be, by 
Tarski's theorem, inconsistent (Field 1998, 112-114). 

So according to Field, 'true', as applied to mathematical sentences, is 

a perfectly good mathematical notion. I disagree. Even truth as applied 
to mathematical sentences is a philosophical notion. Again, this is not 

to deny that the notion of mathematical truth can be legitimately used, 
for instance, for conclusively justifying certain progressions of formalized 

mathematical theories.19 But it does imply that such justifications do not 

constitute a mathematical proof of the soundness and consistency of the 

theories in such a progression. 
G?del at one point also seems to imply that mathematical truth is a no? 

tion of pure mathematics. When referring to an elliptical form of the above 

argument for demonstrating the consistency of a mathematical theory, he 

says that one thereby obtains a "mathematical insight not derivable from 

[the] axioms" (G?del 1995[1952], 309) [my emphasis]. Again I disagree: 
what is thereby obtained is at least in part a philosophical insight. 

However, in an earlier paper G?del seems to be acutely aware of the dis? 

tinction between purely mathematical and partly philosophical principles 
that can be used for proving mathematical propositions. In his Remarks 

to the Princeton Bicentennial Conference he formulates the following 

conjecture: 

... the following could be true: Any proof for a set-theoretic theorem in the next higher 

system above set theory (i.e., any proof involving the concept of truth [...]) is replaceable 

by a proof from [... ] an axiom of infinity. (G?del 1990 [1946], 151). 

Here "proofs involving the concept of truth" are (in my terminology) 

partly philosophical proofs, and "axioms of infinity" are set-theoretic, and 

therefore purely mathematical principles. G?del's conjecture seems to be 

doubtful, since so far we do not even have accepted set-theoretical axioms 

which replace the philosophical reflection principle in the consistency ar? 

gument for ZFC that was sketched in Section 4.1. But this passage does 

show an awareness of the fact that the notion of truth is not a purely 
mathematical notion. 

4.3. The Objector's Last Stance 

But one may wonder at this point why it should not after all be insisted 

that for a sentence to be a mathematical truth it is sufficient to be a math? 

ematical sentence and to be true? How could one deny that? Isn't it simply 
implied by the meaning of the expression 'mathematical truth'? 
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The best the defender of the Thesis can do by way of response would 

probably go along the following lines. Pure mathematics as a social prac? 
tice is concerned only with what can be proved from basic mathematical 

principles alone. The mathematical truths are the truths that mathematics 

is concerned with. Therefore the class of mathematical truths is deter? 

mined by what can be proved from basic mathematical principles. This 

is not to deny that there are unknowable truths about the mathematical 

universe, or that there are truths about the mathematical universe that can 

only be known in (at least partly) non-mathematical ways. It is just that 

mathematics as a social practice is not concerned with them. 

Someone who has been thinking all the while in terms of a higher 
order axiomatization of ZFC (ZFC2, let's say) could remark that in this 

case formal derivability does not coincide with semantical consequence. 
So there exists an alternative to the above characterization of the collection 

of mathematical truths,20 namely to identify the collection of mathemat? 

ical truths with the collection of semantical consequences of ZFC2. On 

this characterization, ConZFC2 does count as a mathematical truth. Even 

either the continuum hypothesis or its negation will on this proposal be 

a mathematical truth.21 The reaction of the defender of the Thesis to this 

alternative will be as before. If no mathematical principles will ever be 

found from which ConZFC2 can be deductively obtained, or on the basis 

of which the continuum hypothesis can be decided, then mathematics as a 

social practice is not concerned with these propositions. They are then not 

truths of mathematics. 

A comparison of the concept of mathematical truth with that of 

logical truth is instructive here. The language of pure first-order logic with 

identity (containing no non-logical symbols) can express that there are at 

least five objects; the language of pure second-order logic can express a 

principle from which the Peano axioms can be derived. Many of us take the 

Peano axioms and fortiori the statement that there are at least five objects 
to be true; few of us take these to be logical truths. This leads Boolos to 

draw the following conclusion 

Here we should note that a truth's being couched in purely logical terms is not sufficient 

for it to count as a truth of logic, a logical truth, a tmth which is tme solely in virtue of 

logic. A distinction needs to be drawn between truths of logic and truths expressed in the 

language of logic. (Boolos 1995, 246) 

Seen in this light, is it so clear who is being unfaithful to the meaning of the 

notion of mathematical truth: the defender of the Thesis or the objector? 
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4.4. Comparison with Isaacson on Arithmetical Truth 

The Thesis about mathematical truth and its response to the 'obvious ob? 

jection' are deeply related to the theory about arithmetical truth that has 

been proposed and defended by Daniel Isaacson.22 In two important ar? 

ticles he argues that the collection of arithmetical truths coincides with the 

collection of theorems of first-order Peano Arithmetic (PA).23 
For Isaacson the notion of arithmetical truth is in part an epistemo 

logical notion. For a statement to be an arithmetical truth it is not in general 
sufficient that it belongs to the formal or informal language of arithmetic 

and is true in the structure of the natural numbers. In addition, its truth must 

be "directly perceivable on the basis of our [... ] articulation of our grasp 
of the structure of the natural numbers or directly perceivable from truths 

in the language of arithmetic which are themselves arithmetical" (Isaacson 

1987, 217). 
Isaacson argues that the statements the truth of which can be perceived 

in this way are precisely the theorems of PA. In this sense, PA is complete 
for arithmetical truth (Isaacson 1987, 222). For seeing that any particular 
statement that is unprovable in PA is nevertheless true in the natural num? 

ber structure, insight is required into concepts that are not strictly speaking 
arithmetical. Such notions are called higher-order concepts by Isaacson. 

Examples of higher-order concepts are the notion of well-ordering, con? 

sistency of a formal system, provability in a formal system, and truth 

(Isaacson 1992, 96).24 For example, the principle of induction up to the 

ordinal 60 ?s a truth which can be 'expressed' in the language of first 

order arithmetic (via coding). But to see that this principle is true, insight 
is required into the notion of well-ordering, which is a set-theoretical and 

not a purely arithmetical concept. Therefore the principle of induction up 
to the ordinal 6o is not, in Isaacson's view, an arithmetical truth. 

The present paper is concerned with the much broader notion of math? 

ematical truth. So in order to make Isaacson's consideration relevant to our 

present concerns, we would have to replace everywhere in Isaacson's ar? 

guments the notions 'arithmetical' and 'PA by 'mathematical' and 'ZFC, 

respectively. Indeed, were we to do so, we would arrive at a position that 

is fairly close to the position that is put up for scrutiny here. For instance, 
the earlier assertions that mathematical truth coincides with ZFC and that 

GZFC is not a mathematical truth are recovered in this way. 
It is therefore no accident that many parallels can be drawn between 

Isaacson's argumentation and the arguments that have been put forward 

above in support of the Thesis. For one thing, neither Isaacson nor the 

defender of the Thesis can aspire to conclusively establish that nothing 

beyond PA (ZFC) is an arithmetical (mathematical) truth.25 The best they 
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can do is to show how particular putative counterexamples do not, on closer 

inspection, refute our respective thesis. Nevertheless, Isaacson appears to 

be in a somewhat more comfortable position than the defender of the 

Thesis. For the possibility that new irreducible axioms of set theory will 

become established in the mathematical community seems more realistic 

than the possibility that new irreducible first-order axioms of arithmetic 

will become accepted by the mathematical community. For one thing, there 

has been a tradition of actively searching for new set-theoretic axioms, 
whereas no counterpart of this activity has existed for arithmetic. 

A distinction between Isaacson's position and the one that is invest? 

igated here is the fact that according to Isaacson, it is not sufficient for 

a sentence to belong to the informal or formal language of arithmetic in 

order to be called arithmetical in his sense of the word. In addition, what 

the sentence in question says about the natural numbers has to be directly 

perceivable or understandable on the basis of our grasp of the natural num? 

ber structure. Gpa, for instance, is not of this kind.26 It is a sentence of 

the formal language of first-order arithmetic. But its arithmetical content 

appears not to be directly comprehensible by us. We can assign concrete 

content to it only via the technique of coding (Isaacson 1987, 213-214). 
In contrast, in this paper, the notion of 'mathematical statement' has 

been used in its more customary, nonepistemic sense: a sentence is a math? 

ematical sentence if and only if it belongs to the (informal) language of 

mathematics.27 This appears to be more in accordance with the general 

usage of the expression. In any case, all that really matters for the Thesis 

is that mathematical truth is, in part, an epistemological notion. Moreover, 
this seems to be a point that Isaacson could accept. It is telling that his 

assertion "... the notion of a statement in the language being arithmetical 

is epistemic" (Isaacson 1992, 95) is immediately followed by: "It has to do 

with the way in which we are able to perceive the statement's truth or fal? 

sity" (Isaacson 1992, 95). All that matters for the thesis that Isaacson wants 

to defend is that arithmetical truth be taken as a partially epistemic notion. 

It is of less importance for his central claim to take a stance on whether the 

notion of 'arithmetical sentence' is also in part an epistemological concept. 
For the purposes of the present paper, it is crucial to make a distinction 

within Isaacson's notion of higher-order concepts between mathemat? 

ical and philosophical concepts. Some of the 'higher-order' concepts that 

Isaacson cites (the notion of well-ordering, for instance) are clearly math? 

ematical concepts, whereas others are not purely mathematical notions (the 
notion of truth, for example). Nothing in what Isaacson says precludes 

making this distinction. But for the thesis that Isaacson wants to defend, 

making this distinction is not necessary. 
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In sum, with the qualifications that were made above, it seems fair to 

say that the Thesis explored in this paper can be regarded as an exten? 

sion of Isaacson's philosophical account of arithmetical truth. However, as 

mentioned above, the Thesis is in some respects less secure than the one 

for which Isaacson has argued. But there is a deep connection between the 

two. 

5. MATHEMATICAL TRUTH AND NATURALISM 

In the previous section it was argued that the Thesis is not so easily refuted, 
and that it appears to be in line with the sensitivities of the mainstream 

mathematician. It will now be argued that positions that assert that much 

more is mathematically true than what is provable in ZFC, or that much 

less is mathematically true than what is provable in ZFC, are in danger of 

being out of step with mathematical naturalism. 

5.1. More Mathematical Truths ? 

There are statements of the language of set theory that are known to be in? 

dependent of ZFC and that have been proposed as new axioms. Think only 
of large cardinal axioms, Martin's Axiom, V = L, Determinacy Axioms, 
and so on. They certainly have to be taken to be mathematical assertions. 

After all, they are expressed in the language of set theory, which is part of 

the language of pure mathematics. From each of these principles propo? 
sitions like GZFc or ConZFc deductively follow (in the context of ZFC). Is 

this not a good argument for taking GZFc and ConZFC to be mathematical 

truths? 

As hinted at before, the defender of the Thesis will reply that none of the 

principles, formulated in the language of set theory, that are independent 
of ZFC, have become accepted by the set theoretical community as new 

axioms. Nor even is there universal or near-universal agreement about the 

truth of any single one of them.28 In set theory today, you have proved 

something if you have proved it from ZFC; if you have proved it even 

assuming only one inaccessible cardinal, then you have proved it under 

a hypothesis. A reflection of this attitude is the following table, given by 
Shelah and based on his impression, in which numbers measure the value 

of types of set-theoretic results on a scale of 0 to 100 (Shelah 1993, 4): 

_Jensen Magidor Shelah 

Consistency 40 40 30 
FromV = L 65 50 35 
From large cardinals 50 60 40 
From ZFC 100 100 100 
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This attitude is also reflected in the amount of effort that was invested 

to prove Solovay's celebrated theorem that there is a model of ZFC in 

which every set of reals is Lebesgue-measurable without assuming an 

inaccessible cardinal.29 

In sum, large cardinal axioms, determinacy principles and the like are 

not, insofar as is known today, mathematical truths. Although there is 

at present no way of telling, the possibility cannot be excluded that this 

situation will change in the future. If at some point in the future a large 
cardinal principle, for instance, will rightly be regarded as a relatively 
uncontroversial basic axiom of set theory, then the Thesis will be seen 

to be false after all. 

A different way of arguing that more is mathematically true than is 

dreamt of in ZFC would be to insist that there are legitimate concepts of 

pure mathematics which cannot be adequately formalized in the language 
of ZFC. This amounts to questioning even the non-reductionist connec? 

tion between ZFC and informal mathematics that is posited by the Thesis, 

namely that ZFC contains good representations of all concepts of pure 
mathematics. In this context it can be noted that there seems to be no 

interesting set-theoretic representation of the notion (or notions, if there are 

more than one) of absolute randomness, which plays an important role in 

probability theory, that Church's thesis cannot be formalized in ZFC, that 

the informal notion of constructiveness of a proof cannot be formalized in 

ZFC and that the notion of a category cannot be formalized in ZFC. 

No uniform reply can be given to this objection; the defender of the 

Thesis will have to look at each proposed counterexample separately. 
Of some of these notions one should say that they do not belong to pure 

mathematics. Here the notion of an algorithm and the notion of absolute 

randomness can be cited. Thus probability theory and computer science are 

relegated to applied mathematics. The fact that these theories are nowadays 

generally seen as not belonging to pure mathematics is witnessed by the 

fact that in most universities they are housed in a separate department 

(department of statistics, department of computer science). 

Of some of these concepts there are good set-theoretic representations. 
The notion of a Turing machine is a satisfactory mathematical analysis 
of the informal notion of an algorithm,30 and Turing machines can them? 

selves be given an adequate representation in terms of sets of ordered 

quadruples. Its status is then similar to the status of the analytic notion 

of a limit, of which few people doubt that there is a good set-theoretical 

representation.31 And it should be emphasized that the relation between 

the informal notion and the set-theoretic representation is not itself a 

mathematical truth. 
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Finally, the status of the best theories we have today concerning some of 

these notions can be questioned. The foundational status of category theory 
still is controversial today 

- even though it has become an indispensable 
tool in some areas of mathematics (e.g., algebraic topology, algebraic geo? 

metry and pure algebra). 
32 And there is probably too much disagreement 

among constructivists today for us to see a solid body of mathematical 

knowledge there. It may also be that the preoccupation of constructivistic 

mathematics with epistemic notions precludes it from being considered 

part of mainstream pure mathematics. 

5.2. Fewer Mathematical Truths ? 

Many mathematicians take it to be the primary goal of set theory to sys? 
tematize the collection of acceptable proof principles of pure mainstream 

mathematics. If set theory is included in mainstream mathematics, then it 

follows that all the theorems of ZFC are mathematical truths. For even of 

the set-theoretic axioms that are of least use outside set theory (the Axiom 

of Foundation and the Axiom of Replacement), essential use is made in set 

theory.33 
But many mathematicians do not consider set theory as a part of main? 

stream mathematics. Their reasons for this are at least twofold. First, the 

connections between set theory and other mathematical disciplines are 

not deep enough.34 The set-theoretical community is aware of this, and 

is working hard to change it. Secondly, and perhaps more importantly, set 

theory seems ill-equipped to solve the questions that naturally arise in set 

theory.35 It is not much of an exaggeration to say that almost every question 
that naturally arises in set theory is independent of ZFC.36 

If on the basis of these considerations set theory is not included in main? 

stream mathematics, then the Axiom of Foundation will not be regarded as 

a mathematical truth, for it is never used outside set theory.37 Some have 

held that Replacement is never used in mathematical practice. But that 

situation has changed since the mid-seventies. There now are theorems 

of ordinary mathematics which require Replacement for their proof.38 In 

sum, if this line is taken, then the Thesis should be replaced by something 
like: The collection of mathematical truths coincides with ZF - Foundation 

+ Choice. 

One could reject the emphasis, in the discussion so far, on generating 

principles that are to be accepted wholesale or to be rejected. Instead, 
one could say, the emphasis should be on the number of ranks of the 

set-theoretic hierarchy that are needed to carry out our mathematical con? 

structions. An alternative to the Thesis in this vein, could then be, e.g., that 
at most all sets of rank of are needed in mathematical practice. 
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In sum, if the game is to formulate natural general principles from 

which all ordinary mathematics can be deduced and set theory is not in? 

cluded in ordinary mathematics, then one is lead to something like ZF - 

Foundation + Choice. But if the game is to gauge the amount of set theory 
that is needed not in terms of general principles, but in terms for instance 

of ranks, then very different answers may be forthcoming. 

6. MATHEMATICAL KNOWLEDGE 

6.1. The Parallelism between Mathematical Truth and Mathematical 

Knowledge 

The position described in the preceding sections says, roughly, that insofar 

as we know today, the class of mathematical truths coincides with the class 

of sentences provable in ZFC. It is tempting to then go on to say that the 

class of mathematical sentences that are known is the class of theorems 

of ZFC that have actually have been proved. But we already know that 

that cannot be exactly right: ConZFC, for instance, is, at least according to 

many mathematicians, known to be true. The obvious way to weaken the 

claim then is to retreat to the familiar thesis that the class of mathematical 

sentences that are known is the class of mathematical sentences that have 

actually been proved 
- not necessarily in ZFC. 

This last position is sometimes rejected as still being too restrictive. 

Steiner holds that at least some of Ramanujan's true conjectures were 

known by Ramanujan even though he did not have a proof of them.39 A 

perhaps clearer example is the following. A famous mathematician proves 
a theorem, tells you that she has proved it and that it has been checked by 
her colleagues. You understand the proposition expressed by the theorem 

but do not know the proof (nor do you know any other proof of the the? 

orem). In such a case, there is a strong tendency to say that you know the 

proposition expressed by the theorem.40 

When he was asked in an interview what mathematics is really about, 

Andrew Gleason responded: 

... 
proofs really aren't there to convince you that something is true - 

they're there to show 

you why it is true. That's what it's all about - it's to try to figure out how it's all tied 

together. (Gleason 1990, 86) 

If that paints the right picture, then not all knowledge of mathematical 

sentences should count as mathematical knowledge. Between knowledge 
of a mathematical proposition and mathematical knowledge a distinction 

should be drawn which is parallel to the distinction between mathematical 



PLATONISTIC FORMALISM 187 

truths and true mathematical propositions. It can be conceded that there are 

many sources of knowledge of mathematical sentences, so that there is no 

uniform manner in which we come to have mathematical knowledge. But 

mathematical knowledge is intimately connected to the informal notion of 

mathematical proof. One has mathematical knowledge of a proposition if 

one sees, at least dimly, how the proposition can be deduced from basic 

mathematical axioms. As a special case, it follows that one has mathe? 

matical knowledge of an axiom if one sees that it is a basic mathematical 

axiom.41 

So one may want to concede that we know ConZFC (since we have 

a partly philosophical proof of it), and yet deny that our knowledge of 

ConZFc constitutes mathematical knowledge. This seems to be in line with 

the fact that many set theorists consider it an open mathematical prob? 
lem to prove the consistency of ZFC, while at the same time claiming to 

have conclusive intuitive evidence that all axioms of ZFC are true of the 

set-theoretic universe. 

To have mathematical knowledge of a theorem, it is not necessary that 

one has a proof in the framework of set theory. In fact, Kenneth Manders 

has rightly emphasized that mathematical understanding of a problem can 

only be generated when the problem is investigated in its proper theoretical 

setting (Manders 1989).42 The creation of this setting is often the main 

ingredient in the acquisition of mathematical insight into the problem. Set 

theory of course is not the proper setting for the investigation of most math? 

ematical problems. Even though all known proofs in complex analysis, for 

instance, can be translated into the framework of set theory, it is clear that 

the resulting ZFC-proofs will not yield the same amount of mathematical 

insight into these theorems as the original proofs do. In this sense, the 

claim about mathematical knowledge that is defended here has nothing 
to contribute to the difficult and important philosophical task of shedding 

light on mathematical understanding. 

Also, one does not always have to have a flawless proof of a math? 

ematical sentence in order for one's knowledge of that sentence to be 

mathematical knowledge.43 It must probably be admitted that there are 

intermediate cases: mathematical knowledge is a matter of degree.44 The 

following situation sometimes obtains in a mathematical field. An old con? 

jecture has been proved to be implied by each of four or five other, far more 

general conjectures. All experts in the field believe strongly in the truth 

of the four or five conjectures, and even more so in the truth of the old 

conjecture. And they have the feeling that they have made some headway 
in proving some of these four or five conjectures (partial results have been 

obtained). Even in such a situation it is no exaggeration to say that we have 
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some degree of mathematical knowledge of the old conjecture.45 All this is 

compatible with the epistemological corollary of the Thesis that is studied 

here, which merely says that if one has mathematical knowledge in the 

fullest degree of a mathematical proposition, then one has a mathematical 

proof of it which can be translated into a proof of ZFC. 

6.2. Second Thoughts 

But even about this epistemological corollary about mathematical know? 

ledge one can have second thoughts at this point. One can wonder if we 

should not after all insist that for a person to have mathematical knowledge 
it is sufficient for her to have knowledge of a mathematical proposition. 

Suppose, for instance, that a reliable source tells you that Raasay is made 

up of some of the oldest rock on earth and some of the youngest.46 Then 

even if you cannot verify this for yourself you can be rightly said to have 

acquired a piece of geological knowledge. Why should things be different 

for mathematical knowledge? 
In the situation at hand, one rightly, but in a derivative way, speaks 

of geological knowledge. But that is because ultimately the justifying 
reasons are geological ones. This carries over to our example of the famous 

mathematician who tells you her most recent theorem without revealing 
the proof. Here too, it can rightly but in a derivative way be said that you 

thereby acquire a piece of mathematical knowledge, because ultimately 
the reasons supporting the theorem are mathematical ones. But the case 

of ConZFc or of GZFc is different, at least today. The only reasons we can 

adduce for supporting this proposition are of a partly philosophical nature. 

Therefore a comparison with theology seems more apt. Traditionally it 

was held that there are two distinct sources of knowledge about God. On 

the one hand, there is purely philosophical knowledge that can be obtained 

about the existence and properties of God. This body of knowledge was 

called natural theology (theologia naturalis). On the other hand there is 

knowledge that is based on revelation. This was called positive theology 

{theologia positiva). Some properties of God were thought to be knowable 

both on the basis of revelation and by purely philosophical reasoning 
- 

God's existence and his omniscience, for instance. But other facts about 

God were thought to be knowable only on the basis of revelation. An 

example of this is the trinity of God, i.e., the fact that God consists of 

three separate entities and yet is in the fullest sense one. Yet some such 

facts - the trinity of God is a case in point 
- could be expressed in the 

philosophical terminology of the time. Thus it would have commonly been 

considered a mistake to include the trinity of God in the body of theologia 
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naturalis. In the same way, it seems to me, it would be a mistake to take 

our present knowledge of ConZFC47 to be mathematical knowledge. 

7. CLOSING REMARKS 

I have discussed the thesis that to the best of our present knowledge ZFC 

not only is a good model of the body of our present mathematical know? 

ledge, but also exhausts the collection of mathematical truths. I have tried 

to explicate assumptions on the basis of which this prima facie implausible 

position is after all coherent and tenable. 

The basic assumption was that a distinction ought to be made between 

philosophical and mathematical proofs of mathematical statements. Math? 

ematical truths have to be regarded as truths that are derivable from 

basic mathematical axioms, and mathematical knowledge presupposes 

knowledge of how the known proposition can be derived from basic 

mathematical axioms. 

It was shown how on the basis of these assumptions it is possible to 

make a case for the Thesis. I have tried to show that furthermore these 

assumptions are defensible, and in line with a mild naturalist stance in 

the philosophy of mathematics. Thus, I conclude that the main thesis of 

the paper is philosophically tenable. I can of course not make the much 

stronger claim to have established it beyond any possible doubt. For in Sec? 

tion 5.2 we saw that certain positions which hold that somewhat less than 

what is provable in ZFC is mathematically true are not easily dismissed. 

And it is always possible that new axioms become established. But I do 
think that the distinction between philosophical and mathematical proofs 
of mathematical propositions, and the consequent fact that the Thesis is 

after all tenable are already of philosophical significance. 
The defense of the Thesis that was sketched in the previous sections 

does not presuppose taking any definite stance on deep questions about 
the ontology of mathematics. One can imagine someone holding that the 

basic axioms of mathematics are somehow 'true by convention' and that 
our knowledge of them is akin to the knowledge we have of stipulative 
definitions, while at the same time underwriting the Thesis on the basis of 
the arguments that were formulated in the previous sections. But one can 

also imagine someone holding that our basic mathematical axioms give 
a partial description of a non-spatiotemporal platonic realm of which we 

have perception-like knowledge, while at the same time underwriting the 

defense of the Thesis that was discussed in this paper. Especially this last 

possibility seems to me significant. It sheds some light on the puzzling 
fact that set theorists often appear formalists and platonists at the same 
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time.48 Whether some form of platonism about mathematical objects is in 

the end an intelligible and philosophically defensible position is a further 

question which I have no hope of resolving in this paper. As mentioned in 

the introduction, this is the domain of the challenges that were formulated 

by Benacerraf. They remain squarely before us even if all that was said in 

the present paper turns out to be correct. 

If the distinction between mathematical truths and true mathemat? 

ical sentences fails to hold, then I do not see how the Thesis could be 

maintained. It will then probably be harder to give a fairly precise char? 

acterization of the class of mathematical truths. ConZFC will be among 
them. And for similar reasons, so will ConZFc+con(ZFQ> and so on. In gen? 

eral, we have to include all sentences generated from ZFC by including 

consistency statements and G?del sentences and by iterating this process 
into the transfinite.49 And we have to do something like this for all known 

ways of diagonalizing out of a given (sufficiently strong) system to obtain a 

sentence that is knowably true on the intended interpretation of the system. 
If in addition we insist on a 'na?ve' Tarskian semantics for the language of 

mathematics, then the situation is completely hopeless. For then we must 

also face up to the possibility that the class of mathematical sentences that 

will ever be known constitutes only a small fraction of the class of math? 

ematical truths, which appears to imply that no informative extensional 

characterization of the collection of mathematical truths can be given. 
On the bright side, if the distinction does hold, then these philosophical 
dream- and doom-scenarios are not directly pertinent to the question that 

was discussed in this paper. 
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NOTES 

1 
I have no arguments to offer for this position that have not already been formulated in 

the literature. An excellent defense of naturalism in the philosophy of mathematics is given 

in Maddy (1997, see especially Part III, Section 4). 
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2 
The locus classicus for these problems is of course Benacerraf (1973). The reader will 

become aware of the fact that I am doing my best to stay away from the tangled web of 

problems that are raised by the classical papers Benacerraf 1965, 1973. 

3 
I mean in the way in which mathematicians do interpret ZFC, without committing 

myself whether this should be constmed in a platonistic, nominalistic, or some other way. 
4 

The classical reference here is Benacerraf (1965). 
5 

The discussion about the conditions which have to be fulfilled for a set-theoretic 

representation of an informal concept to be a good representation is left for another 

occasion. 
6 

The only exception is the semantical alternative to the Thesis discussed in Section 4.2 

(cf. infra). 
7 See Kleene (1967[1952]), Chap, 3, ?15. 
8 And this seems to be so independently of the fact that GZFc and ConZFc are of little 
interests to mathematicians because they are lacking concrete mathematical content. 

9 This proof is formally analogous to Myhill's proof of the consistency of PA (see Myhill, 
1962). Actually this proof and Myhill's proof show something stronger: they show the 

soundness of the respective theories for their intended interpretation. Using the soundness 

of ZFC for its intended interpretation, the tmth of GZFc easily follows. 
10 

For the details, see e.g., Halbach (1996, 56-57, Theorem 10.1). 
11 In fact, this has been done. See for instance Tarski (1983 [1935]) and Kripke (1975). 
12 

Z is the Zermelo system, i.e., ZFC minus Replacement and Choice. 

For specific purposes one might ask more of a consistency proof than merely that it 

is a proof from accepted mathematical principles. For instance, if one wants a consistency 

proof for a classical theory T which strengthens our conviction in the consistency of T, then 

one might insist that this consistency proof should be in a broad sense (which is difficult 
to describe with any precision) 'constructive' (see e.g., Sieg 1990). Now the consistency 

proofs for Z that are available today do not significantly increase our antecedent conviction 

in the consistency of Z. Indeed, given that ever more abstract and complex constmctive 

principles are needed to yield constmctive consistency proofs of strong mathematical the? 

ories, it is a legitimate question how far this demand can be taken (Howard 1996, 276). But 

despite the fact that they are of little interest for certain research programs in proof theory, 
our standard non-constmctive consistency proofs for Z are correct mathematical proofs. 
14 

There are set theorists who share this feeling, and who are trying to reverse this trend 

(most notably perhaps, Shelah). 
15 

Admittedly, more needs to be said here. But, as Tony Martin has pointed out, it is 

very hard to say anything informative about these requirements, since all properties that 

immediately come to mind seem to be violated by some of the axioms of ZFC. 
6 

Kleene, in his Introduction to Metamathematics, clearly regarded metamathematics in 

this way (Kleene 1967 [1952], 62). However, he followed Hubert in allowing only finitary 
methods in metamathematical proofs. The broader mathematical theory of formal sys? 

tems in which also non-finitary mathematical principles are used is called set-theoretical 

predicate logic by him (Kleene 1967, 175). However, this did not become accepted termin? 

ology. Nowadays non-finitary methods are regarded as acceptable as a matter of course in 

metamathematics. Thus, for example, Gentzen's consistency proof for elementary number 

theory is today taken to be a paradigm example of a metamathematical proof, whereas for 

Kleene it does not belong to metamathematics. 

In fact, he claims that we possess no proof at all (mathematical or partly non 

mathematical) of these statements (Field 1998, 110). 
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18 See Field (1998, 108-112). 
19 As is done, for instance, in Feferman (1962). 
0 

If, as Quine and Putnam have urged, only first-order quantification is ultimately 

acceptable, then because of the completeness theorem this alternative does not arise. 
21 See Boolos (1975, 518). 

I am grateful to an anonymous referee for pointing out the relation between my 

discussion of the Thesis and Isaacson's position on arithmetical tmth. 
23 See Isaacson (1987, 1992). 
24 In his 1987, Isaacson also mentions second-order quantification as a higher-order notion 

(Isaacson, 1987, 210). 

Isaacson concedes this point (Isaacson 1992, 100). 
26 "In a certain way, [Gpa] might even, be said not to be arithmetical. It is not saying 

anything about the natural numbers; rather, it is 'about' the statement itself [...]. That is 

my viewpoint in this paper" (Isaacson 1987, 213). 
27 

Cf. Section 4.1. 

See Jensen (1995) for an argument to the effect that this holds even for the principle 

-(V 
= 

L). 
29 Shelah proved that it cannot be done: an inaccessible is necessary to constmct a model 

in which every set of reals is Lebesgue-measurable. See Shelah (1984). 

The locus classicus here of course is Turing (1936). Excellent scholarly reconstmctions 

and discussions of the stmcture of Turing's argument can be found in Sieg (1994) and 

Soare(1996). 
31 See Mendelson (1990). 
32 

Thanks to an anonymous referee for pointing this out. 

33 
Replacement is needed for developing the theory of ordinals (Lavine 1994, 122-123), 

and Foundation is needed for associating ranks with all sets (Kunen 1980, 101). 

In a discussion, Mark Steiner gave this as an important reason for not taking set theory 
to belong to mainstream mathematics. 
35 

Cf. the quote from Shelah (1994) that was discussed in the introduction. 
36 For a discussion of some of the questions that arise naturally in set theory but are 

undecidable in ZFC see Kunen (1980, Chap. 2). 
37 See Kunen (1980, 94) and Lavine (1994, 146). 
38 See Friedman (1971). 
39 

B?rge agrees with Steiner on this point. See B?rge (1998, 25). 

B?rge argues that in such cases you not only know the proposition expressed, you know 

it a priori (B?rge, 1993, 466-467). His reason for this claim is that in situations such as 

the one that was sketched here, specific sense experiences or perceptual beliefs do not play 

a justifying role for the belief obtained by interlocution. 

41 
It is a further question how we come to have such knowledge. This question has been 

much discussed over the recent decades (see e.g., Benacerraf 1973), and I have nothing to 

say here that has not already been said in the literature. To repeat, I am doing my best to 

avoid having to, in order to make a point, solve one or both of Benacerraf's problems. 
42 

This, incidentally, is the reason why Isaacson takes seriously the possibility that his 

thesis about arithmetical truth has to be qualified somewhat, to the effect that perhaps not 

all theorems of PA count as arithmetical truths (Isaacson 1987, Section 6). He is worried 

that, for instance, the PA-proofs which prove the consistency of weaker systems of arith 
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metic do not generate insight into why these systems are consistent. PA does not provide 

the right setting for the investigation of such problems. 
43 

In a similar vein, B?rge argues that non-demonstrative reasoning in mathematics is a 

priori (B?rge 1998, 3). 
44 

Mathematical tmth, in contrast, is not, on the view that we are entertaining, a matter of 

degree. 
45 

I was told that something like this was the case for Ferm?t's last theorem before Wiles 

proved it. 

46 
This example was given by an anonymous referee. 

47 
If we can be said to know this proposition at all, that is, if our philosophical consistency 

proof is convincing at all. 
48 

Cf. again the passage from Shelah (1994) that was discussed in the introduction. It 

is significant in this context that Isaacson sees no difficulties in combining his theory 
about arithmetical tmth with a form of conceptual platonism in the general philosophy 
of mathematics (see Isaacson 1994). 
49 

Of course diagonalization procedures such that the only way to prove the soundness or 

the consistency of the resulting diagonal sentences is by invoking even relatively small 

large cardinals won't do for this purpose. So Friedman's way of generating sentences that 

are strongly independent of ZFC (see Friedman 1981) is not immediately relevant here. 
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