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Preface

This book is the result of the emergence of important connections between
seemingly disparate research fields. Between the end of my postdoctoral fellow-
ship and about 2014, I divided my research time mostly between thinking about
truth theory on the one hand, and thinking about questions in the philosophy of
mathematics on the other hand. These seemed to me two distinct areas that are
not deeply connected to each other. Conversations with Philip Welch about set
theoretic reflection principles on the one hand, and my research collaboration with
Graham Leigh—based on prescient observations by Volker Halbach—on the other
hand, convinced me otherwise. It gradually dawned on me that there are deep
connections between truth theory and proof theoretic reflection principles, and I
also came to see how the notion of truth plays a pivotal role in set theoretic re-
flection principles. Set theoretic reflection principles had already played a modest
but not insignificant role in the philosophy of mathematics since the later work of
Kurt Gödel. An idea that Feferman explored from a proof theoretical perspective
since the 1960s, but which was not really taken up by the philosophical community,
suggested that proof theoretic reflection principles are also of profound importance
for the philosophy of mathematics. So it all in a sense came together.

In the next five years or so, I had the pleasure to investigate, in collaboration
with a number of people, aspects of these connections between truth, reflection,
and the philosophy of mathematics. During this time, a group of young, talented
researchers joined the research efforts in this area. They have taken the emergent
interdisciplinary field “to the next level”, as they say. Even though the field is
young, it is difficult to keep up.

The different parts of the research area that is gradually being carved out
are enriching each other. Philosophical theorising has sparked technical research;
mathematical and metamathematical research has sparked philosophical discus-
sions. These are exciting times—at least for me.

Both the philosophical and the more technical in the nascent research area has
been growing rather rapidly. In particular, new important metamathematical re-
sults on proof theoretic reflection principles are currently produced on more or less
a yearly basis. The results and contributions are mostly scattered in the philosoph-
ical and logical journals. As a consequence of this, it has become more difficult
for everyone involved to keep an overview of the state of the art in the field. This
scattering of the results also brought with it, I believe, a threat of fragmentation
of the field. Fragmentation would be something that the area at the moment can
ill afford: the connections between the different parts are the life-blood of the field.
Moreover, due to the rapid developments in the area over the past decade, it has
become challenging for interested scholars—young and old—to enter the field.
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x PREFACE

For all these reasons, I took up, sometime in 2019, the project of writing a
research monograph on reflection in the mathematical sciences. The plan was to
provide an overview of the research that has been carried out in this area in recent
years, to push some parts of it forward, and to explain the connections between the
different strands. The aim was especially to concentrate on the fruitful back and
forth between philosophical and logical research in this area.

I may have bitten off a bit more than I could chew. We are still in the early
stages of this new research program. The research in this field is challenging, both
from a philosophical and from a technical point of view. It is not easy to achieve
conceptual clarity and to trace conceptual connections across disciplines, and it is
not easy to gauge the philosophical import of technical results and developments.
As a consequence, this book ended up being more heterogeneous that I had wished,
and contains numerous loose ends that I wish I’d know how to pursue further or tie
together. Moreover, I undoubtedly have taken wrong turns at several junctures.

But this is not the place to make excuses. One just cannot expect a smooth and
polished monograph about a research area that is evolving as quickly as the current
logico-philosophical debate about reflection principles. I can only hope that this
book nonetheless turns out to be a useful resource and guide for philosophers who
are actually working on the relation between truth, reflection, and the philosophy
of mathematics as well as for those who are merely interested in knowing more
about it.

Without working with others on aspects of the subject matter of this mono-
graph over the past decade, I would not have been able to write this book. I there-
fore thank the following people with whom I had the privilege to collaborate: Mar-
ianna Antonutti, Cezary Cieśliński, Martin Fischer, Volker Halbach, Hannes Leit-
geb, Graham Leigh, Guanglong Luo, Carlo Nicolai, Sam Roberts, Daniela Schuster,
Joanna van der Veen, Philip Welch, Alexandra (Li) Zhang, and Matteo Zicchetti.
Aside for this, conversations with and feedback from the following people has been
immensely helpful: Carolin Antos, Neil Barton, Luca Castaldo, Silvia De Toffoli,
Maciej Glowacki, Kentaro Fujimoto, Daniel Kuby, Beau Mount, Karl-Georg Nieber-
gall, Johannes Stern, Oliver Tatton-Brown, Claudio Ternullo, Sofie Vaas, Mateusz
 Le lyk, Bas van Fraassen, Albert Visser, Pascal Wagner, Bartosz Wcis lo. No doubt
I have forgotten to mention certain people who should be included in this list: I beg
them to forgive me for this omission. MORE IN PARTICULAR I AM GRATEFUL
TO SOFIE AND PASCAL FOR PROVIDING COMMENTS ON CHAPTERS OF
THIS BOOK AND TO ANONYMOUS REFEREES .... One person whom I owe
gratitude especially, is my wife Hazel Brickhill. She was always more than willing
to help me when I was stuck. Many conceptual (and mathematical) confusions have
been avoided simply by asking her what she thinks about a given problem or issue.

The encouragement for the book project that I have received within my little
research group at the University of Konstanz has kept me going at times when I
might have been ready to throw in the towel. Also, I found inspiration for this
project in my teaching here in Konstanz. In particular, I fondly remember MA
seminars that I taught on Philo of Alexandria and on Epistemic Entitlement (2020).
Aside from this, the discussions in our online reading group on Gödel’s Philosophical
Notebooks has been important in writing this book.
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I gratefully acknowledge institutional support that I have received over the
past five years for bringing this book project to a (hopefully successful) end. I
am indebted to the University of Konstanz for granting me a Freisemester from
October 2019 until April 2020, as well as for granting me research leave in the
Winter Semester of 2023–2024 for completing this monograph. A research stay by
Cezary Cieśliński in Konstanz from 15 April to 30 May 2022 contributed much,
and so did the research stays in Konstanz of Philip Welch in the Spring of 2023
(sponsored by the Zukunftkolleg of the University of Konstanz) and in the Spring
of 2024.
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Introduction

For a long time, reflection was not much of a research theme in analytical phi-
losophy. This situation is now changing. In recent years, reflection has become a
fledgling research topic in epistemology. But above all, reflection has become the
subject of intensive research in the foundations and philosophy of the mathematical
sciences, where I take the mathematical sciences not only to include pure mathe-
matics, but also probability theory. Reflection in the mathematical sciences is the
subject of the present research monograph.

In the mathematical sciences, reflection is mainly investigated in proof theory,
set theory, and probability theory. It has become clear that the results about reflec-
tion that have been obtained in these mathematical disciplines are of considerable
importance for the philosophy of mathematics. For this reason, we will see a con-
tinuous back and forth between philosophical and ‘foundational’ discussions about
reflection. As such, it is a sustained exercise in mathematical philosophy.

What this book is about

Reflection is in a sense like symmetry. There is a very general and diffuse sense
of the term ‘symmetry’. Because of the generality and vagueness of this sense of the
word, it is not particularly rewarding to take it as the focus of theoretical research.
But there are also several more specific and precise concepts of symmetry that have
been employed fruitfully in the physical and mathematical sciences. These concepts
have long been, and thoroughly deserve to be, the focus of scientific research. More-
over, these more precise concepts of symmetry are of philosophical relevance. They
play an important role, for instance, in contemporary discussions in the philosophy
of science about the nature and justification of scientific laws and regularities. So it
is with reflection. The words ‘reflection’ and ‘reflecting’ are often employed simply
as synonyms for the words ‘thought’ and ‘thinking’. Such unspecific uses of the
word do not express a distinctive concept of reflection. But ‘reflection’ is also often
employed in certain more specific senses. Some of these senses, at least, are of clear
philosophical and scientific importance. They are what this book is about.

When it is used in a more specific meaning, the word ‘reflection’ often expresses
some relation between entities. There are several more specific senses of the word
‘reflection’, depending on the kinds of entities that are related by the reflection
relation that the uses express. They occur in the physical world, but also in the
abstract world, and in the mental world. We will see that they also occur between
the mental world and the abstract world, for instance. In sum, reflection phenom-
ena occur in and between different realms. It then comes as no surprise that the
investigation of reflection is not confined to any single intellectual discipline.
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2 INTRODUCTION

Physical reflection phenomena are, from a scientific point of view, well under-
stood. Physical reflection (for instance light reflection) is undoubtedly of philo-
sophical relevance, but the investigation of physical reflection remains outside the
scope of this book. So we will not be concerned with all more specific senses of
the word ‘reflection’. We will be concerned with reflection relations in and between
the abstract world and the mental realm. More specifically, our focus will be on
reflection phenomena in the mathematical universe, in the idealised (mathematical)
human mind, and between the mathematical universe and the human mind. This
is then a book about the philosophy of mathematics, albeit not primarily about the
subjects that have dominated the philosophy of mathematics over the past decades
(such as structuralism, logicism,...). More specifically, it is mostly a book about
mathematical epistemology.

Reflection plays particular argumentative roles in intellectual disciplines. Just
as use is made of symmetry arguments in various contexts, one also finds what can
be called ‘reflection arguments’ in set theory, philosophy, and theology. Such reflec-
tion arguments are (often implicitly) taken to be supported by law-like regularities
by which reflection relations are governed. Since the middle of the twentieth cen-
tury, parts of mathematical logic have been explicitly concerned with uncovering
and investigating these laws of reflection. Such laws of reflection in the mathemat-
ical sciences are commonly called reflection principles.

These reflection principles are grounded in the nature of the reflection rela-
tions in question. The task of describing the nature of these reflection relations,
and discussing our warrant for the reflection principles that govern them, falls to
philosophy as special chapters of metaphysics and epistemology, respectively. In
particular, they are chapters in the philosophy of mathematics. Perhaps surpris-
ingly, philosophy has until now not fully taken on this responsibility. It is to this
task that this book intends to make a contribution: it is devoted to the investiga-
tion of (1) the nature of reflection phenomena in the mathematical sciences, and
(2) our warrant for what we take to be laws that govern them.

I distinguish between two types of reflection: (1) ontological reflection, and (2)
epistemic reflection. Ontological reflection is a world-to-world relation; epistemic
reflection has a mental component: it encompasses mind-world and mind-mind
relations. Accordingly, I distinguish between ontological reflection principles and
epistemic reflection principles.

Ontological reflection principles in mathematics are variations on the thought
that there are small parts of the mathematical universe that are similar to the
mathematical universe V as a whole (which itself is too large to be a set). This
is often succinctly expressed by saying that the mathematical universe is reflected
in certain sets. Since similarity is a vague notion, this thought has to be made
more precise before it can be mathematically tested. One way of doing this is
by formulating the postulate that there are sets x such that the structure 〈x, ε〉
makes exactly the same set theoretic sentences true as the structure 〈V, ε〉 (where
ε is the membership relation). Such principles are known as set theoretic reflection
principles.

A typical example of an epistemic reflection principle is the statement that ev-
erything that is formally provable in a certain formal mathematical theory (Peano
Arithmetic, for instance), is true. Epistemic reflection principles thus make ex-
plicit reference to a background theory, whereas ontological reflections are in a
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sense absolute. Variations on this principle are known as proof theoretic reflection
principles.

In view of Gödel’s incompleteness theorems, as long as the background the-
ory S to which a given proof-theoretical reflection principle refers is sound, a re-
flection principle RS for S will typically be proof-theoretically independent of S.
Similarly, set theoretic reflection principles—except certain weak ones—are also
proof-theoretically independent of the core basic principles of mathematics, i.e.,
the axioms of Zermelo-Fraenkel set theory with the Axiom of Choice.

Set theoretic reflection principles and proof-theoretic reflection principles for
accepted theories enjoy wide support in the mathematical community. One ob-
vious question, which was explicitly raised by Kreisel and Levy in the 1960s, is
whether there are deep conceptual relations between proof theoretic and set theo-
retic reflection principles. I will address this question, but will devote more time to
the epistemological question:

Wherein consists our epistemic warrant for mathematical reflection principles?

Concerning set theoretic reflection, this question received some attention in the
philosophy of mathematics community in the wake of Gödel’s post-World War II
views about the continuum, i.e., the set of the real numbers. The focus has been
on so-called richness arguments. The basic thought here is that V is “structurally
rich” in the sense that it contains an astounding variety of isomorphism types. It
is supposed to be so rich in this sense, that for every collection of sentences S that
are true in V , there are sets x in V such that the sentences S are also true in x. In
this way, richness considerations are intended to give us reasons for thinking that
reflection principles are true.

We will see that strong set theoretic reflection principles are statements not
just about sets, but also about classes. There is therefore a connection between set
theoretic reflection principles and the laws that govern classes. There is also a link
between conceptions of classes—or the nature of classes, if you will—and the laws
that govern them. Thus we will see that there is a tight link between set theoretic
reflection principles on the one hand, and the nature of classes on the other hand.

Set theoretic reflection principles have not only been formulated against an
actualist and universist background of set theory. Recently, set theoretic reflec-
tion has also been studied against the background of potentialist and multiversist
theories of sets. In this book, these alternative framings of reflection will not be
discussed. The reason is not that they are not important. Rather, it is for me a
matter of priority. I make the methodological proposal first to try to understand
set theoretic reflection in a “classical” framework and only afterwards to extend it
to more exotic surroundings.

That being said, I confess that I have always had difficulties with understanding
the modality (or modalities) involved in the relevant notion(s) of potentiality that is
supposed to be applicable to the mathematical world. Here it bears keeping in mind
that potentiality in biology and in physics, as cornerstones of Aristotelian research
programs that were pursued for a millennium or so, were ultimately abandoned.
Also—the pervasiveness of forcing arguments in set theory notwithstanding,—I
have never been convinced that the conception of the mathematical world as a
multiverse is well supported by set theoretic practice or by mathematical practice
in general. I am well aware, of course, that these are regarded as strong and
contentious statements, perhaps not so much so by working mathematicians, but
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certainly in contemporary philosophy of mathematics. Moreover, I am well aware
that I am making these claims without arguing for them. But it would take us too
far if I were to do so here. So I just leave it there: the reader is free just to ignore
these remarks.

Concerning proof theoretic reflection, the situation is importantly different.
Feferman suggested since the 1960s that there is a tight connection between our
epistemic warrant for mathematical theories on the one hand, and our epistemic
warrant for proof theoretic reflection principles for them on the other hand. If this
is the case, then the correct epistemic account of proof theoretic reflection will be
importantly different from the correct epistemic story of set theoretic reflection.
Feferman argues that our epistemic warrant for proof theoretic reflection principles
for a mathematical theory S is in a sense “implicitly contained” in our warrant
for S. Because of the fact that (for reasonable S) reflection principles are typi-
cally logically independent of S, this view seems prima facie puzzling. Normally,
having epistemic warrant for a theory S does not automatically generate warrant
for principles that are independent of S: more epistemic work needs to be done.
So Feferman’s suggestion is in need of further clarification. Unfortunately for us,
Feferman did not spell out his thoughts on this in philosophical detail, and his
suggestion was not immediately taken up by the philosophical community.

Feferman’s suggestions have foundational implications. In particular, they have
motivated much of Feferman’s own work on predicativism about mathematical anal-
ysis. The idea is, roughly, that one starts with a theory that is acceptable from
a predicative point of view, such as a standard second-order system of arithmetic
with comprehension restricted to first-order formulas (with parameters). Accepting
this system implicitly commits the predicative mathematician to accepting certain
further principles. These principles can then be added explicitly, giving rise to a
stronger theory S1. This process is then repeated, leading to successively stronger
systems S2, S3, and so on. Thus from a predicatively acceptable starting point one
can bootstrap to stronger theories that still are predicatively acceptable.

The proof-theoretic and set theoretic reflection principles that are studied today
did not simply drop from the sky sometime in the middle of the previous century.
Proof-theoretic reflection has distant roots in philosophy, where epistemic reflection
has for intermittent periods been an active research theme. Ontological reflection
has also been a research theme of sorts, not only in the history of philosophy, but
also in the history of the part of theology that is called rational theology. So these
investigations took place not primarily in the philosophy of mathematics, but in the
philosophico-theological investigation of the human mind and of the mind of God.
The general concepts of epistemic and ontological reflection, as well as patterns of
argumentation that have become standard in contemporary proof theory and set
theory, thus have a philosophical history. In this book, we will investigate how
theories of ontological and epistemic reflection developed in philosophy and (to a
much smaller extent) in rational theology. One of the aims is to re-connect episte-
mological questions concerning reflection principles in contemporary mathematics
to their historical roots.

We will see that set theoretic reflection principles are best regarded as basic
principles: as axioms. Set theoretic reflection principles are fairly widely (but by
no means universally!) accepted in the set theoretic community. A fundamental
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question then is: wherein does our epistemic warrant for set theoretic reflection
principles consist?

As mentioned above, richness arguments have been adduced in support of on-
tological reflection principles. In fact, we will see that this strategy has an an-
tecedent of sorts in the history of rational theology, namely in the work of Philo
of Alexandria. Richness arguments are often taken to constitute intrinsic evidence
for reflection principles; they are complexes of philosophical reasons for reflection
principles.

One fundamental question is why it should be rational in the first place to
believe that the set theoretic universe displays the relevant richness. But regardless
of this, many mathematicians who accept these reflection principles do not accept
them on the basis of richness arguments. If reflection principles indeed are basic
principles, then, as far as mathematical reasons go, they are rock bottom. It then
seems that mathematicians who accept reflection principles as somehow basic, but
do not accept them on the basis of philosophical reasons, do not accept them on
the basis of reasons at all. Since justification is a matter of having good reasons,
this means that these mathematicians do not have a justification for their belief in
set theoretic reflection principles.

Nonetheless, such mathematicians might still be epistemically warranted to
believe reflection principles. I will argue that mathematicians are mathematically
warranted in believing certain basic axioms if these are immediate epistemically
optimal responses to the mathematical challenges that they are confronted with.
These warrants are warrants without reasons. As adumbrated earlier, concepts of
epistemic warrant that are not reason-based have been investigated in recent episte-
mology. They go back to work of Tyler Burge and are called epistemic entitlements.
I will defend the thesis that the mathematical warrants that mathematicians have
not only for believing in reflection principles, but in basic mathematical axioms
generally, are epistemic entitlements. In particular, the question of mathematical
warrant for basic mathematical axioms will be connected with a variant of Crispin
Wright’s theory of entitlement of cognitive project.

The main focus of this book will thus be on the question of warrant for reflection
principles in the mathematical sciences. This research theme is—belatedly, I would
say—beginning to attract considerable attention in the philosophy of mathematics.
The number of research articles that are concerned with it has steadily been growing
over the past decade, and it is not easy to maintain a clear overview of the status
quaestionis. I will review and critically appraise the most important contributions
that have been made to this subject over the past decade, relate them to each other,
and to go beyond them by attempting to make some further contributions of my
own.

This research is technically, but above all philosophically, challenging. The
contemporary debate about warrant for epistemic reflection principles is not closely
connected to the history of philosophical thought in centuries past. Rather, it is
deeply intertwined with recent work on other philosophical research themes that
is difficult in itself and that is fast developing. To see why and how this is so, we
have to return to Feferman’s thought that when we accept a mathematical theory
S, we are implicitly committed to accepting variations on the principle stating that
everything that is provable in S, is true.
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It is tempting to assume that acceptance, in this context, simply amounts to
(propositional) belief. Some of Feferman’s own writings point in this direction.
Nonetheless, I believe that this temptation should be resisted. It is thus incumbent
on me to explain what should be meant by acceptance instead. This is a difficult
question. It will be addressed it by drawing on philosophical literature on the
relation between acceptance and belief, going back to van Fraassen’s work on this
question going back to the 1980s.

Another difficult and at present not completely resolved question is how the
notion of commitment should be understood in this context. Moreover, the sense
in which one is implicitly committed to proof theoretic reflection principles for
mathematical theories that one accepts should be made clear. I will argue that
the concept of epistemic commitment is actually closely connected to the concept
of acceptance that is at play here. For one thing, whereas—pace Freud and his
followers—it is not clear that belief can be implicit in the relevant sense, it is
plausible that, because of the more pragmatic nature of the concept of acceptance,
a person can implicitly accept a theory.

I will spend a considerable amount of space to examining recent attempts (post
2000) to develop Feferman’s suggestive but sparse remarks about implicit commit-
ment inherent in the acceptance of theories into detailed epistemic accounts. I
believe that, so far, these attempts are only partly successful. My contention—
controversial, to be sure—will be that it is easier to explicate the extent and way
in which epistemic warrant for weak reflection principles such as consistency state-
ments are implicit in what we accept, than to explicate the nature of implicit
commitment to stronger proof theoretic reflection principles.

The prototypical and strong proof theoretical reflection principle “All theo-
rems of theory S are true” ostensibly makes use of the concept of truth. Indeed,
in this reflection principle, truth plays an essential role. We will see that there
are also many proof theoretic reflection principles that somehow approximate the
prototypical principle but do not make use of the concept of truth. Nonetheless,
it has become clear in recent years that the connection between research on proof
theoretic reflection on the one hand, and truth theory on the other hand, is deep
and important. It therefore plays a major role in this book.

Since the concept of truth is not definable from more fundamental concepts, it
is nowadays treated mostly as a primitive notion that is governed by basic axioms.
There is no agreement on what the basic truth principles are. Roughly, there are
two candidate views. On the first view, the primitive truth predicate obeys a
collection of disquotational axioms, which are axioms of the form

ϕ is true if and only if ϕ.

On the second view, the basic truth principles express the compositional nature
of the concept of truth. According to this conception, it is a basic feature of the
notion of truth that it commutes with the logical connectives, so that for instance
the sentence

For all sentences ϕ and ψ: ϕ ∧ ψ is true if and only if ϕ is true and ψ is true.

counts as a basic truth axiom. As a rule of thumb, we can say that compositional
truth theories are deductively strictly stronger than disquotational truth theories.

It has long been known that if one adds compositional truth axioms to a (suf-
ficiently strong) mathematical theory S, the reflection principle “All theorems of S
are true” can be proved in the extended theory. This phenomenon has been used to
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argue that our epistemic warrant for accepting proof theoretic reflection principles
resides in the basic principles governing the truth predicate. If this is right, then
compositional truth is more fundamental than proof theoretic reflection. This is
sometimes combined with the further view that if one accepts a mathematical the-
ory S, then one is implicitly committed also to accept standard compositional truth
axioms for the language in which S is formulated. This train of thought can be seen
as a way of trying to clarify Feferman’s view about our warrant for proof theoretic
reflection principles. At the same time, it is an argument for the thesis that the
compositional truth axioms are more fundamental than disquotational truth prin-
ciples, since extending a theory S by disquotational truth does not generally result
in a theory in which proof theoretic reflection principles for S can be proved.

On the other hand, it has become clear over the past decades that if we start
with a disquotational truth theory D instead, and add certain proof theoretic reflec-
tion principles for D to it, then the standard compositional truth principles become
provable. So if we start with a disquotational truth theory D, and are implicitly
committed to reflection principles, then we can say that the compositionality of
truth is implicit in disquotational truth. Thus a similar sort of bootstrapping
phenomenon seems to occur in axiomatic truth theory as we encounter in predica-
tivism. If this is the right perspective, then the view in the previous paragraph is
wrong-headed, and proof theoretic reflection principles are more fundamental than
compositional truth principles!

Both views face challenges. Concerning the first view, there is the question how
and why someone who accepts a mathematical theory—Peano arithmetic, say—is
implicitly committed to accepting the notion of truth in one’s conceptual repertoire
and that this concept is governed by compositional axioms. Could one not, for
instance, reasonably be sceptical about the concept of truth altogether? The second
view faces the question how and why we are implicitly committed to proof theoretic
reflection principles for theories that we accept. This makes it difficult to adjudicate
between the two views. (Both stories could be wrong!) But all this does show that
there is a close relation between axiomatic truth theory on the one hand, and proof
theoretic reflection principles on the the other hand.

Probabilistic reflection principles will also be discussed. I will concentrate on
variants of van Fraassen’s reflection prinicple. One version of this principle states
that one’s subjective probability of ϕ, given that the probability of ϕ is r, should
be r. Over the past decades, principles of this kind have been discussed from a
philosophical and from a semi-formal perspective in formal epistemology; but they
have not been investigated from a proof-theoretic perspective.

One central philosophical question is how, from a conceptual point of view,
such reflection principles relate to proof theoretic and to set theoretic reflection
principles. A central logical question is what the proof-theoretic properties of such
reflection principles are.

These questions are wide open, and unfortunately I will not have a great deal
to say about them. Nonetheless, I believe that relating probabilistic reflection prin-
ciples to other kinds of reflection principles, and especially studying probabilistic
reflection principles from a proof-theoretic perspective, has great potential. So I
hope that my brief discussion of these matters in this book encourages others to
pursue these questions further.
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The structure of this book

All of the foregoing is in a fairly straightforward way reflected in the structure
of this book, which consists, aside from this Introduction, of three Parts, each
consisting of a small number of chapters.

In Part I, the philosophical context of the subject under investigation is ex-
plored. I will take stances here that are controversial, and that play an essential
role in positions that are developed in Part III. In chapter 1, I discuss the ways
in which the traditional concept of doxastic justification can be applied to philo-
sophical questions about epistemic warrant for mathematical beliefs. In chapter
2, notions of non-justificatory warrant (epistemic entitlement) are introduced and
discussed. In chapter 3, we turn our attention to epistemic and ontological concepts
of reflection, and their evolution in the history of philosophy.

In Part II, the logical, set theoretic, and metamathematical context of the
philosophical discussion about reflection principles is described. Background for-
mal mathematical theories and truth theories are discussed in chapters 4 and 5,
respectively. Proof theoretic, set theoretic and probabilistic reflection principles
are introduced and explored in chapter 6. We will see how proof theoretic and set
theoretic reflection principles are importantly different in nature. Proof theoretic
reflections will turn out to be iterable in ways that set theoretic reflection principles
are not, for instance.

All this leads up to Part III, which constitutes the heart of this book. In
this Part, the nature of ontological and epistemological reflection phenomena, and
our epistemic warrant for proof theoretic and set theoretic reflection principles,
are explored. In chapter 7, recent views on epistemic warrant for ontological and
epistemological reflection principles are critically examined. In chapter 8, we focus
mainly on the weak proof theoretic reflection principle of consistency. Concerning
this reflection principle, we propose a systematic and detailed phenomenological
account of how one can acquire an epistemically entitled belief in the consistency of a
theory S from an epistemically warranted belief of S. Chapter 9 deals with questions
of epistemic warrant for proof theoretic and set theoretic reflection principles more
generally.

In Part IV, I try to look into the future. This is a difficult task, since not only
our knowledge of proof theoretic reflection (and its connection to axiomatic truth),
but also the philosophical discussion of the topics that are treated in Part III, is
developing very rapidly and in different directions. For this reason, Part IV is very
short. The only prediction that I am fairly confident of is that this book will be in
some ways dated before it appears in print. (I see this as a good thing.)

Aim of this book

One objective of this book is to provide an overview of logico-philosophical work
on reflection principles in the mathematical sciences. This entails bringing together
work that is carried out in different fields and even in different disciplines: history
of philosophy, philosophy, proof theory, set theory, formal epistemology, theology.
Hopefully this will help to consolidate what I take to be a nascent research area with
lots of potential and which is of much importance to philosophy of mathematics,
and even to philosophy more generally.

But the aim is also to develop a philosophical perspective on the material that
is thus brought together, so as to connect the areas and disciplines involved on
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a deeper conceptual level. Due to the disparity of results, research backgrounds,
and methods involved, the latter has proved to be no easy task, and I do not
know whether I have succeeded in this task. On important questions, I have not
been able to reach final conclusions, and concerning many philosophical lines of
argumentation, I have not been able to reach definite appraisals. Many threads are
followed only to some extent, and many issues are left fairly open. In the present
state of research in the area, I fear that this is unavoidable.

One prerequisite for achieving these aims is to achieve conceptual clarity. In-
deed, it seems to me that many of the basic concepts that are involved in the
discussion about reflection in the mathematical sciences are in need of explica-
tion. It is my hope that this book contributes to our understanding of the relevant
fundamental concepts, and how they hang together.

At any rate, this book intends to make research about reflection in the mathe-
matical sciences more accessible to students and scholars who are not familiar with
the area and with the wider context of this research. Moreover, I hope that it pro-
vides impulses and suggests directions for further research. I will be very pleased
if it encourages logicians and formally inclined philosophers to develop some of the
themes further. Above all, it would be great if this book contributes to new col-
laborations between researchers of different disciplines involved in research about
reflection.

Prerequisites

The subject of this book lies at the intersection of a number of distinct logical
and philosophical areas: proof theory, set theory, axiomatic truth theory, history
of philosophy, and theories of epistemic warrant. The view on the nature and epis-
temology of reflection principles that will be developed involves taking a stance in
various philosophical debates in different areas. This means that there are many
moveable philosophical parts in the discussions that we will be concerned with.
Aside from the entanglement with deep metamathematical theories of proof the-
oretic and set theoretic reflection principles and with truth theory, it is this that
makes matters complicated and controversial—and exciting!

When all is said and done, this is a research monograph on the epistemology
of mathematics. Nonetheless, the aim is for this book to be as self-contained as
possible. It is intended to be accessible not only to professional philosophers and
logicians, but also to postgraduate philosophy students who have an interest in the
philosophy of mathematics.

For one thing, this means that considerable logical and metamathematical back-
ground information will be supplied. Despite all this, some technical knowledge is
presupposed on the part of the reader:

(1) basic knowledge of first-order and second-order number theory, set theory,
and probability theory;

(2) an intermediate mathematical logic course (including a treatment of Gödel’s
incompleteness theorems, and rudimentary notions of modal logic);

(3) basic knowledge of axiomatic truth.

The number of mathematical proofs that are included in this book is very
modest: they are restricted to simple proofs that play a role in the understanding
of substantive philosophical issues. Moreover, I have tried to make the technical
parts in this book as readable as possible. In particular, in the notation, I have
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dispensed with the details of Gödel coding, as is becoming fairly common in books
like the one you are reading now. The reader can, if she wishes, rewrite formulas
so as to make it all formally correct, but I doubt that much is gained by doing so.

On the philosophical side, I cannot avoid addressing subtle interpretive ques-
tions in the history of philosophy and entering into thorny debates in contemporary
epistemology. Therefore it is also expected of the reader that she has the equivalent
of an undergraduate degree in philosophy under her belt.

How to read this book

If you have exactly the minimally required background knowledge described
earlier, then I recommend you to read the chapters in the order in which they
appear, from beginning to end. If you in addition are au fait with the state of
the art on proof theoretic reflection principles, have a solid background knowledge
about set theoretic reflection principles, and background knowledge of axiomatic
truth theory, then you can skip Part II. If you are familiar with parts of this, then
you can skip parts of Part II, or consult material in Part II whenever the need
arises in reading Part III.

However, you would be mistaken to think that Part II only contains technical
and philosophical background material. Especially in Chapters 5 and 6, conceptual
distinctions are introduced and discussed that go beyond what can be found in the
literature. Moreover, these conceptual distinctions are underpinned by philosophi-
cal arguments that may be considered far from uncontroversial. So even if you are
a philosophically and technically sophisticated reader, I expect that you will find it
necessary to pause and carefully consider some passages in Part II.

What I caution against above all, is to skip Part I altogether, even if you are
a professional philosopher of mathematics who is not particularly interested in the
history of philosophy or in contemporary epistemology. The reason for this is that
philosophical choices are made in Part I: these choices essentially inform the view
that is developed and argued for in Part III. I will argue for these philosophical
choices as best as I can, but cannot claim to establish them beyond reasonable
doubt. So the impatient professional philosopher who starts at the beginning of
chapter III might find the discussion hard to follow, and will probably either give
up on it altogether, or end up reading most of Part I anyway.

The reader will see that the material in this book is strongly interconnected.
In an effort to make the reader appreciate the connections and to make this book
structurally sound, I have included in this book lots of cross-references (mostly in
footnotes), and a detailed index. Also, this book is intended to be a useful way of
navigating the extensive relevant literature. I have tried to include as many useful
references as possible, and I have tried to be explicit, careful and correct in my
attribution of arguments, positions, and results to people. Sometimes this is not
easy, for this book contains many ideas and results that I have picked up in the
corridors of conferences, and in personal conversations. I hope that the reader will
forgive me any mistakes—omissions or misattributions—that I have made.
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CHAPTER 1

Mathematical Justification

In this Chapter, we consider the kinds of reasons that a mathematician has
for believing in mathematical statements. Moreover, we investigate some of the
epistemic concepts that are connected to these reasons, such as justification, math-
ematical justification, proof, formal proof, epistemic proof.

This area is the battleground of the disputes between the philosophers of mathe-
matical practice on the one hand, and the ‘traditional’ philosophers of mathematics
on the other hand. I will argue for a middle road in this debate.

From a conceptual point of view, this is a messy area. Often the concepts
mentioned above are used in a casual way, without much attention to the some-
times subtle differences between them. It will emerge from our discussion that the
distinctions between these concepts matter. Philosophical mistakes are made when
they are not kept in mind, and they can guide us to a deeper understanding of the
nature of epistemic warrant for mathematical statements.

1.1. Gettier problems

It has long been recognised that believing a true proposition is in general not
sufficient for knowing that proposition. What is at a minimum needed in addition,
is to be warranted to believe the proposition. Here being warranted to believe
something roughly means having an epistemic right to believe it.

According to the traditional view, the notion of epistemic warrant can be fur-
ther explained as justification. Moreover, until the early 1960s it was part of the
received view that having justification in addition to true belief is sufficient for
knowing: knowing is true justified belief.

Gettier’s famous article made it clear that this view is untenable: true justified
belief is in general not sufficient for knowledge [Get63]. Gettier essentially provided
recipes for generating possible scenarios where a person has true justified belief
in a proposition, but where we would be disinclined to say that she knows the
proposition.

As an illustration, consider the following hypothetical situation. Sophie arrives
at the belief that:

(?) It is warmer than 20◦C outside or Germany is a federation.

and she arrives at the belief that (?) in the following way. She starts by forming
a belief that it is warmer than 20◦C outside by checking an outside thermometer,
which indicates a temperature of 21.5◦C. From this, she infers, by propositional
logical reasoning (the rule of “Disjunction Introduction”) that (?). Germany is
a federation, so (?) is true. Disjunction Introduction is a justification-preserving
rule of inference, so Sophie’s belief that (?) is justified. However, unbeknownst to

13



14 1. MATHEMATICAL JUSTIFICATION

Sophie, the outside thermometer is defective, and it is actually 18◦C outside. In
this situation, we would not want to say that Sophie knows that (?).

This scenario indeed points towards a somewhat general recipe for constructing
“Gettier-cases”. Start with a false but justified belief; then logically weaken it to
a true conclusion. Moreover, it also seems clear why we do not want to say, in
such scenarios, that the subject knows this conclusion: a false lemma is essentially
involved in her justification process.

Gettier’s arguments generated a cottage industry of trying to identify the miss-
ing “Gettier condition” that must be added to true justified belief in order to
obtain a satisfactory definition or logical analysis of the concept of knowledge. For
instance, in the light of the foregoing, one might propose:

S knows that φ ⇔
S has a justified true belief that φ,

and no false lemmas essentially occur in S’s justification.

However, most epistemologists do not believe that all Gettier cases can be
taken care of in this way. The following classical example is taken to illustrate this.
Suppose John is driving through a county that is filled with barn facades (“fake
barns”). At a certain moment, he looks through his side window, and, based on
what he sees, he says to himself: “there is a barn” (q). In fact, John happens to
be right: he sees a real barn. But this is sheer luck. The overwhelming structures
that look like barns in this county are fake barns. In this situation, many are again
disinclined that John knows that q. But there is no false lemma involved, for John
bases his belief directly on his perception.

The Gettier problem caused a shift from internalist (or justification-based) ac-
counts of knowledge to externalist accounts of knowledge. Many epistemologists
abandoned justification as a necessary condition for knowledge altogether, and re-
placed it with an external condition such as reliability. For instance, one might
propose the following analysis of knowledge:

S knows that φ ⇔
S believes that φ,
p is true, and

the belief forming process that S has used on the occasion
reliably produces true beliefs.

Here I take justification more or less by definition to be an internal affair having to
do with reasons for one’s beliefs.1

But it is again far from clear that this strategy completely solves the Gettier
problem. On the basis of the proposed analysis, one might say that Sophie does
not know p because weakening a (false) belief by Disjunction Introduction does not
reliably result in true conclusions. But the fake barn example remains a problem.
Basing one’s beliefs directly on one’s own visual experience is, after all, a reliable
belief forming mechanism.

An old argument against externalist theories of knowledge goes along the fol-
lowing lines. Consider Elisa, who is exceptionally good at predicting the future.
Beliefs about future events simply pop into her head for no reason when she looks
into her crystal ball, and these beliefs almost always turn out to be true. On one
occasion, Elisa in this way comes to believe that it will snow in her home town

1More about this below: see Section 1.2 and Chapter 3.
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in exactly 312 days (r). Sure enough, r is true. Elisa’s belief forming mechanism
(looking into her crystal ball) is extremely reliable. Yet we do not want to say that
Elisa knows that r. So, the argument continues, in many cases there is more to
knowledge than mere reliable belief. The problem, in Elisa’s case, seems to be that
she lacks good reasons for her beliefs about future happenings.

This worry applies especially to mathematical knowledge. Typically, mathe-
maticians can and do adduce good reasons for their mathematical beliefs. And it
is because they have these reasons that their beliefs are said to constitute mathe-
matical knowledge. There may be situations where a mathematician is unable to
articulate her reasons for a given mathematical belief, yet can still rightly be said
to know the relevant proposition. The case of Ramanujan’s extraordinary ability
to produce deep true mathematical assertions without being able to support them
by convincing reasons is often taken to illustrate this point. But there is a salient
difference between having but being unable to articulate reasons for one’s beliefs
on the one hand (Ramanujan), and not having reasons for them at all on the other
hand (Elisa). If Ramanujan’s true mathematical claims simply popped into his
head, unsupported by subconscious reasons, we would be unwilling to say that he
knew these claims. In sum, strong forms of externalism cannot be the final word
about mathematical knowledge.

There is, then, a deep connection between mathematical knowledge and having
good reasons for (true) mathematical beliefs. Nonetheless, there is a conceptual gap
between justified true belief and mathematical knowledge. Suppose that Edward
Nelson’s fear materialises, and first-order Peano Arithmetic (PA) turns out to be
inconsistent. Suppose furthermore that little more than Nelson’s sub-theory S1

2

(“feasible arithmetic”) of PA is true. And assume finally that, contrary to what
Nelson claimed,2 the mathematical community is justified in believing PA. Sarah, a
competent mathematician, proves from axioms of PA that exceed S1

2 an arithmetical
theorem s. Unbeknown to Sarah and the rest of the mathematical community, s in
fact also has a proof in S1

2 , albeit a completely different and much longer one. Then
Sarah justifiedly believes the true statement s. But because her justification relies
essentially on a false lemma (cfr. supra), she does not know that s. So we conclude
that justified true belief-accounts of mathematical knowledge are also vulnerable to
Gettier problems.

It is not my intention to define mathematical knowledge by isolating the “miss-
ing Gettier condition”. I am sceptical that this can be done. Instead, we will be
concerned with questions about mathematical knowledge that are quite indepen-
dent of Gettier worries. More often than not, therefore, we will be concerned with
scenarios in which Gettier problems are absent. In such scenarios, justification
can account for the difference between true belief and knowledge. But, as we will
presently see, justification is not the only epistemic property that can transform
mere true belief into knowledge.

1.2. Justification

Epistemic warrant is a property of beliefs, where beliefs are contents of doxastic
attitudes. Doxastic attitudes come in various strengths. A belief can be held more,
or less strongly. Nonetheless, gradations of belief will not play a major role in
this book. We will mostly work with a qualitative notion of belief, and then for

2See for instance [Nel11].
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every proposition p there are only three possibilities: belief that p, belief that
¬p, and agnosticism concerning p. As contents of doxastic attitudes, beliefs have
propositional structure: propositions are the kinds of entities that form the objects
of belief. As propositions, the contents of belief are at least in part conceptual
in nature. And if there are no “Russellian” propositions,3 then beliefs are wholly
conceptual in nature.

A belief is said to be epistemically warranted if, from an epistemological point
of view, it is in good standing. Equivalently, a person’s belief is epistemically
warranted if in forming and maintaining the belief, she rationally believes it. From
the foregoing Section, it follows that even true beliefs that are in epistemic good
standing, can fall short of knowledge. Indeed, it is perfectly possible to be justified
in believing that ϕ while ϕ is false.

Traditionally, a person’s epistemic warrant for believing a proposition has been
identified with her justification for believing that proposition. A justification for
a belief is a complex of reasons that supports a proposition. Thus we say that a
person is justified in her belief if her belief is supported by a complex of reasons for
her belief. Here is a very simple example. I am justified in believing that there is
a mole in my garden (t), for I have a good reason for believing t. New small heaps
of soil appear almost daily in my lawn, and the best explanation for t is that they
were pushed up by a mole.

For something to be a reason in a justification, it must itself be believed. More-
over, in order for a proposition to function as a justifying reason for a person, she
must be epistemically warranted to believe it. For instance, justifying reasons can
themselves be supported by further reasons, and thus themselves be justified.

Like belief, justification is a gradual notion: a person’s reasons can to a high
degree, or to a lesser degree support her belief in a proposition. Suppose I have
some good reasons for my belief that my mother is in good health (u). Perhaps I
later acquire more justification for u in the form of independent supporting reasons.
On the other hand, perhaps I am later left with less justification for my belief, when
reasons against u are brought to my attention. As with belief, we will in this book
often work with a qualitative notion of justification. Roughly, this means that
we speak as if there is some sort of vague threshold of support that a person’s
reasons have to meet before we say that her reasons fully justify her belief in a
given proposition. In this way, belief and justification are unlike knowledge. Even
though it may in certain cases not clearly be determined whether a person knows
a statement, it would even in those cases be unnatural to say that she knows the
statement to a certain degree.

It is generally believed that reasons can support beliefs in a variety of ways. In
the example of my belief that there is a mole in the garden, the relation between
my reason and my belief is abductive in nature: the heaps of soil are best explained
by the presence of a mole in the garden. Reasons can also provide logical support
for beliefs. For instance, my belief that ψ may be logically supported by my belief
that ϕ and my belief that ϕ → ψ. Reasons can provide probabilistic support for
beliefs. My belief that I have thrown at least a 2 is probabilistically supported by

3Russell, in contrast to Frege, held the view that propositions can contain objects. For

instance, on Russell’s view, the proposition expressed by “Socrates is wise” contains the person
Socrates. For a discussion of the distinction between Frege’s and Russell’s theory of propositions,

see [FN18].
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my belief that I have thrown a fair 20-sided die. Reasons can provide inductive
support for beliefs. I have witnessed the sun rising countless times in the morning.
These observational beliefs provide inductive support for my belief that the sun will
rise in the future. Reasons can provide semantic support for beliefs. My reason for
believing that bachelors are unmarried is that the word ‘bachelor’ is more or less
defined as being shorthand for ‘unmarried male’.

In each of these cases (induction, abduction, deduction,. . . ) the kind of support
that the reason gives is a matter of transition from beliefs to other beliefs. In one
justification, of course transitions of different kinds may occur.

Beliefs can also throw doubt on other beliefs, and they can again do so in various
degrees. Assessed counter-reasons, for instance, can also be part of a justification.
Suppose, for instance, that I believe that Louise is a pilot (v). Then it can be
part of my justification of v that even though Peter told me that Louise is an air
stewardess, I have reasons to believe that he often gets people’s professions slightly
wrong. How strong the supporting or undermining relation between reasons and
beliefs is, is a difficult, multifarious, and important epistemological question. It
forms the subject matter of confirmation theory; I will not have much to say about
it in the rest of this book.

Every justification is a finite structure. So every chain and every anti-chain
of reasons in a justification must be finite. The reason for-relation is transitive.
The latter is not intended to be a substantial claim; it only means that we do not
focus on the immediate reason for-relation, but allow for mediate reasons as well.
Often the reason for-relation is also taken to be anti-reflexive. From this it would
follow that it is also anti-symmetrical and therefore a strict partial ordering. As
a consequence of this, a certain kind of “holistic” picture of justification would be
precluded. I do not want to take a stance on this matter, and therefore keep an
open mind about the anti-reflexiveness of the reason for-relation. However, since, as
we will see, it is part of the view developed in this book that there are epistemically
warranted beliefs that are not supported by reasons, the reason for-relation cannot
be reflexive.

A justification is often modelled as a finite transitive directed graph of rea-
sons. The foregoing considerations show—and this is old news—that modelling a
justification this way is in general rather simple-minded. Perhaps a more realistic
way of modelling justifications is as neural networks, with weights (real numbers
between 0 and 1, say) attached to nodes as measures of degree of belief, and weights
(real numbers between −1 and 1, say) attached to the arrows as measures of (dis-
)confirmation. Nonetheless, in a variety of circumstances, modelling justifications
as finite transitive directed graphs of reasons can be useful, and we will sometimes
do so in what follows.

The case of Ramanujan (cfr. supra) reminds us that, for a variety of reasons,
people are not always capable of fully articulating the reasons for their beliefs. So
room must be left for unconscious beliefs and for unconscious reasons. Nevertheless,
as Lewis Caroll and Quine have taught us,4 there must be an end to postulating
sub-conscious reasons. For instance, it seems wrong to say that a sub-conscious
belief that [ϕ∧ (ϕ→ ψ)]→ ψ is responsible for the support that my reasons ϕ and
ϕ → ψ lend to my belief that ψ. At some level, we simply “blindly” follow rules
when proceeding from reasons to further beliefs.

4See [Qui36].
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Reasons that a person has for believing a proposition can be articulated. Sup-
pose a person is asked: ‘Why do you believe that there are tigers on Sumatra?’
Then she will typically reply to this question in the form of an argument [Hel92,
Section I]. Her argument usually does not contain all her reasons that bear on this
question: there are many such, and time is short. Her argument will typically con-
tain those of her reasons that are particularly salient, and will contain information
about how they are connected. When pressed, she can usually offer more relevant
considerations, or explain in more detail how her reasons bear on her belief. Some
of her reasons may be sub-conscious, and therefore will not be part of her argument.
Moreover, the strength of the various beliefs that function as reasons regarding the
why-question above are relevant. They will at best only partially be indicated in
her argument, which is usually only to a very limited extent probabilistic in nature.
In sum, the argument that she gives constitutes only an imperfect approximation
of her justification.

I have excluded the possibility of justifications consisting of infinite complexes
of reasons. In particular, a justification cannot contain a non-wellfounded chain
of reasons. Also, if a given justification contains no unjustified reasons, then this
means that it must contain at least one cycle of the reason for-relation, which is of
course also a form of non-wellfoundedness. (Here I count a self-supporting reason
as a very small such cycle.)

Foundationalism in epistemology is the doctrine that claims that the reason
for-relation is well-founded. If Foundationalism is correct, then every justification
contains reasons that are not themselves supported by reasons. Let us call such rea-
sons basic reasons, where whether a reason is basic then depends on the particular
justification that we are considering. Recall that we have not committed ourselves
to anti-reflexiveness of the reason for-relation. So we have not committed ourselves
to (or against) epistemic Foundationalism. But suppose for a moment that there
are basic reasons, which is of course a far weaker claim than Foundationalism. We
know that a reason in a justification is a warranted belief. So the question arises:
How are basic beliefs epistemically warranted?

One way to delay this question is the following. A basic belief b in one justifica-
tion j1 may be supported by reasons r1, . . . , rn in another justification j2. Perhaps
one person or community can have both justifications (j1 and j2) in an “uncon-
nected” manner at one point in time. Then perhaps j1 and j2 can somehow be
“strung together” to a justification in an extended sense.5 If that is the case, then
at a given time t0 we can consider the total “extended justification” for a given
proposition p. Indeed, we have an epistemic obligation to combine all our reasons
that bear on p, when forming a doxastic attitude towards that proposition p. Oth-
erwise we might have a complex of reasons that support p, and thus be said to be
justified in believing that p, whereas we also possess, in an unconnected way and
at the same time, reasons that speak against p. In such a situation, we would not
be considered fully rational.

Nevertheless, at every point in time, the number of justifications that a person
or community possesses, remains finite. So even the total justification for p at t0
may contain basic beliefs. For any such p (and t0), we may ask the harder question:

5If j1 and j2 can be pictured as finite transitive directed graphs, then it is straightforward
how this is done. In more realistic cases, however, it is not always easy to see how this goes: recall

that one justification can undermine another justification.
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How are the basic beliefs in this total justification for p epistemically warranted at
t0?

This is of one of the cardinal problems of epistemology. However, I won’t be
able to side-step it. It is my hope that recent developments in epistemology that
will be discussed in the following chapters contain elements that will prove relevant
to the eventual solution of this deep epistemological problem.

Beside being in harmony with the way in which they support other beliefs
(inductive support, deductive support,. . . ), reasons can be classified according to
the kind of warrant that underpins them. A belief is a priori if its warrant does
not rest on sense experience; if a belief is not a priori, then it is a posteriori. This
means that even if sense experience is needed to acquire some of the concepts in the
belief, it may still be a priori. For instance, perhaps in order to learn the concepts
‘red’ and ‘green’, one needs sense experience. But one can still know a priori that
an object cannot be red and green all over at any given point in time. Similarly, an
application of a rule of inference preserves aprioricity if its epistemic warrant does
not depend on sense experience; otherwise it is again a posteriori. A justification
is a priori if its reasons and inferences are a priori. In this sense, to use Paseau’s
terms, a posteriori reasons in a justification are dominant, and a priori reasons in
a justification are recessive [Pas15, p. 790]. Further, someone can have both an a
priori and an a posteriori justification for a belief that she holds. To conclude, a
person knows a proposition a priori if she has an a priori epistemic warrant for it.

1.3. Justification of mathematical beliefs

Suppose that some mathematician—or even a community of mathematicians—
holds some mathematical belief. In order for her belief to be in good epistemic
standing, it is often said, she must have justification for her belief, i.e., her belief
must be based on good reasons. Wherein do these good reasons consist?

Quine and Putnam would point to the fact that mathematical beliefs play a
central role in our explanations of natural phenomena [Qui54, p. 251]:6

A self-contained theory which we can check with experience in-
cludes, in point of fact, not only its various theoretical hypothe-
ses of so-called natural sciences but also such portions of logic
and mathematics as it makes use of.

Mathematical reasons play a role in our explanation of why a certain bridge will not
collapse; mathematical reasons play a role in our explanation of why an airplane
does not fall from the sky. In other words, mathematical reasons are part and parcel
of our best explanations of the phenomena that we observe, and of the empirical
success of the empirical predictions that we make about observable phenomena.

Paseau has described how mathematical propositions can even be justified in
much more direct, inductive ways.7 He gives the example of the theorem that a
triangle’s perpendicular bisectors always meet at a point [Pas15, Section 7]. You
might draw a triangle on a piece of paper, construct its perpendicular bisections,
and notice that they meet at a point. You then do the same for many different
drawn triangles: always the same phenomenon occurs. On the basis of this, you
inductively draw the conclusion that this property holds for all triangles drawn on

6See also [Put71].
7Actually, Paseau talks about knowledge of mathematical propositions in this context. But

what he writes applies equally to justification.
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paper. Furthermore, you may believe that the triangles that can be drawn on a
piece of paper are ‘isomorphic’, in relevant respects, to the triangles that exist in
Euclidean space. Thus you draw the conclusion that the property also holds for all
triangles in Euclidean space. The upshot is that you have good, direct, empirical
reasons for a belief in a mathematical proposition.

Another example of this is the Kepler Conjecture, which says that no arrange-
ment of equally sized spheres filling Euclidean space has higher average density
than cubic close packing and hexagonal close packing (which are easily seen to be
equivalent). Experimenting with stacking oranges will quickly convince you of the
truth of this conjecture. But proving the Kepler Conjecture turned out to be very
difficult: this was achieved only in the 1990s.8

The inference to the best explanation-account of our justification of mathemat-
ical beliefs forms part of Quine’s epistemological naturalism [Qui69]. According
to this view, our best reasons are the ones that natural science provides, even if
these reasons are always defeasible. Further support for this view might be sought
in the history of mathematics. For instance, the development of the calculus, and
later of mathematical analysis, took place in close interaction with developments
in theoretical physics (the discovery and development of Newtonian mechanics).

On Quine’s account, the mathematician’s support for her mathematical beliefs
is ultimately not distinctively mathematical in kind, but at least in part empirical.
Thus the mathematician has non-mathematical reasons for her mathematical be-
liefs. Maddy has objected to Quine’s account that it does not correctly describe
how mathematicians typically justify their mathematical beliefs. Indeed, a typical
mathematician is simply not interested in whether, and, if so, how, mathematical
propositions form an essential part of empirical theories. Instead, she takes herself
to have mathematical justifications for her mathematical beliefs.

Continuing in this vein, one might argue that a mathematical justification of a
mathematical belief usually takes the form of a proof from axioms. Quine might try
to give proofs their due by applying his account only to the mathematical axioms.
Then the justification that a mathematician has for her mathematical belief that
ϕ consists of her proof of ϕ from axioms plus her justification of the axioms by an
abductive argument along the lines sketched above.

But this reply does not get to the heart of Maddy’s objection. Today, a
significant number of philosophers appeal to inference to the best explanation-
considerations as main reasons for their mathematical beliefs. Perhaps this even
also holds true, in a less explicitly articulated manner, for non-mathematicians who
are not philosophers. But whatever reasons a mathematician may have for believing
mathematical axioms, they do not concern the role they play in successful empirical
theories.

So we must take a closer look at what counts as mathematical reasons for math-
ematical beliefs. Mathematical justification for a proposition ϕ is often identified
with a proof of ϕ from axioms. What it means to have a proof of a mathematical
statement is a contentious issue. The Four Colour Theorem say that any map on
a bounded plane can be coloured with four colours in such a way that adjacent9

regions have different colours. This theorem was established in 1976 by Appel and

8See [Hal05].
9Adjacent means that two regions share a common boundary curve segment, not merely a

corner where three or more regions meet.
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Haken by extensive use of computer assistance.10 Their proof relied on a computer
checking 1834 cases (“reducible configurations”), which took the computer 1000
hours. At the time at least, they could only be said to “have” a proof of the Four
Colour Theorem if the computer verified cases were seen as part of their proof.11

But let us be relaxed about this, and count such computer-assisted proofs as gen-
uine mathematical proofs. Even then it is clear that mathematical justification of
a statement ϕ can also take other forms than mathematical proofs of ϕ.

A probabilistic proof of a given proposition ϕ is a proof that has information
about the probability of ϕ, rather than ϕ itself, as its conclusion. Instead, such a
proof establishes that the probability of ϕ is smaller than 1 − ε, where ε can be
made very very small.12

Another example of a mathematical justification of a mathematical statement
which falls short of being a mathematical proof might be the following. The teacher
of my first undergraduate mathematical logic course, Jan Denef, once took time out
in one of his lectures to talk to us about the state of affairs in number theory at
the time—it was 1988, I believe. He explained to us how it had recently become
clear that a collection of conjectures are tightly connected to each other by a net of
total and partial implication relations. For instance, he explained, Fermat’s Last
Theorem seemed closely connected to the theory of elliptic curves, in particular
with the Taniyama-Shimura-Weil Conjecture. So, if one of these conjectures could
be proved (and they did not all appear completely out of reach), then a bunch
of others would also be proved or partially proved. Moreover, these conjectures
seemed to be converging on an intelligible ‘picture’. They seemed to articulate
a deep understanding of the situation: if they would turn out to be false, then
we would have no idea what was going on. Of course Fermat’s Last Theorem
was proved not much later,13 and the full Taniyama-Shimura-Weil Conjecture was
proved in the wake of that. I submit that around 1990, leading number theorists
were mathematically justified in believing Fermat’s Last Theorem. It would have
been irrational, for example, if one of these experts, knowing what she did at the
time, would decide to spend all her time and efforts on trying to refute Fermat’s Last
Theorem. Perhaps the current situation concerning the Goldbach Conjecture is in
relevant respects similar.14 In sum, abductive arguments can also give mathematical
justification.

There is a third way in which a mathematician might be justified in a math-
ematical belief in the absence of a correct proof. Suppose a mathematician has a
very complicated argument for a mathematical proposition ϕ. Suppose hers is a
high level argument, resting on many lemmas, some of which she has argued for
herself, while others are taken from the literature. Moreover, suppose that she has
not verified all these lemmas in detail. To conclude, suppose that there are even
errors in some of the proofs of the lemmas, but that these errors can (and in due
time will) be corrected. Our mathematician might be painfully aware of the pos-
sibility that the details of the proofs of some of the lemmas might turn out to be

10See [AH78].
11I am abstracting here from some errors in their 1976 proof, which were by 1989 all corrected.
12An epistemological assessment of probabilistic proofs is given in [Eas09].
13See [Wil95].
14For a discussion of the epistemological status of Goldbach’s Conjecture, see [Pas15, Section

3]. For an overview of Goldbach conjectures until around 2015, see [Vau16].
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thornier than she expected, and that some of her arguments might contain errors.
She might reflect on her predicament and say to herself: this sort of situation has
occurred many times before in the recent history of mathematics, and in most such
situations, the argument turned out to be basically correct or at least in the right
direction. In this case, I would again be inclined to say that our mathematician
is mathematically justified in her belief of ϕ. Moreover, the inductive considera-
tions that she brings to bear on the situation somewhat strengthen her grounds for
believing ϕ.

To conclude, you can have a proof that there is a proof of a mathematical
statement ϕ while a proof of ϕ is forever beyond your reach. For any sufficiently
strong formal theory T, there are mathematical theorems ϕ of T that only have
astronomically long proofs even though there are short proofs in T of the provabil-
ity of ϕ in T. Let BewTx be defined as ∃yProofT (y, x), where ProofT (y, x) is an
arithmetical predicate that codes the relation “y is a proof of x’ in T’ in a standard
way. Then we have:

Theorem 1.1. For any sound T ⊇ PA, there is a sentence φT , which is provable
in T, and which is such that the shortest T-proof of BewT (φT ) is much shorter than
the shortest T-proof of φT .

Proof. [Par71, Theorem 1.3]. �

Propositions that only have very long proofs in one theory (PA, say), may have
much shorter proofs in a stronger theory (ZFC, say). But our theorem 1.1 also
holds for the strongest theory that we currently believe. Suppose, for the sake of
argument, that this strongest theory is ZFC. Then there are proofs of φZFC in ZFC,
but we can never obtain one by working in ZFC. At the same time, we have a short
proof (in ZFC) of BewT (φZFC). Does not this proof provide good mathematical
reasons to believe φZFC?

Despite all this, the fact remains that mathematical proof remains somehow
the mainstay of mathematical justification. Let us therefore now scrutinise the
notion of mathematical proof, and investigate how it is connected to mathematical
justification.

1.4. Mathematical justification

We have seen that someone may have inductive non-mathematical reasons for
a mathematical belief (p. 19). But a person may also have inductive mathematical
reasons for a mathematical belief. As an example of this, consider the Goldbach
Conjecture again. The Goldbach number G(n) of a natural number n is defined as
the number of different ways in which n can be written as the sum of two primes.
This means that the Goldbach Conjecture holds if and only if for all even natural
numbers ≥ 2, G(n) ≥ 1. Computer evidence indicates that the function G tends
to increase as n increases, such that, for instance, for even numbers n ≈ 105,
G(n) ≥ 500. Despite the fact that it is generated by computers, this is widely
taken to be inductive mathematical evidence for the Goldbach Conjecture [Pas15,
p. 779].

Inductive considerations by themselves are in many cases insufficient to warrant
belief in mathematical propositions. Let us consider a few examples that illustrate
this. A perfect number is a natural number that is the sum of its proper divisors.
(The number 6 is an example.) One open question is whether there are odd perfect
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numbers. Inductive evidence for a negative answer is the fact that the least odd
perfect number would have to be larger than 101500. But this is only one reason,
which by itself is not taken as sufficient, for mathematician’s beliefs that there
probably aren’t any odd perfect numbers. Another example of an open question
is the following: are there natural numbers of the form 2p − 1, with p prime, that
are not square-free, i.e., that are such that their prime factorisation contains some
factor twice? On this question, Guy writes [Guy04, p. 14]: “This seems to be
another unanswerable question. It is safe to conjecture that the answer is “No!”.
This could be settled by a computer, if you are lucky.” In other words, even though
we know for sure, on inductive grounds, that non-square-free numbers of the form
2p − 1 (with p prime) would have to be rather large, mathematicians believe that
this does not amount, by itself, to good reasons for believing that there are no such
numbers.

A cursory look at notebooks of mathematicians of the past shows that inductive
evidence has always played an important role in mathematical research. Today, a
reputed mathematical journal, Experimental Mathematics (founded in 1992), is
devoted to this activity. The founding editors describe the “philosophy” behind
their journal as follows:15

Experimental Mathematics was founded in the belief that theory
and experiment feed on each other, and that the mathematical
community stands to benefit from a more complete exposure to
the experimental process. The early sharing of insights increases
the possibility that they will lead to theorems: An interesting
conjecture is often formulated by a researcher who lacks the tech-
nique to formalise the proof, while those who have the techniques
at their fingertips have been looking elsewhere. Even when the
person who had the initial insight goes on to find a proof, a
discussion of the heuristic process can be of help, or at least of
interest, to other researchers. There is value not only in the
discovery itself, but also in the road that leads to it.

This suggests that inductive mathematical evidence is taken by the mathematical
community to be primarily a matter of heuristics: it belongs to the context of
discovery rather than to the context of justification of mathematical belief.

It is not clear, however, that inductive mathematical evidence cannot do any
justificatory work. Especially if there are several bodies of inductive mathematical
evidence for one mathematical proposition p, where these bodies of evidence appear
to be totally independent of each other, the inductive evidence can rightly be taken
to provide good reasons for believing p. This can be so despite the contrast between
the finiteness of inductive evidence and the infinite number of instances that are
covered by the mathematical statement on which it bears.

Inductive evidence is not the only kind of mathematical evidence. Consilience
is another. When ever stronger (and often ever more complicated) results seem to
converge on a conjecture, this is seen as warrant for believing the conjecture to be
true. As an example, consider the Goldbach conjecture once again. Progressively,
mathematicians seem to be “approaching” this conjecture. The following two re-
sults give just a small indication of this. In 1966, Chen Jingrun proved a theorem
that is closer to the Goldbach conjecture than the ones that came before [Che73]:

15https://www.emis.de/EM/expmath/philosophy.html



24 1. MATHEMATICAL JUSTIFICATION

Every sufficiently large even number can be written as the sum
of a prime and a number with ≤ 2 prime factors.

In 2013, Harald Helfgott proved the weak Goldbach conjecture, which is of course
also immediately implied by the full or “strong” Goldbach conjecture [Hel15]:

Every odd number greater than 5 can be expressed as the sum
of three primes.

Of course this does not mean that mathematicians now believe that the full Gold-
bach conjecture will be established soon.

1.5. Mathematical proof

We have seen that there can be good non-mathematical reasons, and mathe-
matical reasons that do not constitute a proof, for holding a mathematical belief.
So such reasons can provide justification for mathematical beliefs. There is in
mathematics a gold standard for the justification of mathematical belief, and this
standard is mathematical proof. Indeed, mathematical proof is widely seen as an
end in itself of mathematical activity [Pas15, p. 795]. Let us therefore turn our
attention to the concept of mathematical proof.

1.5.1. From mathematical justification to mathematical proof. It is
tempting to think that mathematical proof is a species of mathematical justification.

Like a mathematical justification of a mathematical proposition ϕ, a mathemat-
ical proof of ϕ can be viewed as an argument for ϕ. The reasons in a mathematical
proof are mathematical reasons, and propositions that express mathematical rea-
sons only contain mathematical concepts. Beside mathematical proofs, there are
also non-mathematical proofs. Fitch’s argument, for instance, is a proof that not
every truth is knowable.16 Moreover, truth is a philosophical rather than a mathe-
matical concept. Yet we can prove the consistency of Peano Arithmetic using the
concept of truth as follows [Myh60, p. 463]:

The axioms of elementary arithmetic are true, and the rules
of inference are truth-preserving. Therefore every theorem of
elementary arithmetic is true. Therefore ‘0=1’ is not a theorem
of arithmetic.

Indeed, this is a perfectly acceptable proof. But since it crucially relies on basic
logical principles of truth, it is a non-mathematical proof. We will see later that
the distinction between proof and mathematical proof is a significant one.

Unlike mathematical justification in general, mathematical proofs are in the
final analysis purely deductive arguments [dT21a, p. 11]. With logical consequence,
we mean first-order logical consequence. (We symbolise this consequence relation as
|=.) Gödel’s completeness theorem shows that there is a positive test for first-order
consequence. So if a mathematical proof contains a claim of the form φ1, . . . , φk |=
ψ, then if it is correct, a mathematician can find a fully spelled-out logical derivation
of ψ from φ1, . . . , φk. Indeed, a computer can be programmed to find such a logical
derivation for any given φ1, . . . , φk, ψ such that φ1, . . . , φk |= ψ.

There are two objections against the claim that mathematical arguments are
purely deductive, neither of which I find convincing.

16See [Wil00, Chapter 12].
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The first objection points to the fact that actions are taken to play a major
role in mathematical proof, and actions are not logical deductions.17 For instance,
one might read in a proof: “Now construct a perpendicular bisector of line segment
AB.” But such construction-talk is an anthropomorphising way of speaking that
should not be taken literally. In the example under consideration, the construction-
instruction can be seen as a vivid way of adducing the reason that there is a
perpendicular bisector of the line segment AB, and this reason is warranted by
fundamental principles of geometry.

The second objection points to the fact that when one considers a transition of
the form “ϕ; therefore ψ” in a mathematical proof, it turns out on closer inspection
almost never to be the case that ϕ logically implies ψ. But this is because, like
justifications in general, the argument that a person actually gives for a belief that
ψ almost never contains all the reasons that a person has for ψ. In other words,
in such a situation, there are typically reasons γ1, . . . , γk that are also needed to
warrant the transition from ϕ to ψ. But the writer of the proof may, in the context
of the proof, assume that the reader can work this out herself once the key reason
ϕ is given. So this second objection is also found wanting.

The process of interpolating “auxiliary” reasons in mathematical proofs is often
highly non-trivial.18 An article is received by a reputed mathematical journal. The
referees closely inspect the proofs in the article. In this process, they work out for
their own understanding certain parts in more detail. The manuscript is eventually
accepted for publication. It appears as an article in the journal, with some more
detail in proofs here and there than in the original submitted manuscript. Profes-
sional mathematicians from the relevant sub-discipline are expected to be able to
fill in the gaps in the proofs, but most graduate students or even PhD students in
the sub-field are not able to do this. A few years later, a graduate textbook appears
that contains a proof of the theorem. Typically, this proof contains significantly
more detail (more detailed reasons) than the proof in the journal, and therefore
the textbook proof will typically be significantly longer. For undergraduate mathe-
matics students, even the graduate textbook proof will be impenetrable. It may be
that a dramatic simplification of the original proof is found, and that this simplified
proof is accessible even to undergraduate students. But this is not always the case.

Rav has objected to this kind of story that the process of interpolation of
reasons in a mathematical proof until a logically correct and non-elliptical first-
order derivation is reached, can be an infinite process [Rav99, p.14–15]. The
hypothesis that, on the contrary, such a process of interpolation is always finite, is
known as Hilbert’s Thesis [Rav99, p. 11].

As a concrete example, consider a recent discussion that centres around the
proof of Alexander’s lemma [Ale23]. This fundamental theorem in knot theory
states that every tame knot is equivalent to one with a diagram that winds along
an axis. De Toffoli and Giardino claim that parts of this proof are very difficult to
formalise, and impossible to formalise without completely altering the structure of
the original proof [dTG16]. But these claims appear to be unfounded. Alexander’s
original proof is rigorous and does not contain appeals to intuition.19 It is true that

17A spirited defence of this view can be found in [Jon98].
18This process is analysed well in [TBng], on which the following description is based.
19This is shown in [TB20, Chapter II]. De Toffoli replies to Tatton-Brown’s critique in

[DT21b].
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there are convincing intuitive arguments for mathematical propositions that are
not fully rigorous. Jones’ intuitive argument for Alexander’s lemma,20 for instance,
does not meet standards of rigour. But it needs to be made more rigorous to be
more than a plausibility argument; moreover, this can be done.21 In sum, as far
as I am aware, Hilbert’s Thesis seems to be holding its ground so far. 22 We have
no examples of perfectly acceptable mathematical proofs for which we have reasons
to believe that the process of transforming them into first-order proofs from basic
reasons is an interminable task.

In the end, this leads to the hypothesis that we can model a mathematical
proof of a statement ϕ as a logical derivation of ϕ from mathematical principles
that can somehow be considered to be basic. Here what is basic is a relative
matter. Certainly the axioms of the system in which the logical derivation takes
place, counts as basic. But in a mathematical proof, theorems that are proved
elsewhere are virtually always appealed to (and when one looks up their proofs
in a textbook, one sees that these appeal to other theorems, and so on). The
formalisations of these theorems that are appealed to will appear as basic reasons
in the formalisation.

Modelling mathematical proofs in this way certainly has its uses. Given Gödel’s
completeness theorem, when a first-order derivation of ϕ from premises is elliptical
but logically sound, we can mechanically find a correct logical derivation of ϕ. This
is the idea behind automated proof verification. But formal derivations in first-order
logic should not be confused with what mathematical proofs really are.

In sum, so far mathematical proof indeed looks like a special kind of math-
ematical justification. However, there is one essential property of mathematical
proofs that is not shared by mathematical justification in general. We saw earlier
(p. 16) that justification does not entail truth. But proof, and therefore in par-
ticular mathematical proof, does entail truth. In epistemological terms: proof is
factive. If someone professes to know a mathematical proposition ϕ because she
has proved it, and ϕ later turns out to be false, then we say that she did not have a
proof of ϕ to begin with: she merely thought she did. Williamson puts it as follows
[Wil00, p. 265]:23

A way of having a warrant to assert p is factive just in case a
necessary condition of having warrant to assert p in that way is
that p is true. Grasping a proof of a mathematical proposition is
a factive way of having warrant to assert it: a necessary condition
of grasping a proof of p is that p is true.

Facticity is one of the properties that distinguish proof from proof in a formal
system, which is not a factive notion. So ‘wrong proofs’ are not (informal) proofs at
all. A wrong proof may contain logical errors. But it may also be impeccable from
a logical point of view but depend on some false basic mathematical assumption ϕ.
In the latter case, the argument will still be a correct proof in some formal system,
namely a system that has ϕ as one of its axioms. But it will not be a proof in the
mathematician’s sense of the word.

20See [Jon98].
21This is shown in [TBng].
22For an extended argumentation for this thesis, see [TBng].
23See also e.g., [Art08, p. 492], [Hor94, p. 286].
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Factivity is a property that proof has in common with knowledge. It may
be because of this conceptual link with truth that mathematical proof is almost
universally taken to be sufficient for mathematical knowledge.24 When a person
has a mathematical proof that ψ, and believes ψ on the basis of this proof, then she
knows ψ. It is also because of this conceptual link with truth that mathematical
proof is impervious to Gettier challenges.

The claim that mathematical proof entails truth is not universally accepted.
De Toffoli, for instance, defines mathematical proof thus [dT21a, Section II.3]:

A mathematical proof is a correct deductive argument for a
mathematical conclusion from accepted premises that is share-
able.

According to this definition, mathematical proof does not have a conceptual con-
nection with truth. A correct argument from accepted premises is not the same as
a sound argument: a deduction from premises may be correct even though some
of the premises are false.25 Therefore (and also because her definition classifies
non-mathematical proofs of mathematical statements as mathematical proofs), her
definition does not get the extension of the concept of mathematical proof right.

Perhaps the reason why some refrain from asserting that there is a conceptual
connection between proof and truth is that it is felt that claiming such a connection
commits one to a platonist view about mathematics. But if the content of the con-
cept of truth is simply given by some natural collection of Tarski-biconditionals,26

then such worries are unfounded. For then, to say for example “if it has been proved
that there are infinitely many prime numbers, then it is true that there are infin-
itely prime numbers”, is little more than to say “if it has been proved that there
are infinitely many prime numbers, then there are infinitely many prime numbers”,
where the acceptance of the latter sentence need not commit one to mathematical
platonism. In other words, the concept of truth does not have to be laden with a
‘correspondence theory’. But more about this later.

1.5.2. Informal mathematical proof. From the foregoing, it is clear that
proofs in formal systems can be contrasted with the proofs that are constructed
by mathematicians. The latter are often called informal proofs.27 The distinction
formal / informal applies as much to proofs in general as it does to mathematical
proofs. So we will use the term ‘informal mathematical proof’ as standing for a
different concept than the term ‘informal proof’, and I will take ‘informal mathe-
matical proof’ to be synonymous with ‘mathematical proof’. In the literature, no
clear distinction is often made between the concepts of informal proof and informal
mathematical proof. But we will see that this distinction matters.

There is a sense in which informal mathematical proof stands to formal proof
as truth stands to truth in a model. Like truth, informal mathematical provability

24We have seen earlier (Section 1.3) that mathematical proof is probably not necessary for

mathematical knowledge.
25When commenting on the need for the shareability requirement in her definition, De Toffoli

equates correct deduction with the (to logicians) more familiar concept of valid deduction [dT21a,
Section II.3]: “If proofs are equated with valid deductive arguments in a formal system, then not

all proofs would be shareable since proofs could be so long that they could never be grasped. . . ”
26For one specific elaboration of such a deflationist account of truth, see [Hor98].
27See a.o. [Myh60], [Hor05a], [Lei09], [AM10].
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is taken to be an absolute notion.28 Indeed, Myhill used the term absolute proof
instead of informal mathematical proof [Myh60]. Like truth in a model, formal
proof is a relative notion: it is relative to a formal language, and a proof system
(i.e., a system of formal axioms and rules of inference) for that language.

I expect readers to be familiar with the definition of formal proof: we need not
go into it here. Defining the notion of informal mathematical proof is anything but
straightforward. We have already discussed one definition that is not satisfactory
(p. 27), and we will encounter a few more that are not correct. Informal math-
ematical proof, like knowledge, appears to be a very fundamental epistemological
concept. Therefore I am sceptical that a satisfactory definition of mathematical
proof can be given. I believe that it is more fruitful to look for and investigate
fundamental properties of informal proof that somehow flow from the nature of the
concept. Many questions of this sort are very difficult, and little is known. In order
to learn more about this notion, let us explore the comparison with formal proof
further.

The question whether, for a given formal system S, a sequence of formulas
constitutes a formal proof in S, is decidable. Is the notion of informal mathematical
proof similarly decidable? Of course decidable here has to be taken not in the
formal sense of the word, i.e., as recursive. For informal mathematical proof to be
decidable, means that for any argument, we can eventually come to know whether
or not it is an informal mathematical proof. We can even go further, and ask
whether there is, for any argument, a (non-mathematical!) proof that the argument
constitutes a proof, or a proof that the argument does not constitute a proof.

This question is related to what is known in epistemology as positive and neg-
ative introspection for informal proofs. In contemporary epistemology, these are
rightly regarded with suspicion [Wil00, Chapter 4], and negative introspection
even more so than positive introspection. A mathematician can have a mathemat-
ical proof of a mathematical statement without knowing that she does (she may
not even believe that she has one), may think she has a mathematical proof of it
while she doesn’t. But these considerations do not quite decide our question. The
problem lies with the ‘can come to know’ part of our question. This modal compo-
nent induces an idealisation from the actual finite, bounded, mortal mathematician
(and mathematical community). This makes our question somewhat unclear. If we
idealise as far as God, then the answer to our question is trivially and uninterest-
ingly yes, because then knowledge collapses into truth. So we do not want to go
that far in our idealisation. But it is not clear how far it is reasonable to take our
idealisation to extend [Kri80, p. 34–35]. In sum, our question is completely open,
and it is not even clear whether it is sufficiently precise to admit for a clear answer.

Informal mathematical proofs consist of interpreted statements. Formal proofs,
in contrast, are often considered to consist of meaningless formulas [Rav99, p. 12]:

Hilbert’s Thesis is just a one-way bridge: from a formalised ver-
sion of a given proof, there is no way to restore the original proof
with all its semantic elements, contextual relations and techni-
cal meanings. Once we have crossed the Hilbert Bridge into the
land of meaningless symbolic manipulations, we find ourselves
on the shuffleboard of symbolic manipulations and [. . . ] these
symbols do not encode meanings. . . [I]it is the very purpose of

28But more about this later: see Section 1.6.
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formalization to squeeze out the sap of meanings in order not to
blur focusing only on the logico-structural properties of proofs.

But this is an exaggeration. Any student of first-order logic will tell you that we can,
and often do, keep track of the meanings of symbols when we formalise arguments
(R means ‘red’, Gxy means ‘x is greater than y’,. . . ). Nothing prevents us from
focusing both on the logical structure and the meaning of non-logical concepts in
an argument.

It is often said that whereas formal systems have axioms, axioms are not pre-
supposed in informal mathematical proofs. As an example, let us look at number
theory, which is listed by Rav as a non-axiomatised theory.29 Number theory freely
draws upon other areas of mathematics, such as topology, for instance. But topol-
ogy itself is based on agreed first principles (axioms): this, in the final analysis,
is what allows mathematicians to decide whether a given topological argument in
number theory is correct. Moreover, it is alleged that the logic that is used by
mathematicians is not first-order logic [Rav99, p. 16]:

. . . the standard theorems of group theory [. . . ] are not even ex-
pressible in first-order predicate calculus. One just has to think
about such fundamental concepts as normal subgroup, torsion
group, finite group, composition series, or such famous theorems
such as the Sylow theorems about p-groups, the Jordan-Hölder
theorem and the like, to realise that the implicit underlying logic
of mainstream group theory is second-order logic.

But this just means that group theory contains lots of theorems involving sets of
groups. Set theory is also axiomatised (in first-order logic), so group theorists can
use accepted methods of set theory and still agree whether a proof is correct. At
the level of proofs, a principled distinction between first- and second-order does not
even make much sense, since quantification over ‘second-order’ entities can perfectly
be treated in a two-sorted first-order calculus.30

1.5.3. Informal provability. It is very hard to find a satisfactory definition
of the concept of informal mathematical proof. We can, however, try to find basic
principles that govern it. We may even express the outcome of this investigation
as a formal system.

Mathematical proof, like knowledge, is from a logical point of view a weak
notion. Factivity is about the only ‘pure’ logical principle that clearly governs the
notion of informal proof. Therefore the ‘logic of informal mathematical proof’ is
likely to be uninteresting. For this reason, philosophers have instead focused their
attention on the logic of informal provability. Despite the aforementioned unclarity
of this notion (p. 28), the logical laws that (clearly) govern it may turn out to be
somewhat interesting.

29“Number Theory. Once more, a non-axiomatized theory! Notice that I am talking about
number theory as the term understood by the mathematical community—not to be confused with
first-order fragments of second-order Peano Arithmetic, which is a branch of mathematical logic”

[Rav99, p. 16]. See also [Lei09, Section 2].
30For an elaboration of this point, see [Sha99]. See also [Azz04, Section 3].
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This idea goes back to early work of Gödel [Göd33a]. To a classical propo-
sitional background logic, he adds an intensional sentential operator, which is in-
tended to express provability. He then goes on to claim that this operator is gov-
erned by the laws of S4 propositional modal logic. (This idea was later extended
to quantified and higher-order settings: see [Sha85].)

Already at this early stage, somewhat subtle considerations arise. In his dis-
cussion of Gödel’s proposal, in a setting where the background theory is Peano
Arithmetic, Myhill rejects the 4 axiom (�A→ ��A) [Myh60, p. 469]:

We have decided not to include Gödel’s [Axiom 4]. Our ax-
ioms are intended to be added to some underlying formalism. If
we take this to be Peano Arithmetic, we intend [the provability
operator] to be interpreted as (absolute) provability of an arith-
metical sentence (i.e., one which does not contain [the modal
operator]. The iterated [modal operator in the 4 axiom] does
not accord with this interpretation.

Moreover, he restricts the Necessitation rule of modal logic to sentences that do
not contain occurrences of the modal operator [Myh60, p. 470].

What is behind this disagreement between Myhill and Gödel?
Myhill rightly states that for the concept of mathematical provability, the 4

axiom does not hold. Take the sentence

(†) It is informally provable that ϕ.

where ϕ is some mathematical claim. Sentence (†) is not a mathematical statement,
since it contains the philosophical concept of informal provability. So sentence (†) is
not even the sort of thing that can be mathematically proved. (Something similar
can be said for the unrestricted necessitation rule.)

This does not mean that Gödel was wrong. In his [Göd33a], Gödel interprets
his operator as (informal) provability, not as mathematical provability [Göd33a,
p. 300]. For this notion, the unrestricted Necessitation rule should be expected to
hold. If the axioms of Gödel’s formal system S of provability can be seen to follow
from the content of the concept of proof (and of possibility), then the theorems of
S have informal (but not always purely mathematical) proofs. In the light of our
earlier discussion on p. 88, the question of the validity of the 4 axiom for informal
proof relates to the question whether some form of positive introspection holds for
the concept of proof. If it does in a sufficiently strong sense, then the 4 axiom holds
for the informal notion of provability.

So the distinction between informal proof and informal mathematical proof
matters! Myhill saw that the distinction between informal proof and informal
mathematical proof is significant in another sense.

The logical treatment of informal provability and of informal mathematical
provability as sentential operators is ultimately unsatisfying. We formalise the
notion of truth as a predicate because we want to be able to quantify over the
entities that are true. For the same reason, we should formalise informal provability
and informal mathematical provability as predicates.

If, in an arithmetical framework,31 we treat informal provability as a predicate,
then liar-like paradoxes ensue:

31We need to work minimally in an arithmetical framework to enable self-reference via coding.
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Theorem 1.2 ([Myh60], [KM60]). Let LB be the language of Peano Arith-
metic plus a primitive (provability) predicate B. Let the system M consist of Peano
Arithmetic, formulated in the extended language, plus the necessitation rule (Nec)
and the Factivity axiom (Fact) for B. Then M is inconsistent.

Proof. By the diagonal lemma, take a sentence K such that

(‡) PA ` K ↔ ¬B(K).

Reasoning in M , we suppose (for a reductio) that ¬K. Then by the ←-direction
of (‡), we get B(K), from which by Fact we get K. So we reject our assumption,
and have M ` K. By Nec this gives us M ` B(K), so by the →-direction of (‡)
we also get M ` ¬K. Contradiction. �

However, if we consider the system M−, which results from M by restricting Nec
and Fact to arithmetical sentences. M− is easily seen to be consistent: it has
models in the natural numbers. Moreover, the same holds for the system for in-
formal mathematical provability that Myhill proposes in [Myh60, p. 469], which
is obtained from M− by adding the closure of the extension of B under Modus
Ponens as an extra axiom.

In sum, the notion of informal provability is prone to paradox in a way that
the concept of mathematical provability is not. This is because the notion of math-
ematical provability is naturally a typed notion, whereas the notion of provability
is ‘reflexive’.32

1.6. The standard of proof

So far, we have taken informal mathematical proof, like truth, to be an absolute
notion. Over the past decades, truth theory has developed into a very successful
research area, both in philosophy33 and in philosophical logic.34 But the investiga-
tion of informal proof and informal mathematical proof can hardly be said to have
taken off. Why is that?

Let us go back to one of the early attempts to “define” the notion of proof
[Göd53, p. 341, footnote 20]:35

“proof” means [. . . ] a sequence of propositions convincing a sound
mind.

Myhill talks about the dangers of “circularities or vagueness” [Myh60, p. 462] in
attempts to clarify the notion of proof, and writes [Myh60, p. 463]:

I cannot use any of these apodictic notions [such as ‘irrational’,
‘compelled’, ‘committed’,. . . ] to define the apodictic notion of
proof, without falling into one of the two classical fallacies of
circular definition or of defining the unknown by the more un-
known.

32For the same reason, the notion of truth is paradoxical, whereas the concept of mathemat-
ical truth is not.

33See e.g. the work by Horwich’s defence ([Hor98]) of deflationism.
34See for instance [Hal11].
35Observe that, for reasons given earlier, this cannot count as an explication of the notion of

mathematical proof.
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Gödel’s characterisation of the concept of proof seems particularly vulnerable to
the latter charge. In particular, one wonders: what is a ‘sound mind’? whose
mind? how does it get convinced? One gets the feeling that something like Kant’s
transcendental subject is appealed to here.

Moreover, many philosophers worry that early conceptions of proof, such as
that of Gödel, are very (overly?) platonistic. One is inclined to interpret the
term ‘thought’ in Gödel’s characterisation of proof in a Fregean, platonic way.
Since we have a good theoretical grip on them, it may not be absurd to see the
natural numbers, for instance, as somehow removed from human activity. But
conceiving of a proof as a platonic entity somehow, regardless of whether one aims
at defining the notion of proof or to uncover essential properties of it, risks making
it philosophically somewhat intractable. In the end, the proof of the pudding is in
the eating. If reflection on mathematical proof as an absolute notion yields powerful
and fruitful theories, then this is cause for optimism. But the longer such theories
are not forthcoming, the hollower claims about mathematical proof as an absolute
notion sound.

The once standard way of investigating mathematical proof is challenged by the
philosophers of mathematical practice.36 They advocate a different methodological
approach to questions about informal mathematical proof. They contend that
we should start from the extension of mathematical proof, rather than from the
intension of the concept. This means that our investigation should be firmly rooted
in mathematical practice. Mathematical proofs are the sort of things that can
be found in mathematical journals and mathematics textbooks. They are what
mathematics teachers write on blackboards and explain to students, they are the
kinds of arguments that mathematicians give on MathOverflow,37. . .

Mathematical proofs are products of a social practice. And like for other such
products, there is little reason to expect that they share anything like an essence
or nature that is there for philosophers to uncover. There is a great variety of
forms that mathematical proofs can take: a mostly a priori investigation into the
nature of mathematical proof will tend to lose sight of the multifarious aspects of
informal proof. Only a more empirical approach to the problem will do justice to
the diversity of what are counted as proofs by the mathematical community.

The history of mathematics shows that the standards of mathematical proof
have evolved over time. What counted as a geometrical proof for Euclid is not
the same as what counted as a geometrical proof for Hilbert in his Foundations of
Geometry [Hil99]; what counted as a proof in analysis for Euler is not the same
as what counts as a proof in analysis for the editors of the Annals of Mathematics
today. Moreover, sociological research about mathematics shows that what counts
as a proof for one group (professional algebraic geometers, say), is not the same as
what counts as a proof for another group (undergraduate mathematics students,
say). In short, informal proof is a relative, not an absolute notion [LM08, p. 97].

Consider for instance mathematical arguments in analysis. In the absence
of a definition of limit, and of the corresponding distinction between convergent
and divergent infinite series, calculations of infinite sums could not rigorously be
justified. At best, therefore, many mathematical arguments in analysis from the

36The origin of this movement in the philosophy of mathematics lies in Lakatos’ Proofs and

refutations [Lak76].
37https://mathoverflow.net
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eighteenth century do not pass contemporary journal standards of mathematical
rigour. At best, they are gappy proofs (although calculations of values of integrals
are very often not justified in contemporary analysis articles!); in many cases, they
contain mistakes (sins against dividing by 0, for instance).38

De Toffoli argues that containing mistakes disqualifies a mathematical argu-
ment from being a real proof [dT21a, p. 12]. She recognises that proofs in math-
ematical journals do not live up to the standard set by her definition (see p. 27).
She calls the mathematical arguments that are labelled ‘proofs’ in mathematical
journals simil-proofs, and defines them thus [dT21a, p. 13]:

An argument is a Simil-Proof when it is shareable, and some
agents who have judged all its parts to be correct as a result of
checking accept it as a proof. Moreover, the argument broadly
satisfies the standards of acceptability of the mathematical com-
munity to which it is addressed.

So a mathematical argument can be a Simil-Proof and contain significant mistakes.
When we take the standpoint of mathematical practice seriously, it is not so

clear that mathematical arguments that contain significant mistakes cannot still
rightfully be called mathematical proofs. In this context, I am reminded of a
story that Yannis Moschovakis shared at a dinner conversation. As a graduate
student, he got hold of a copy of Paul Cohen’s manuscript about the independence
of the Continuum Hypothesis. He found a significant mistake in the argument; this
mistake had also been spotted independently by others. Moschovakis went to his
supervisor and told him that the proof was wrong. His supervisor, so Moschovakis
told us, replied along the following lines: “We know that there is a mistake in
the proof. But it can be fixed. Go back and try to understand the independence
of the Continuum Hypothesis.” It was very clear from Moschovakis’s story that
his supervisor thought that Cohen had proved the independence of the Continuum
Hypothesis even though it contained a significant mistake—Moschovakis, of course,
in retrospect agreed. Cohen proved this theorem because his argument contained
the mathematical reasons why the Continuum Hypothesis cannot be decided from
ZFC.

According to what may be labelled the received view, the relation between
informal and formal mathematical proof can be described as follows [Avi20, p. 2–
3]:

When someone in the mathematical community makes a math-
ematical claim, it is generally possible to express that claim for-
mally, in the sense that logically adept and sufficiently motivated
mathematicians can come to agreement that the formal claim ex-
presses the relevant theorem. One justifies an informal claim by
proving it, and if the proof is correct, with enough work it can be
turned into a formal derivation. Conversely, a formal derivation
suffices to justify the informal claim. So an informal mathemat-
ical statement is a theorem if and only if its formal counterpart
has a formal derivation.

38De Toffoli mentions Gauss’ original argument for the fundamental theorem of algebra as
an example [dT21a, p. 12].
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This claim about the formalisability of mathematical proofs can be seen as an
explication of the sense in which informal mathematical proofs are rigorous.

In the same vein, Azzouni takes it to be a normative constraint on informal
mathematical proofs that they “indicate an ‘underlying’ derivation” [Azz04, p. 84].
He furthermore points to the fact that this explains why disagreements about knowl-
edge claims are so infrequent in mathematics [Azz04, p. 84]:

Since (a) derivations are (in principle) mechanically checkable,
and since (b) the algorithmic systems that codify which rules
may be applied to produce derivations in a given system are
(implicitly, or, often nowadays, explicitly) recognised by mathe-
maticians, it follows that if proofs really are devices mathemati-
cians use to convince one another of one or another mechanically
checkable derivation, this suffices to explain why mathematicians
are so good at agreeing with one another on whether some proof
convincingly establishes a theorem.

So the standard of (mathematical) proof, one might say, is that the derivation-
indication that an informal mathematical argument contains, checks out. This
checking out is an ‘in principle’ matter: there is no expectation that any mathe-
matician attempts to work even parts of the ‘underlying derivation’ in formal detail.
Indeed, when evaluating mathematical proofs, mathematicians usually operate on
a much higher level of abstraction of general ideas and strategies.39

Like knowledge, mathematical proof does not seem to be a matter of degree.
Rota expresses this sentiment in his characteristically subtle way as follows [Rot97,
p. 183]: “The expression ‘correct proof’ is redundant. Mathematical proof does not
admit of degrees. A sequence of steps in an argument is either a proof, or else it is
gibberish.” Nonetheless, surely mathematical proof is a somewhat vague concept.40

So the last statement in this quotation must be taken with a grain of salt. If the
gaps become very large, or the mistakes become very substantial, then one becomes
less inclined to say that the author has really proved the mathematical statement,
even if it is true. So it can still, in particular cases, be difficult to determine whether
the standard of proof has been met.

Let us then assume that formalisability is a normative constraint on informal
mathematical proof. And let us then also assume that this formalisation can be
seen as a completion of the complex of reasons in an informal mathematical proof,
rather than a drastic deformation of it.

Now the question arises: in which formal system will this formalisation take
place? Different mathematical fields have their own local formal systems. But all
mathematical fields draw freely on other fields. So a formalisation of a proof in one
field is likely to draw on axiom systems from other fields. As an example, consider
number theory. Mathematical induction is a local axiom that will always play a

39Thurston puts it as follows [Thu94, p. 9]:

When people are doing mathematics, the flow of ideas and the social stan-
dard of validity is much more reliable than formal documents. People are

usually not very good in checking formal correctness of proofs, but they are
quite good at detecting potential weaknesses or flaws in proofs.

40I do not commit myself here on the question whether vagueness is always a purely epistemic

matter.
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central role in number theory. But in recent decades, number theory has made
use of category theoretic arguments, so, indirectly, it appeals to basic principles of
category theory.

Ultimately, the basic concepts of all mathematical theories can be defined in
the theory of pure sets. In this sense, set theory constitutes not a local system but
a foundational system. Under this set theoretic guise, their basic axioms can be
proved from the basic principles of set theory.41 In this context, we can pursue the
example of number theory a bit further. It is not surprising that under familiar
definitions of natural numbers in terms of sets, the axiom of mathematical induction
can be proved to hold. After all, set theory has induction built in almost at its level
of axioms, namely as the principle of transfinite induction on ordinals.

No one seriously claims that the set theoretic definitions of mathematical enti-
ties from other mathematical disciplines constitute ontological reductions of entities
of these disciplines (the natural numbers, graphs,. . . ) to pure sets. The untenability
of such a claim was convincingly argued for in [Ben65]. Nor does anyone suggest
that, for instance, a graph theorist “should really work in set theory”: that would
be madness. These points have been repeated ad nauseam, so let us not dwell on
them further here.

As far as the axioms of set theory go, the principles of Zermelo-Fraenkel set
theory with the Axiom of Choice (ZFC) is almost universally accepted by the
mathematical community. In fact, the vast majority of mathematicians would
be happy to go a bit beyond ZFC, if necessary. If someone were to prove the
Riemann Hypothesis from ZFC plus the axiom that there are inaccessible cardinals,
for example, then it would be considered proved—not that anyone currently expects
that a large cardinal axiom (or its consistency) is needed to prove the Riemann
Hypothesis. In fact, much less than full ZFC is needed to “reconstruct” virtually
all of mainstream mathematics.

1.7. Warrant for axioms

Why are philosophers interested in the question of the standard of proof? Ulti-
mately, the complex of reasons that a mathematician has must support her belief in
a mathematical statement. If this complex of reasons is an associate formal proof,
then it seems that we may be able to make a case that it does. We should keep
in mind that the mathematician will not be conscious of all reasons in the formal
proof, nor does she need to be. One reason for this is that there usually is not
a unique way, up to trivial transformations, that an informal mathematical proof
can be formalised. So we are giving ourselves some latitude when we say that her
reasons are the reasons in a formalisation of her informal mathematical proof.

Suppose, then, that a mathematician has an informal mathematical proof of a
mathematical statement ϕ. If the foregoing, is correct, there will then be a formal
proof of ϕ that can be seen as the ‘completion’ of the complex of reasons contained
in the informal proof. The formal proof then constitutes the complex of reasons
that justifies our mathematician’s belief in ϕ. Let us look at this formal proof from
an epistemological point of view.

41For category theory (viz. the ‘category of all categories’) this is perhaps less straightfor-
wardly so. But everything that can be done in category theory can be done in set theory as long

as very mild large cardinal assumptions are used (such as the existence of inaccessible cardinals).
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The formal proof will be a proof in some formal system. Let us ignore, for
the moment, the question how the logical inference steps in this formal proofs are
warranted. Let us also ignore the question, which perhaps only rarely arises, what
our warrant for basic non-logical inference steps in the formal proof is. Then we
are left with the question how the mathematician’s belief in the premises of the
formal proof is warranted. As said before (p. 26), some of these reasons will be
formalisations of theorems that were proved elsewhere. Perhaps the author of the
informal proof has not gone through the proofs of some of these theorems. In those
cases, the question arises what the mathematician’s warrant is for believing them.
Let us also postpone this question. Then we are left with the difficult question
which cannot be put off forever, namely:

Wherein consists the mathematician’s warrant for her belief in
the basic axioms on which her formal proof rests?

Much has been written on this fundamental question. Gödel’s writings on it42

have been particularly influential. Gödel focuses on our warrant for believing in the
axioms of set theory. We have seen that beside the foundational axioms, there are
local axioms to consider (for instance, arithmetical axioms). So we will also have a
few words to say about the justification of local axioms. Moreover, I will not follow
Gödel closely in what follows.

Gödel distinguishes between intrinsic and extrinsic evidence for set theoretic
axioms. Let us first consider intrinsic warrant for axioms.

It is claimed that many of the basic axioms of set theory can be seen to be true
on the iterative conception of sets.43 The basic idea is that sets are somehow formed
in stages, where at each next stage, the full power set of of the previous stage is
formed. Then if certain assumptions on the structure of the stages are made, many
basic axioms of set theory can be justified. Let us briefly look at how this works
for the Axiom of Choice. The truth of an antecedent of this principle means that
there is a stage α where a family of non-overlapping sets has been generated. Then
there must be a prior stage β where each element of each of the sets in the family
has been formed. Therefore at stage β + 1 a choice set is formed.

Despite some opinions to the contrary, most philosophers do not believe that
all axioms of ZFC can be motivated in this way. For instance, it is hard to see
how the Replacement Axiom, which says that the image of a set under a functional
correspondence also forms a set, can be motivated in this way.44 But there is a
second intrinsic way in which some axioms of set theory can be justified, namely by
arguing for them from the limitation of size principle, which says that every collec-
tion that is not too large to form a set, forms a set.45 This principle can be used,
for instance, to justify the Axiom of Replacement. Suppose that an instance of the
antecedent of Replacement holds. Since the size of the image is bounded by the
set that bounds its pre-image, this image forms a set. A third way of justifying set
theoretic axioms is based on the thought that the mathematical universe cannot be
uniquely characterised in a mathematical manner. This idea can also be formulated

42See [Göd47].
43For a description of how this goes, see [Sho77].
44See [Boo71]. For instance, Schoenfield in his description of the iterative conception just

stipulates that the stages are such that they validate Replacement: see [Sho77, p. 324].
45See [Hal84, Chapters 4 and 5].
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in a positive manner: if a mathematical property holds of the mathematical uni-
verse, then it also holds of a mathematical object that is not the universe, i.e., of a
set (REF). Such arguments are called arguments from reflection.46 This argument
can be used to argue for the Axiom of Infinity. The mathematical universe contains
infinitely many elements. So, by reflection, there is also a set that contains infinitely
many elements; in particular, the natural numbers therefore have to form a set. To
conclude, there is a fourth kind of intrinsic warrant for some basic axioms of set
theory: some basic principles of set theory are taken to be analytically true. For
instance, the Axiom of Extensionality appears true by virtue of the content of the
concept of set. At some point, the mathematical community reached a consensus
that the extensional notion of set is what set theory is about. (Perhaps something
similar can be said about the Axiom of Foundation.) Some think that most if not
all basic axioms of set theory are analytical;47 but this is again a minority position.
Indeed, this only seems plausible if the meaning of the concept of analyticity is
stretched beyond its usual limits.

Of course there is no general agreement over the question to what extent these
attempted justifications achieve their aim. However, there is a school of thought
that takes these forms of intrinsic evidence, in combination—even if it is perhaps
overkill—to provide warrant for all axioms of ZFC. But there is a fundamental
difference between the kind of warrant provided by the iterative conception and
the limitation of size conception on the one hand, and the kind of warrant provided
by analyticity on the other hand. Warrants from the iterative conception or from
limitation of size are complexes of reasons. So they fall under the category of
justifications. (How strong such justifications are, is of course a matter of dispute.)
But it would be an overintellectualisation if we were to say that warrants from
analyticity are likewise complexes of reasons. We do not have to go through a
complex of reasons in order to be warranted to accept the Axiom of Extensionality.
It is through understanding the concept of set that we cannot help but take the
Axiom of Extensionality to be self-evident, and thus come ‘automatically’ to accept
it. Thus our ordinary warrant for the Axiom of Extensionality does not have
propositional structure: facts about relations between meanings here operate at the
level of causes rather than at the level of reasons. This is not to suggest that we
cannot reflect on this type of warrant (as I have just done) and also produce reasons
for believing the Axiom of Extensionality. We will have more to say later about
the type of warrant of which our ordinary warrant for the Axiom of Extensionality
is an instance.

There are also extrinsic reasons for believing axioms of set theory. We saw
earlier (Section 1.3) that Quine believed that ultimately mathematical axioms are
justified by the empirical success of theories of which they are an essential part. In
the same vein, Gödel argues that intra-mathematical success can also count as a
convincing reason for believing a proposed new axiom [Göd47, p. 521]:48

46See [Pas07, Section 2]. For a general overview of the role of reflection in the foundations
of set theory, see [Rob].

47See [Par90, Section 7].
48The point that mathematics has standards for success that are largely autonomous from

empirical science is also strongly emphasised in [Mad07].
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Furthermore, however, even disregarding the intrinsic necessity
of some new axiom, and even in case it had no intrinsic ne-
cessity at all, a decision about its truth is possible also in an-
other way, namely, inductively by studying its “success,” that is,
its fruitfulness in consequences and in particular in “verifiable”
consequences, i.e., consequences demonstrable without the new
axiom, whose proofs by means of the new axiom, however, are
considerably simpler and easier to discover, and make it possible
to condense into one proof many different proofs. [. . . ] There
might exist axioms so abundant in their verifiable consequences,
shedding so much light upon a whole discipline, and furnish-
ing such powerful methods for solving given problems [. . . ] that
quite irrespective of their intrinsic necessity they would have to
be assumed at least in the same sense as any well-established
physical theory.

In other words, mathematical axioms can be justified by inference to the best ex-
planation. In these situations, according to the view under consideration, we have
something like a virtuous feedback mechanism, i.e., a virtuous circle: ‘good’ con-
crete consequences follow from an abstract axiom, and these consequences in turn
abductively support the axiom. So the axiom is a reason for believing the conse-
quences, and the consequences are reasons for believing the axiom. Some philoso-
phers believe that not much more than the axioms of ZFC are intrinsically war-
ranted; for axioms that go significantly beyond what can be proved in ZFC, extrinsic
warrant is all we have.49

We have seen that beside the foundational axioms, there are local mathematical
axioms. Views about our warrant for local mathematical axioms vary widely. I do
not propose to give an overview of these views here, but restrict myself to a few
remarks. Some local axioms can be regarded as being analytic. For instance, the
axiom that 0 is the smallest natural number seems warranted by the content of our
concept of natural number. But not all local axioms are analytic. For instance,
a “miniature” version of the iterative conception is thought by some to play a
role in our warrant for some of the central arithmetical axioms, such as the axiom
that every natural number has a successor.50 After all, there is a sense in which
the natural numbers can be regarded as “iteratively generated” as well (by the
successor relation).

1.8. A leaching problem

The mathematical warrant that an individual mathematician has for her belief
in a mathematical statement ϕ frequently consists in her having gone through an
informal mathematical proof of ϕ. This proof typically appeals to theorems that
have been proved elsewhere, and their proofs appeal to other theorems. Thus a
chain of proofs is generated that eventually leads back to fundamental axioms.

Our mathematician cannot be expected to have gone through all the proofs in
this chain. She simply accepts some of the “auxiliary theorems” on faith (because
they are listed as theorems in an authoritative textbook; because Y, a specialist in
the field, told her about the theorems;. . . ). But the mathematical warrant for ϕ of

49For an extended philosophical discussion of this theme, see [Mad88].
50See [Par07, p. 173–174].
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the whole mathematical community consists of the combination of the proofs in the
chain:51 the mathematicall community has no one to defer to. So the mathematical
warrant for ϕ of the mathematical community ultimately rests on its mathematical
warrant for the axioms. It is at this point that difficult questions arise.

Suppose that our justification for one of the axioms of ϕ is given by intrinsic
reasons. For definiteness, suppose that the proof of ϕ depends on the Axiom of
Choice, and that our only mathematical warrant for the Axiom of Choice is given
by an argument from the iterative conception along the lines sketched above (p. 36).
Then we would only have a philosophical warrant for the Axiom of Choice, and
not a mathematical one. After all, some of the concepts in these explanations
(such as ‘generated at a stage’) are not mathematical ones. As a consequence, the
mathematical community’s warrant for ϕ would not be purely mathematical. But
this seems wrong: mathematics does not answer to a higher epistemic tribunal.52

A mathematician need not go through the argument for the Axiom of Choice from
the iterative conception in order to be in good epistemic standing when she uses
the Axiom of Choice in her proofs.

This is a leaching problem: non-mathematical reasons “leach” into the overall
warrant for a mathematical statement. It is not only a problem for justifications
from the iterative conception, but for all justifications by intrinsic reasons (justifi-
cations from limitation of size, justifications from reflection). This worry does not
extend, however, to our warrants from analyticity, for such warrants are not given
by reasons (matematical or other). What about extrinsic warrants for axioms?

As we have seen earlier, we must distinguish between intra-mathematical and
extra-mathematical success arguments. Intra-mathematical variants, such as those
of Gödel and Maddy, take mathematics to be epistemically autonomous. On their
view, mathematics needs no external epistemic shoring up. In this way, they respect
the epistemic autonomy of mathematics better than extra-mathematical success
arguments.

Nonetheless, the leaching problem affects not only extra-mathematical, but also
intra-mathematical versions of success arguments. According to these views, belief
in axioms is warranted by inference to the best explanation arguments. Inference
means that these warrants are complexes of reasons. Explanation is a philosophical
concept, so these complexes are not purely mathematical in nature. Therefore
these views still do not fully respect the epistemic autonomy of mathematics. A
mathematician need not go through an inference to the best explanation argument
in order to be warranted in believing the axioms of her field of research. Moreover,
inferences to the best explanation are, as we have seen, to some extent circular
complexes of reasons. As arguments go, they are not particularly good ones. It is
therefore not immediately clear how much epistemic force a success argument in
mathematics has.

Explanatory power is an epistemic virtue. Simplicity, testability, coherence,
fruitfulness,. . . are other such. Epistemic virtues are (hopefully) truth-conducive. In
order to be in good epistemic standing, a mathematician has to be highly sensitive
and responsive to these virtues. But at its basic level, this responsiveness is a
quasi-causal mechanism that directly results in belief-formation and belief-change.

51I assume here that the mathematical community has no other mathematical warrant for

ϕ.
52See [Mad07, Part IV, Section 3].
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This mechanism does not have to be conceptualised into complexes of reasons.
Thus mathematicians can be, and very often are, epistemically warranted in their
belief in mathematical axioms without having reasons for their belief. In this way,
the mathematical community as a whole becomes mathematically warranted in its
belief that ϕ, where ϕ is a mathematical theorem. In particular, it is mathematically
warranted in its belief of the axioms without having a justification for them. Thus
the mathematical community is unaffected by the leaching problem.

We may hypothesise that, unconsciously, this responsiveness is conceptualised
by mathematicians in the form of arguments such as inferences to the best expla-
nation. But this is mere speculation, and somewhat doubtful. But above all, it is
not needed to be mathematically warranted to believe a mathematical axiom.

The philosopher can reflect on the mathematician’s responsiveness to epistemic
virtues, and produce philosophical reasons for belief in mathematical axioms. This
puts the philosopher in a different epistemic position vis-à-vis the axioms. If her
philosophical reasons are good reasons, then they provide a distinctive kind of
warrant for them, namely a justification. But the unphilosophical mathematician
is no less warranted in her belief in the axioms without having this justification for
them. She may, for instance, be deeply sceptical of what are in her view hopelessly
vague terms, such as ‘explanation’, ‘simplicity’,. . .

At the outset, I claimed that a strong form of externalism is implausible for
mathematical knowledge (p. 15). Indeed, in our discussion of mathematical proof,
we have dwelled much on the role of reasons in mathematical justification. Nonethe-
less, the position that we have ended up with has externalist overtones. In partic-
ular, the mathematical community’s mathematical warrant for axioms is external.
A brief comparison with externalism in contemporary epistemology may clarify the
position that we have landed on further.

Reliabilism is at the moment probably the most popular view in general epis-
temology. According to a classical version of reliabilism, Julie has a justified belief
in ϕ if and only if the belief-forming process that was used by her in her formation
of the belief that ϕ is reliable.53 From our point of view, more or less by definition
this cannot be right. I hold that a person’s justification is a matter of her reasons.
But Julie need not have access to the reliability of her belief-forming process in
order for her belief in ϕ to be epistemically warranted. Similarly, I take the math-
ematical community to be epistemically warranted but not justified in its belief in
mathematical axioms. Nevertheless, the external factors that make Julie’s belief
warranted can become internal reasons for her if she reflects on them.

Moreover, such need not be the only internal grounds for warranted belief. To
illustrate this, let us now briefly return to the iterative conception of sets. For all
we know, it may be essentially correct: sets may in fact somehow be “generated in
stages”. In that case, the philosophical argument for the Axiom of Choice given
earlier (p. 36) tracks the truth. Then this reasoning can be used to justify one’s
belief in the Axiom of Choice.

So the following is not excluded. Mathematician A is warranted in her belief
in the Axiom of Choice by her practical responsiveness to the epistemic virtues
of this principle. Philosopher B is justified in believing the Axiom of Choice by
motivating this principle from the iterative conception of sets. A and B can even
be the same person: she can be a mathematician and a philosopher. Then she is

53See [Gol79].
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doubly warranted in her belief in the Axiom of Choice. Something similar can be
said for other strategies for justifying axioms on intrinsic grounds.

All this depends on there being a type of epistemic warrant that does not
function as a complex of reasons. In the next Chapter, we turn to the question
what the nature and properties of such a type of warrant could be.





CHAPTER 2

Epistemic Entitlement

In the previous Chapter, we discussed one particular type of epistemic warrant:
justification. Moreover, since the general notion is familiar, and our concern is
to a large extent with the epistemology of mathematics, we focussed on types of
mathematical justification.

In this Chapter, I will introduce a second type of epistemic warrant: epistemic
entitlement. The discussion of this notion will mostly be held at a more general
level: not much will be said about the way in which epistemic entitlement plays a
role in contemporary debates in the epistemology of mathematics. In later Chapters
I will relate this notion to certain specific debates in mathematical epistemology.

Compared to the concept of justification, the notion of epistemic entitlement
has entered the epistemic literature at a late stage in the history of philosophy.
There is less agreement about the content, viability, and scope of this concept than
there is about the notion of justification.1 It is not my aim to give a neutral and
balanced overview of philosophical accounts of epistemic entitlement that are cur-
rently explored, or to trace the history of the concept of entitlement in epistemology.
Instead, I focus on what I regard as some of the seminal work on this concept that
is, in my opinion, highly relevant for mathematical epistemology.

Specifically, I will chiefly be concerned with the views of epistemic entitlement
by Tyler Burge and by Crispin Wright (with important additions made by Robert
Audi). Burge’s and Wright’s accounts are seen as very different, and there is not
much overlap between the bodies of epistemological literature to which they have
given rise. Nonetheless, I will argue that if we abstract from the irreconcilable differ-
ences in their overall epistemological outlook—roughly speaking: Wright is more of
an epistemological internalist, whereas Burge is more of an externalist,—their views
on epistemic entitlement are not only largely compatible but even complementary.
In the last Section of this Chapter, I foreshadow an epistemological account of an
epistemological process of reflection that is further developed in Chapter 8: this
account rests on and combines elements of Burge’s and of Wright’s accounts of
epistemic entitlement.

It is of course important to know how justification and epistemic entitlement
relate to each other. It is my hope that in the course of the present Chapter, the
reader will acquire a feeling for the mechanics of the interplay between these two
kinds of warrant.

1The fact that the notion of epistemic entitlement seems to be making its way to introductory
textbooks—see for instance [Wil01, Chapter 13]—provides grounds for optimism about the future.
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2.1. Two types of epistemic warrant

I will start by giving an account of the theoretical core of Burge’s theory of
epistemic warrant.2 This theory is often taken to be very subtle, or even somewhat
obscure, but undeservedly so. What follows is an attempt to give a clear description
of Burge’s view of epistemic warrant.

An epistemic warrant has a source, and it has an object in the sense that it is
a warrant for something. In the previous Chapter, we restricted our discussion to
cases where the source of a warrant is a complex of reasons, and the object of a
warrant is a belief. We have seen how the resulting belief is then called justified,
and the warrant for it is called a justification. Moreover, we mostly restricted our
attention to cases where the belief is a mathematical belief. In this Chapter, we take
a wider perspective. We begin by considering warrants that do not have complexes
of reasons as their source. In later Sections, we also consider warrants for things
other than beliefs.3

Reasoning is one competence that humans have for rational belief-formation.
But, as we will see, there are other such competences: perception, interlocution,
memory, reflection. . . Because these competences are rational competences, we have
an epistemic right to apply them in belief-formation. Exercise of these competences
results in warranted belief.4

Burge has much to say about conditions that need to be satisfied for a compe-
tence to be able to deliver warranted beliefs. In brief, the competence in question
must serve as a guide to the truth. This means that when the competence is func-
tioning normally, and is exercised in normal circumstances, it generates true beliefs.
This means that Burge holds a reliabilist position in epistemology, which is a form
of externalism. But Burge is a moderate externalist, since he reserves in his theory
a central place for an internalist notion of justification.

It is a common complaint against reliabilism in epistemology that concepts
such as “functioning normally” and “normal circumstances” are left rather vague.
This is no different in Burge’s writings. On this score, no real progress is made:
this is not where the action is. I will not try to solve this problem here. Another
standard objection is that reliability is not sufficient for epistemic warrant. This
protestation traces back to a fictional example by Bonjour [Bon85, p. 41]:

Norman, under certain conditions which usually obtain, is a com-
pletely reliable clairvoyant with respect to certain kinds of sub-
ject matter. He possesses no evidence or reasons of any kind for
or against the general possibility of such a cognitive power or for
or against the thesis that he possesses it. One day Norman comes
to believe that the President is in New York City, though he has
no evidence either for or against this belief. In fact the belief is
true and results from his clairvoyant power under circumstances
in which it is completely reliable.

2The seminal article here is [Bur93]. Burge spells out his views on epistemic warrant further,

and modifies it in some respects, in a series of articles, most of which can be found in Part II of
[Bur13a]. In [Gra20], Peter Graham gives an excellent overview of Burge’s views in epistemic

warrant.
3See Sections 2.5, 2.7, 2.8, and 2.9.
4For a discussion of rational competences for belief-formation, see [Gra20, Section 1].
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In order to rule out being warranted to believe Norman on the basis of relying
of Norman’s reliability, Peacocke adds another condition [Pea04, p. 11]:

A fundamental and irreducible part of what makes a transition
one to which one is entitled is that the transition tends to lead
to true judgments [. . . ] in a distinctive way characteristic of
rational transitions.

Then it becomes important to explain what distinctive ways characteristic of ra-
tional transitions are: this is in part what Peacocke’s book is about. Again, I
will not take a stance on whether Peacocke’s solution is ultimately satisfactory.
Rather, I take away from this discussion that the reliability in question need not
hold in very abnormal situations, but should nonetheless have some counterfactual
strength. Indeed, if Norman’s reliability were not accidental, if it were not a sta-
tistical fluke, then we might come to be entitled to rely on it. Of course, we have
strong prima facie grounds for being sceptical about the counterfactual strength
and even the lastingness of the reliability of Norman’s belief-forming process. After
all, other people do not seem to have the cognitive powers that he allegedly has.
So we would have thoroughly to test Norman’s powers of clairvoyance before we
are epistemically warranted to rely on them. More in general, if we have prima
facie grounds for doubting the reliability of a cognitive process, then we are not
epistemically warranted to rely on it in our belief-formation process before these
doubts are assuaged.

A belief-forming competence can be exercised by someone in a situation that
is not normal, when she is unaware of the situation’s abnormality. Moreover, a
normally reliable competence that is exercised can malfunction without her being
aware of this. In such situations, her resulting belief is still warranted.5 In other
words, in such a situation our agent is from an epistemic point of view in no way
blameworthy. When a normally reliable belief-forming mechanism malfunctions
but still produces a true belief, the resulting belief does not qualify as knowledge.
Suppose, for instance, that Melissa hallucinates a cloud in the sky, and on the basis
of her hallucination forms the belief that there is a cloud in the sky, while there
coincidentally is a cloud in the sky. Then Melissa does not know that there is a
cloud in the sky. This just goes to show that Gettier can strike not only for justified
true belief, but for other kinds of warranted belief as well.

The sources of warrants generated by the exercise of perception or interlocution
are not complexes of reasons. The source of a perceptual warrant for a belief is a
perceptual representation. A perceptual representation does not have propositional
structure and therefore is not a putative reason.6 The source of an interlocutionary
warrant for a belief is someone’s assertion. Someone’s assertion is not a proposition
(even though its content is), so it is not a reason.7 Thus the traditional identi-
fication between epistemic warrant and justification is challenged. Burge breaks
with epistemological tradition by arguing that we can in certain circumstances be
entitled to believe a proposition without having to do justifiying work.

Propositions can be the source of warrants for beliefs without these warrants
being justifications. In a person an innate connection may exist, which ensures that

5See [Gra20, Section 2], [Bur03, p. 506–507].
6See [Bur03].
7See [Bur93], [Bur97]. For a somewhat different but highly interesting epistemological

account of interlocution, see [Mor05].
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any occurrent belief in which the concept F occurs, immediately and automatically
causes a belief that danger is present (q). This causal pathway may be a reliable
route to true beliefs that q. Nonetheless, it would be wrong to say that in such cases,
F -beliefs function as reasons for believing that q [Bur11b, p. 494]. Therefore, in
those cases, the person in question is entitled but not justified in her belief that q,
even though the source of her belief that q is a proposition.

All this shows that on Burge’s account, the sources of epistemic entitlements
are varied: visual representations, for instance, are quite different entities than
assertions. It is not clear that Burge’s suggested classification system for warrants is
the most useful one. Rather than distinguishing only two main species of warrants,
one might see justification as just one special type of warrant among many different
kinds of warrant. Thus we might speak of justificational warrant, interlocutionary
warrant, perceptual warrant, preservational warrant (memory), etcetera. In what
follows, I will sometimes speak in this way.

When the source of a warrant of someone’s belief does not contain reasons,
Burge calls the resulting warrant an entitlement (rather than a justification), and
the resulting belief is then an entitled (rather than a justified) belief. In practice,
if a belief is warranted, the warrant is likely to involve both reasons and entities
that are not reasons. If the source of a warrant contains at least one reason, then
Burge calls the warrant a justification [Bur13b, p. 3–4]:

A justification is a warrant that consists partly in the operation
or possession of a reason. An individual is justified if and only if
the reason is operative or relied upon in the individual’s psychol-
ogy. An entitlement is a warrant whose force does not consist,
even partly, in the individual’s using or having a reason.

Burge thus regards justification and entitlement as the two species of the genus
warrant [Bur11a, p. 489]. Warrants can be of only two distinct kinds: those that
involve reasons, and those that don’t.

By way of example, I might have a belief that has the form of a conjunction
p ∧ q, and have arrived at it in the following way:

Figure 1
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So for Burge, in warrants, reasons are dominant, and non-reasons are somehow
recessive.8

2.2. Preservative memory and the a priori

Our discussion of Burge’s theory of warrant has so far been rather abstract.
Let us now see how it does work for us in epistemology. The first application of his
theory of warrant that we will consider in some detail, concerns the epistemology
of memory.9

Most mathematical proofs are too long for people to keep in mind as a whole
at any one given time. Therefore mathematicians rely on memory when they prove
theorems. Patricia recalls that she proved a mathematical proposition ϕ last year,
but she no longer recalls how her proof went. Presently, she uses ϕ as a premise
in her proof of a new theorem ψ. Since she has proved ψ, she knows ψ. Is her
knowledge of ψ a priori, or is it empirical?

On the standard view, Patricia’s knowledge of ψ, like most mathematical knowl-
edge, is a priori. However, Chisholm formulated an argument that her knowledge
is only a posteriori. His argument goes more or less as follows [Chi77].

Among Patricia’s reasons for ψ, we find the belief that she would express by
the sentence:

(‡) I remember that I proved ϕ.

Granted, in the scenario under consideration, (‡) is true, and Patricia knows that
(‡). But (‡) is not the sort of statement that can be known a priori. If introspection
delivers a priori knowledge, then she may know a priori that she thinks that she
has proved ϕ. But finding out whether she really did, requires empirical work. For
instance, she might consult her diary, find an entry which says “I have proved ϕ
today”, and take this as empirical confirmation of (‡). But now, since at least one of
her reasons is empirical, by the recessiveness of a priori reasons (see p. 19), Patricia’s
knowledge of ψ is a posteriori. If this is right, then already for considerations such
as these alone, much of Patricia’s mathematical knowledge is not a priori.

Against Chisholm, and in agreement with the standard view, Burge argues that
in the scenario under consideration, Patricia acquires a priori knowledge that ψ. If
that is so, then where does Chisholm’s argument go wrong?

The problem is, according to Burge, that (‡) is not a reason that is part of
Patricia’s justification of ψ; (‡) is not a premise or a step in Patricia’s justification.
When she first proved ϕ, she acquired a justified belief that ϕ. But the occurrent
belief that ϕ that she forms while she is constructing a belief that ψ, is not in-
ferred. It is not based on one or more reasons, so it is not justified. Nonetheless,
if her memory is functioning normally—and here we are assuming that it is—then
Patricia’s present occurrent belief is warranted. Hence her warrant is of a different
kind than justification: her warrant is an entitlement !

Moreover, if Patricia’s warrant for ϕ was a priori, when she proved this state-
ment, then when she later remembers ϕ, her warrant for that occurrent belief is
likewise a priori. In this way, preservative memory is a mechanism for shifting a
belief, with its whole epistemological status intact, from one time and context to
another.

8Compare this with Passeau’s distinction (see p. 19) between dominant and recessive reasons.
9See [Bur93].
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It is a familiar refrain in contemporary epistemology that aprioricity does not
entail infallibility. So it is in Patricia’s case. Her exercise of her competence of
preservative memory malfunctions from time to time. This does not mean that
in each case, she has an epistemic duty to check if her competence is functioning
properly on the occasion. Patricia need not be aware of the fact that her memory
is functioning normally in order to be entitled to her belief. It is sufficient that
her competence is a reliable guide to the truth. This is an expression of Burge’s
externalist outlook.

Only when she has evidence to the contrary that it does that cannot properly
be ignored, must she acquire overriding evidence that her competence does function
properly on that occasion. Indeed, results from experimental psychology teach us
that in many contexts, our memory is systematically unreliable. There are there-
fore many situations in which we are not warranted to rely on our memory without
(empirically) checking its proper functioning. And in those situations where we
appropriately do so, and rightly conclude that our memory functions properly in
that instance, the resulting beliefs constitute a posteriori knowledge if the knowl-
edge of the remembered proposition was acquired in an a priori fashion. But there
are also many cases where the warrant delivered by the faculty of memory does
not need to be shored up by empirical checks—we are assuming that the above
scenario is a case in point. Moreover, even when the empirical checks need to be
done, are carried out, and override the antecedently available counterevidence, this
does not mean that the default entitlement to believe what memory suggests on
this occasion has been forever ‘canceled’ by the counterevidence and you only have
empirical justification for your belief. On the contrary, your default entitlement is
rehabilitated and typically reinforced by the empirical evidence.

If the world is very uncooperative, then Patricia can gather as much evidence
that her competence is functioning well as she likes, while it is in fact malfunctioning
and delivers false beliefs. In such a case, Patricia is still entitled to these beliefs,
for she is epistemically blameless. But because her beliefs are false, they then don’t
constitute knowledge. This is only the Gettier phenomenon all over again.

2.3. Interlocution and computer proofs

In the previous Section, we saw how Burge argued from the distinction between
justification and entitlement, to the claim that reliance on memory in a proof
does not ruin the a priori status of the proved theorem. He thus employed a new
epistemological distinction for a rather unsurprising conclusion. Now we will see
how Burge used the very same distinction for a surprising conclusion, and how he
later shied away from drawing the surprising conclusion.

We again start with a fictional scenario. You find yourself in an unfamiliar town,
and ask an arbitrary passer-by for the shortest route to the train station. She says:
“Take the second right, and then the first left. That will take you straight to the
train station.” You take her word for it, and do as she suggests.

Again we ask what the epistemological status is of your belief that p, where p
is the proposition that the quickest way to the station is to take the second right,
and then the first left.

In this case, it is controversial whether your belief that p constitutes knowledge
at all. You have formed your belief that p as an immediate response to her telling
you that p. You do not infer your belief from anything, so your belief is not justified.
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In particular, you do not infer your belief from the belief that people are more likely
to tell the truth than not. Even the thought that this passer-by was more likely
than not in this situation to tell the truth, did not cross your mind.

Burge claims that in this scenario, you know p. Knowledge requires warrant,
and your warrant is not justification. So your warrant is an entitlement : an “enti-
tlement of interlocution”, we might say. If in a scenario such as this you would not
be warranted to believe p, then we would not know much. After all, so many of
our beliefs rest in part or in full on what we have been told. It would be unreason-
able and unjust to accuse you, in the scenario under consideration, of dereliction
of epistemic duty. For the vast majority of what we are told, we simply do not
have the time, energy, and resources to gather independent confirmation that our
interlocutor (the postman, the newsreader, the woman in the street, the clerk in
the town hall,. . . ) is a reliable source of information.

If you have evidence against the reliability of your interlocutor, then this evi-
dence should not be ignored. In that case, further evidence must be gathered that
on this occasion, despite this counterevidence, is truthful. If on this occasion, ev-
idence is found that trumps the initial counterevidence, then you are justified in
believing what your interlocutor tells you. But in our fictional scenario, no initial
counterevidence is present, so the need for evidence-gathering does not arise. The
default position is that you take your interlocutor as a source of reason.

Even though, in the scenario under consideration, you do not need to do so,
you can, if you want to, try to seek empirical evidence for the reliability of your
interlocutor’s testimony. Suppose you seek such evidence, and obtain it. Then your
initial entitlement to believe p does not disappear. You still have it. Your enti-
tlement has even become stronger than before: your empirical evidence reinforces
it [Bur13c, p. 270]. Suppose you are in a situation where you have evidence that
your interlocutor’s testimony might not be reliable in a particular instance. Then
you must gather further evidence before trusting what she says. Suppose you do
gather further evidence, the further evidence that you find is inductive in nature
and it assuages your initial fears. Then you can trust your interlocutor: the initial
entitlement has been reinstated. In this case, you are both entitled and inductively
inductively justified to believe what you are told.

Thus far, Burge has argued for a controversial, but not altogether surprising
claim. But in [Bur93] and [Bur97], he goes further and argues for a truly remark-
able contention. He argues that, like in the case of memory, through interlocution
it is possible to acquire a priori warrant. To see how this goes, consider a slightly
different scenario. Your friend Christine tells you that the Tanayama-Weil conjec-
ture has been proved. Again, you simply take her word for it. You do not even go
to the library to check out where this is supposed to be proved in order to verify
that the argument was given by reputed mathematicians in a renown journal of
number theory. Again Burge claims that when you thus form your belief in the
Tanayama-Weil conjecture, your belief constitutes knowledge. But Burge goes fur-
ther. He claims that, as in the case of memory, the epistemic status of the warrant
for the Tanayama-Weil theorem, as we may now call it, is transferred from the
mathematicians who proved it to you. Since their justification of it is a priori, so is
your entitled belief [Bur93, p. 251–252]. Thus, through interlocution, you acquire
a priori knowledge of the Tanayama-Weil conjecture.
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This is a surprising claim. We tend to think that a priori knowledge is knowl-
edge that is arrived at “purely internally”, i.e., without relying on what is delivered
to us by the external senses. But your auditory experience has played an essential
role in your acquisition of the belief that the Tanayama-Weil conjecture is true.

However, matters are not that simple. We have seen earlier10 that sense expe-
rience is sometimes ineliminably involved in the acquisition of a priori knowledge:
the question is how sense experience is involved. Burge claimed that in interlocu-
tion, perception of our interlocuter’s assertion play only a triggering role, but that
it does not contribute to the force of the warrant [Bur97, p. 294]:

Strictly speaking, we do not perceive the assertive mode, or the
conceptual content, of utterances. We understand them. [. . . ]
We understand assertions by perceiving other aspects of asser-
tions. We understand the concepts in assertions, by perceiving
expressions of them. But here perception is part of the condition
for exercising the intellectual capacity, not—or not normally—
part of the warrant for the individual’s relying on his under-
standing. It is a necessary triggering mechanism, but it is not
the understanding itself.

In [Bur98a], Burge related his view on the epistemology of interlocution to a
philosophical debate about computer-assisted proofs.

We have seen earlier that there are mathematical proofs that essentially rely
on the assistance of computers for checking cases.11 Tymoczko has argued that
such proofs can only deliver a posteriori knowledge of theorems [Tym79]. The
irreducibly empirical element in our justification of the four colour theorem, for
instance, is the fact that we only have empirical evidence for the claim that the
computer has checked the cases correctly: it would take us humans prohibitively
long mentally to go through the computer-generated proofs of the cases. This is
why the relevant computer programs are run several times over and on multiple
computers, why several programs for checking one and the same case are written
and executed, etcetera.12

Burge took issue with Tymoczko’s view of the epistemological status of com-
puter proofs [Bur98a]. He argued that in computer-assisted proofs, computers can
be treated as interlocutors. Because humans have programmed them, they can be
seen, like humans, as sources of reason. It is true that we have to read the computer
output (“Case 431 has been verified...”) in order to prove the theorem. But
this empirical element in the proceedings only plays a triggering, or enabling role;
it does not contribute to the force of the warrant. Moreover, Burge admits that
without the empirical checks on the correctness of the computer programmes, and
the correctness of their execution, Appel and Haken cannot be said to have proved
the four colour theorem. The empirical checks are needed because of the difficulty
of the problem. An extraordinarily difficult problem requires extraordinary rational
powers for its solution. The empirical checks are part of what allows us to access
this rational source. Again, they do not contribute to our warrant for believing
what this rational source delivers to us. In sum, despite the empirical element

10See p. 19.
11See p. 20.
12See for instance [AH78].
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involved in computer-assisted proofs, Burge concluded13 that they deliver a priori
knowledge just as traditional proofs do.

In later work, Burge recants his earlier claim that interlocution can deliver a
priori warrant [Bur13c, p. 284]:

Knowledge that relies on warrant for comprehension—including
knowledge that relies essentially on the default prima facie war-
rant to believe what another says on a particular occasion—is
always empirical, even if sometimes just barely.14

This retraction is significant.15 Burge is a reliabilist, but also a rationalist. His
work is concerned with safeguarding and if possible extending the domain of the
a priori [Bur13a, Preface]. If Burge’s startling claims about the epistemology of
interlocution and computer proofs were correct, then they would contribute to his
rationalist programme. They would support the claim that much of our mathemat-
ical knowledge is a priori. Mathematicians rely on interlocution on a daily basis
in their work. They believe that a theorem is true on the basis of their colleague
saying so. They consult textbooks of subjects in fields that are related to their field
in order to find theorems that might help them solve their problem—very often
they do not go through the proofs of these auxiliary mathematical propositions.
If all this affects the a priori status of their mathematical knowledge, then most
mathematicians don’t even have a priori knowledge of their own best theorems.

But perhaps the loss for Burge’s rationalist project that results from the retrac-
tion of his startling claims, is not as dramatic as it may seem. Its impact is mitigated
when we shift our attention from the individual mathematician to the mathemat-
ical community. Even if knowledge through interlocution is always empirical—if
only barely so, as Burge says,— interlocution still secures “a priori paths” to most
of our mathematical knowledge. It is just that for most mathematical theorems,
no single mathematician walks the whole path: she hitches a ride part of the way.
And as far as computer proofs are concerned: as long as the engineers have done
their job well, what is wrong with hitching a ride in a driverless car?

However this may be, much of Burge’s account survives this retraction. It is
still true, according to Burge, that our warrant for knowledge through interlocution
is of a fundamentally different kind than justification. In the case of computer
proofs, the situation is less clear, because the empirical elements involved seem
somehow more fundamental. Burge’s considered view seems to be that our warrant
for believing computer proofs to be partly inductive in nature [Bur11b, p. 501]:

A computer-assisted proof, like the proof of the Four-Color The-
orem, does not give anyone full understanding of the proof. The
mathematician knows much of the proof, understands the prin-
ciples used in it, and has inductive reason to think that the
computer has carried out a proof. Understanding is partial. It

13Somewhat tentatively: see [Bur98a, p. 341].
14In the same vein, he says elsewhere : “Contrary to what I said in ‘Content Preservation’,

and elsewhere, I think that the comprehension that is needed to bring pieces of communication
from others under the Acceptance Principle is inevitably warranted empirically. The force of

warrant for one’s comprehension depends on perceiving others’ linguistic input competently and

reliably” [Bur13b, p. 31]. (The Acceptance Principle is discussed in Section 2.4.)
15As Burge admits: see [Bur13b, p. 31].
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is partial understanding of how the proof goes, backed by in-
ductive ground that the proof has been completed. It is partial,
idealized, but genuine understanding of the necessity of the con-
clusion given the premises.

2.4. The acceptance principle

In a way similar to memory, we have an entitlement to believe that we exist
[Bur98b]. The Cartesian Cogito thought is not inferred from reasons. Our warrant
for our belief in our own existence is a priori, so the situation is more similar to
that of memory than to that of interlocution. On the other hand, in a way that
is structurally similar to interlocution, we have an entitlement to believe in the
existence of other minds [Bur13e]. Unlike memory, and like interlocution, our
warrant for belief in other minds is (“barely”) a posteriori: our perceptions (seeing,
hearing,. . . other people) play a role in the force of the warrant.

Burge believes that there is a general principle behind these different kinds of
entitlements. He calls this the Acceptance Principle [Bur93, p. 237]:

A person is entitled to accept as true something that is true and
that is intelligible to him, unless there are stronger reasons not
to do so.

For Burge, this is a rock bottom principle of rationality. It is the cornerstone
of his theory of epistemic warrant. He believes that it can a priori be seen to be
true. Indeed, in his justification of the Acceptance Principle, he explains how it
flows from the nature of rationality [Bur93, p. 238]:

A person is entitled to accept a proposition that is presented as
true and that is acceptable to him, unless there are stronger rea-
sons not to do so, because it is prima facie preserved (received)
from a rational source, or resource from reason; reliance on ra-
tional sources—or resources for reason—is, other things equal,
necessary to the function of reason.

A few pages later, he explains his justification of the Acceptance Principle
further as follows [Bur93, p. 240–241]:

We are apriori prima facie entitled to accept something that
is prima facie intelligible and presented as true. For prima fa-
cie intelligible propositional contents prima facie presented as
true bear an apriori prima facie conceptual relation to a rational
source of true presentations-as-true: Intelligible propositional ex-
pressions presuppose rational abilities and entitlements; so the
intelligible presentations-as-true come prima facie backed by a
rational source or resource for reason; and both the content of
intelligible propositional presentations-as-true and the prima fa-
cie rationality of their source indicate a prima facie source of
truth.

Fricker remarks that it seems to her that Burge’s “justification of the Accep-
tance Principle” is not intended to be suasive: it does not intend to convince
someone who somehow initially finds the Acceptance Principle doubtful [Fri06,
Section 4]. Burge agrees, and clarifies the status of his “justification” as follows
[Bur13c, p. 266, footnote 18]:
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I believe that reflection on practice and taking care to avoid
hyper-intellectualization are the best grounds for a philosopher’s
coming to accept the principle. My account is intended to ar-
ticulate an underlying rationale for the principle, granting its
truth.

We have seen how Burge withdrew his earlier claims about the possibility of
purely a priori knowledge through interlocution. But he held onto the Acceptance
Principle and its rationale. In particular, he maintains up to this day that we have
epistemological warrants for what people tell us that fundamentally differ from
justifications. We have also seen how this is bound up with Burge’s fundamen-
tally rationalist outlook. From an empiricist viewpoint, all this does not make
much sense. Indeed, from an empiricist starting point, Fricker has challenged the
Acceptance Principle [Fri06].

Fricker argues first of all that the Acceptance Principle is superfluous. She
believes that “the typical position of a mature adult faced with a piece of testimony
is that she has in her cognitive background, and brings to bear, a wealth of empirical
knowledge relevant to the assessment of that testimony”, and therefore “she does
not need recourse to a default principle licensing its acceptance in the absence of
such relevant empirical information” [Fri06, p. 81]. Moreover, she argues that
it is irrational for people to apply the Acceptance Principle: it is a “charter for
gullibility” [Fri06, p. 80]: people very frequently do not tell the truth, and in many
circumstances, it is rational for people not to tell the truth.

Instead of relying on the Acceptance Principle, human adults do and should
draw on background knowledge about human nature (folk psychology) and social
roles when assessing the veracity of acts of testimony [Fri06, p. 83]. This back-
ground knowledge is broadly inductively justified. Thus our warrant for believing
what someone tells us is ultimately inductive in nature.

Burge responds to Fricker’s critique of the Acceptance Principle in [Bur13c,
Section II]. We saw above how Burge urges us to be wary of hyperintellectualisa-
tion. This admonition was specifically directed at Fricker’s account of testimony.
Consider again our example on p. 48. Is it really credible that in scenarios such
as this, I implicitly go through an empirical argument to conclude that there is a
high probability that the passer-by on this occasion speaks the truth? Burge adds
to this that for very small children it is in principle impossible to go through such
an argument. They have not been able to build up the required induction base
for such an argument. Moreover, they have not acquired the requisite inductive
reasoning skills, nor do they even have the conceptual arsenal that its required for
acquiring these skills [Bur13b, p. 26–27]. And how would they acquire warrants
for these reasoning skills: inductively? Fricker could reply that children do not have
the same epistemic obligations as adults do.16 But then, how could children, or the
human species as a whole, for that matter, ever acquire the required warrant for
the needed canons of inductive reasoning?

Here we find ourselves getting drawn into the age-old debate between ratio-
nalism and empiricism. It is needless to say that this debate will not be settled
in this book. My aim is far more modest. In subsequent Chapters, I want to
explore the potential of Burge’s theory of entitlement further, relate it to Crispin

16It indeed seems that Fricker mainly argues that it is unreasonable for “mature adult hu-
mans” to adhere to the Acceptance Principle.
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Wright’s theory of entitlement, to extend it a bit, and to apply it to new epistemic
phenomena.

2.5. Entitlement and scepticism

The concept of entitlement also plays a key role in an influential article by
Crispin Wright [Wri04b]. Wright is mainly concerned with our epistemic warrant
for certain general propositions that he calls cornerstone propositions. Cornerstone
propositions are statements that play an organising role in our cognitive represen-
tation of reality. An example is the proposition:

There is an external world.

Wright is occupied with sceptical challenges that seek to undermine our epis-
temic warrant for our cornerstone propositions, and thereby undermine our pre-
sumed warrant for believing ordinary propositions (such as “it is snowing outside”)
in everyday circumstances.

One might think that scepticism about the outside world can in a Moorean
fashion ([Moo39]) be refuted by what Wright calls a I-II-III argument [Wri02]:

I My visual perception suggests to me that I have hands.
II I have hands.

III There is an external world.

In Wright’s view, such an argument for an anti-sceptical conclusion is not ra-
tionally acceptable. We have a case of warrant transmission failure. The problem
is that the argument from I to III is question-begging : one can only rationally ac-
cept the argument as a whole, and in particular the inference from I to II, on the
condition that III holds. So it seems that we have to establish III in an independent
way, and there seems no way to do this.

If Burge is right, then it suffices to look at my two hands, and say to myself
“here are two hands”, i.e., to come to believe that I have two hands on the basis
of my perception. On Burge’s account, we are entitled to believe in II directly on
the basis of our perception instead of on the basis of an inference from a statement
about perceptual seemings. Since III can be seen to follow from II, we are justified
in believing that there is an external world.

Whether Moorean arguments yield justification for belief in an external world
is related to deep issues in the philosophy of perception. We have seen how Burge
defends a externalist picture of our warrant for perceptual beliefs. Wright, on the
other hand, is an internalist in these matters. It is beyond the scope of this book
to adjudicate between Burge’s and Wright’s accounts of perceptual belief. For now,
however, let us accept Wright’s description of the Moorean argument. Let us also,
for now, accept Wright’s claim that the Moorean argument, thus understood, does
not yield justified belief in the existence of an external world, and see where this
leads him.

Wright proposes to resolve the conundrum by denying that III is in need of
justification. Instead, we are entitled to assume or presuppose or accept III without
justification. Proposition III is then a presupposition of cognitive project : doubting
III would rationally commit one to doubting the significance or competence of
one’s cognitive project17 [Wri04b, 193]. The presupposition III then allows us to

17Wright uses the notion ‘cognitive project’ in a somewhat technical sense: see below, Section
2.6. For now, the intuitive notion of cognitive project suffices.
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be justified in inferring II from I: I am therefore justified in believing that I have
hands

The notion of entitlement of cognitive project can then be defined along the
following lines [Wri04b, 191–192]:

. . . an entitlement of cognitive project [. . . ] may be proposed
to be any presupposition P of a cognitive project meeting the
following additional two conditions:

(i) We have no sufficient reason to believe that P is untrue
(ii) The attempt to justify P would involve further presupposi-

tions in turn of no more secure a prior standing. . .

In the light of this, Wright then holds that we are entitled to accept or assume
or trust or presuppose or presume cornerstone proposition III without having jus-
tification for it. This still does not give us the epistemic right to believe III for the
very reasons that we have gone through before: it would be question-begging.

Earlier we saw that an epistemic warrant has a source and an object (p. 44).
Now we see that the object of an epistemic warrant need not always be a belief: it
can also be a presumption. More needs to be said about what a presumption (or
assumption, or presupposition, or. . . ) is. Moreover, it is not clear that to accept,
to assume, to trust,. . . are all one and the the same epistemic attitude. However,
let us leave these worries aside for now, and postpone them until Section 2.7.

In the process, a concession has been made to the sceptic: I have as yet no
knowledge of III, even though I am entitled to presuppose it. In this sense, Wright
proposes a sceptical solution to the sceptical challenge. But something important
has been gained in the process: my trust in III earns me the epistemic right to
believe particular beliefs such as II, i.e., my ordinary belief-forming processes are
rational.

Not everyone agrees with Wright’s thesis of the non-transference of warrant.
James Pryor argues that under certain circumstances, going through a I-II-III ar-
gument can give an epistemic agent, call her Elisabeth, knowledge of the existence
of an outside world [Pry04]. The following is a highly idealised scenario that
nonetheless conveys the idea. Suppose Elisabeth has, to begin with, an open mind
concerning the existence of objects outside her own mind. She looks at her hands,
has the experience as of having hands, and forms the belief that she has an experi-
ence as if she has hands. On the basis of her visual experience she forms the belief
that she has hands. From the proposition that she has hands she infers that there is
an external world: she comes to believe that there is an external world on the basis
of this argument. Then, Pryor, says, Elisabeth has acquired justified belief in the
proposition that there is an external world [Pry04, p. 369]. So in this situation,
her warrant does transfer.

In the situation where Elisabeth has doubts or reservations about the existence
of an external world, the situation is different. Then she cannot transfer her warrant
from I to II, and therefore not get via the I-II-III argument to knowing III. Indeed,
the I-II-III argument is not dialectically effective in a discussion with a sceptic:
it is not a line of reasoning that the sceptic can accept. After all, the sceptic
would insist, we cannot exclude a Cartesian scenario in which a malicious demon
causes me to have an experience as if I have hands, even though no material world
exists. Moreover, it is also not even a good philosophical response to the sceptic
(even though a good philosophical response to the sceptic need not be dialectically
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effective against the sceptic), for it fails to diagnose and criticise the argument of
the sceptic.

In sum, Pryor insists that someone can come to know that there is an outside
world by going through the I-II-III argument. At the same time he concedes to
Wright that the I-II-III argument does not take away sceptical worries.

Another worry about Wright’s account was raised by Jenkins.18 She suspects
that Wright is committed to epistemic consequentialism. According to Wright,
Victoria (say), going through the I-II-III argument, is entitled to trust in III because
doing so has good epistemic consequences. Jenkins then goes on to argue that
having good epistemic consequences is never in and of itself a good reason for
adopting an epistemic attitude.

Jenkins recognises that Wright does not want to appeal to epistemic conse-
quentialism in his account [Jen07, p. 28]. Her point is that that it seems difficult
to justify Victoria’s entitlement to trusting in III (even if she herself does not have
to posses this justification) in any other way than by appealing to its epistemic
consequences [Jen07, p. 27–31].

Jenkins’ critique rests on a misunderstanding of Wright’s project. Wright is
not trying to justify Victoria’s epistemic entitlement to III. In this sense, Wright’s
account is Wittgensteinian: all explanations must come to an end, and Wright’s
assertion that Victoria is entitled to her trust in III is a fundamental claim of
his theory. That people are in similar situations entitled to what they rely is not
derived from more basic principles of rationality. Instead, the plausibility of the
claim that Victoria is entitled to her trust in III (and similar claims) is supposed
to derive from the plausibility of the overall picture of rationality that Wright
proposes. Ultimately, Wright intends to give a descriptively accurate account of
what people are epistemically entitled to presuppose. Like Burge has proposed
putative rock bottom principles of rationality, Wright has proposed his basic claims
about rationality.

Davies has argued that entitled trust in III is not needed to warrant Victoria in
believing II. He argues that, rather than an entitlement to to trusting in III, having
a negative entitlement not to doubt III suffices. This negative entitlement is an
entitlement “not to adopt the attitude of doubt where Wright has an entitlement
to adopt the attitude of trust” [Dav04, p. 226]. Davies says that this negative en-
titlement is not a kind of epistemic warrant, for it “is not an entitlement to assume,
trust, or believe any proposition” [Dav04, p. 243]. This can perhaps be disputed,
since it can be seen as an epistemic warrant not to doubt something. Be that as
it may: when this backing of a negative entitlement is in place, normal perception
yields a positive entitlement to believe II. All in all, this takes us, as Davies recog-
nises [Dav04, p. 230–231], fairly close to a Burgean account of Victoria’s warrant
for believing in II.

2.6. Cognitive projects and their presuppositions

We have seen how Wright argues that we have an entitlement of cognitive project
to assume III. But what, exactly, is a cognitive project?

A cognitive project is “defined by a pair: a question, and a procedure one might
competently execute in order to answer it” [Wri12, p. 466]. This is a bit abstract.

18See [Jen07].
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Waxman explains in more concrete terms what this amounts to [Wax17, Chapter
3]:

Let a cognitive project be a pair consisting of a question Q and
a procedure P which, if successfully executed, will deliver an an-
swer to Q in which you have justification to believe. For example
there is a cognitive project associated with the question “what
is the time right now?” and the procedure of looking at one’s
watch; there is another that involves the same question and the
different procedure of asking a passer-by. Next, let us say that a
presupposition for a given cognitive project is a condition C such
that, if you were justified in believing that C failed to obtain, any
justification in the output of the procedure would be defeated.
The thought is that, in many if not all cases, a cognitive project
is bound to rest on the satisfaction of a number of conditions
such that, if doubts were to arise about them, would compro-
mise the ability of the procedure to return a justified verdict
on the relevant question. So the presuppositions for the project
〈what is the time?, looking at one’s watch〉 include conditions
like: the watch’s being set correctly when it was last set; its
subsequent normal functioning (without any major mechanical
problems); there being nothing interfering with the veridicality
of our perception of the clock-face; our being able to tell the
time, i.e. to understand what time the watch is representing it
as being; and so on.

By extension, a cognitive project may consist of a set of questions accompa-
nied by a smaller or larger battery of procedures. For instance, on a large scale,
mathematics is a cognitive project, with mathematical proof as one of its main
‘procedures’. Metaphysics is, I think, is also a cognitive project. And larger scale
cognitive projects may have smaller scale projects as sub-projects. Thus Wright
concept of cognitive project contains echos of Kuhn’s notion of paradigm [Kuh62],
Foucault’s notion of disciplinary matrix [Fou66], and Lakatos’ notion of a scientific
research programme [Lak68]. The difference is just that the latter are by definition
rather large-scale, whereas Wright’s cognitive projects can vary in scale from very
small to very large.

Presuppositions always have to be made in order to have justification [Wri04b,
p. 189]:

To take it that one has acquired a justification for a particular
proposition by the appropriate exercise of appropriate cognitive
capacities–perception, introspection, memory, or intellection, for
instance–always involves various kinds of presupposition. These
presuppositions will include the proper functioning of the rele-
vant cognitive capacities, the suitability of the occasion and cir-
cumstances for their effective function, and indeed the integrity
of the very concepts involved in the formulation of the issue in
question.

Wright’s point then is that we have an entitlement of cognitive project to ac-
cepting all the presuppositions of the cognitive project 〈do I have hands?, looking〉,
and III is one of them.
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I doubt that presupposition is a felicitous choice of terminology in this context.
Since Wright takes presuppositions to attach to collections of beliefs, the notion of
presupposition that is used here cannot be the semantic notion of presupposition
that goes back to Strawson’s seminal article [Str50]. Thus we are driven to a more
pragmatic notion of presupposition. But this also does not quite fit. Stalnaker, for
example, writes that “presuppositions, on [the pragmatic] account, are something
like background beliefs of the speaker” [Sta74, p. 198]. But the entitled ‘presup-
positions’ that Wright is interested in, are precisely propositions that shouldn’t be
believed by the speaker. So perhaps an attitude that is somewhere in the neigh-
bourhood of, but not quite like, presupposition is what is relevant here. In the
following Section, we take a closer look at this question.

2.7. Belief, acceptance, trust

Part of Davies and Burge’s critique of Wright’s view of perceptual warrant
(see Section 2.5) is justified. Wright’s internalist reconstruction of the Moorean
argument seems a result of over-intellecualisation: we do not typically infer II from
something like I. A more externalist account, along the lines given by Burge, seems
more plausible. Whether Victoria’s entitlement to her belief II nonetheless requires
an entitled some form of acceptance of III, is another matter. In the absence of
more information about the content of the attitude of trust that is appealed to,
this is hard to adjudicate. So far, the relevant attitude has been described in a
number of different ways: relying on, presupposing, trusting (implicitly), assuming,
accepting, presuming, taking for granted. . . 19 It is not at all clear that all the terms
have the same content. It will not do simply to list a battery of attitude terms,
and hope that one or more of them function as they are supposed to. We must do
better.

One hallmark of acceptance, in Wright’s sense of the word, is that if a person
accepts p, then she acts in all respects as if she believes p [Wri04b, p. 180]. But
this criterion is purely behavioural. Therefore it is unsatisfactory as an ultimate ac-
count of the content of the relevant concept. Indeed, answering ‘yes’ to the question
‘do you believe that p’ is part of acting in all respects as if believing p. But that
would mean that acceptance is belief-entailing after all, which would completely
undermine Wright’s account. Nonetheless, Wright’s account of the notion of accep-
tance is not without merits. It clearly brings out the fact that the attitude that
is relevant in this context has pragmatic aspects as some of their key components:
acceptance is intimately connected with action.

Van Fraassen famously described a notion of acceptance (of a theory) that is not
purely ‘as if’. It does not entail full belief in the theory, but only the belief that the
theory is empirically adequate [vF80, Chapter 2, Section 1]. The pragmatic aspect
of acceptance is also emphasised by van Fraassen, who argues that acceptance of
a scientific theory involves a practical commitment to the theory and to the wider
research programme to which it belongs [vF80, p. 12]. It involves a long-term
commitment to follow the theory where it leads, and to take it as a practical guide
for action (designing experiments, articulating research questions,. . . ). This long-
term aspect is also a property of the attitude that Wright is appealing to. Notions
such as supposing, assuming, presuming, do not carry this connotation of being

19A number of these supposedly equivalent terms can be found on [Wri04b, p. 176].
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long-term.20 For this reason, I regard these terms as unsuitable for conveying
what is aimed at. For van Fraassen, even though long-term, a commitment to an
empirical theory is never absolute. If it leads to persistent conflicts with experience,
for instance, then the commitment may well be given up.

Van Fraassen’s view points to an important distinction within the concept of
acceptance. Intuitively, acceptance can be guarded, or it can be unrestricted and
unconditional, and it can be anywhere in between. One paradigmatic example of
guarded acceptance is instrumental acceptance. The kind of acceptance of empiri-
cal scientific theories that van Fraassen recommends is instrumental. Likewise, the
kind of acceptance of higher mathematics that Hilbert recommended is instrumen-
tal [Hil26]. For van Fraassen, scientific theories are primarily guides to empirical
predictions; for Hilbert, higher mathematics is primarily a guide to finitary math-
ematical statements.21

In the context of mathematical knowledge, Torkel Franzén distinguishes in
Hilbertian vein between accepting as consistent and accepting as sound [Fra04a].
Like van Fraassen, he takes acceptance to involve belief (belief of consistency, or
belief of truth). He takes accepting a theory S as consistent to entail the belief
that S is consistent, and he takes accepting S as sound to entail belief that S is
true. However, it is important to keep in mind that a person might believe, in a
dispositional sense, all theorems of a theory, without believing that the theory is
sound. This can be the case, for instance, if she doe not (or not yet) possess the
concept of truth. This may sound like nitpicking, but it will prove to be relevant
later.

In a prescient remark in his philosophical notebooks, Gödel anticipates the sub-
tleties involved in the relation between belief and acceptance, and in the distinction
between different forms of acceptance of a formal theory [Göd21, p. 242]:

Psychology Remark: What is lost in the transformation from the
inference rules to the concept of an immediate deduction is the
question of “acceptance” of a formal system (only the description
remains). To accept is: to make it the system of maxims behind
one’s assumptions and actions. This is different from “believing
it” in the sense that every sentence represents an objective reality
and that one can see (perceive) this objective reality. It is also
different from belief in consistency. Other possible “attitudes”:
belief that every controllable conclusion is true, provisionally
accepted [. . . ]

However all this may be, we have seen that for Wright’s purposes, the notion of
acceptance should not entail belief at all. So van Fraassen’s and Franzén’s concepts
of acceptance will not do at all.

Jonathan Cohen describes the relation between belief and acceptance as follows
[Coh89, p. 368]:

[I]n my sense to accept that p is to have or adopt a policy of
deeming, positing, or postulating that p—that is, of going along
with that proposition (either for the long term or for imme-
diate purposes only) as a premiss in some or all contexts for

20See [Coh89, p. 368].
21Van Fraassen classifies the kind of acceptance of our best scientific theories that he thinks

is rational as full acceptance, but I take that to be a mere terminological matter.
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one’s own and others’ proofs, argumentations, inferences, delib-
erations, etc., whether or not one assents and whether or not one
feels it to be true that p [. . . ] Belief that p, on the other hand,
is a disposition to feel it true that p, whether or not one goes
along with the proposition as a premiss.

Observe that, like Franzén, Cohen’s definition of belief entails that in order for a
person to believe any proposition whatsoever, she must have a concept of truth,
which seems wrong. However, let us not dwell on this for now.

Acceptance, in Cohen’s sense, does not entail belief [Coh89, p. 369]:22

[A] person who does not fully believe that p can nevertheless
justifiably accept that p. For example, this may happen when
he has a hunch that not-p, though the balance of presently avail-
able evidence makes p the only opinion that deserves acceptance
within his community. Or he might accept that p out of soli-
darity with an old friend, even though there is no evidence to
produce a belief that p. Or for professional purposes a lawyer
might accept that his client is not guilty even though he does
not believe it.

Nonetheless, Cohen’s notion of acceptance also cannot play the role that it is
expected to play in Wright’s account. Belief is involuntary,23 whereas acceptance,
on Cohen’s understanding of the term, is voluntary [Coh89, p. 369–370]:

[Y]ou cannot decide to believe that it will rain tomorrow, or to
believe that it will not. You can decide only to accept that it
will, or to accept that it will not: the belief may then ensue,
but it may not. Acceptance occurs at will, because at bottom
it executes a choice—the accepter’s choice of which propositions
to take as his premisses. But belief is not normally achieved
at will because it is caused in each kind of case by something
independent of the believer’s immediate choice [. . . ]

But consider Victoria’s ‘acceptance’ that there is an external world once more. This
is not the product of a voluntary decision at all. It is just as involuntary as my
belief that it will not rain tomorrow.

I conclude that the concept of acceptance is not quite suitable for playing the
role that it is expected to play in Wright’s account of epistemic entitlement. I will
now argue that the notion of trust has better prospects for fitting the bill.

The distinction between propositional belief and objectual belief is familiar
enough. Objectual belief primarily has persons as its objects. We believe a person
(on an occasion) when we believe what she says (on that occasion). In a derived
sense, objectual belief sometimes has other entities as its object (“I do not believe
that clock.”). A form of belief that has some importance for our discussion is the
notion of believing in. Audi calls this notion attitudinal belief [Aud08, p. 88]. In
the primary sense of that concept, we again believe in people. In a secondary sense
of attitudinal belief, we believe also in other things than people: someone might be
said to believe in democracy, for instance.

22Also the converse implication does not hold [Coh89, p. 369].
23This thesis is defended against Descartes’ doxastic voluntarism in [Wil78].
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Audi denies that attitudinal belief is a form of objectual belief [Aud08, p. 88].
I am not sure about this. Attitudinal belief seems closer to objectual belief than
to propositional belief. Believing a person seems almost a species of attitudinal
belief.24 I said earlier that when we say that we believe a person (on an occasion),
we mean that we believe the assertions that she produces. In the same vein, it is
tempting to surmise that when we believe in a person, this amounts to having a
positive attitude25 towards this person’s future actions. But this is not quite right.
Our positive attitude is in the first place directed to the person herself as the source
of future actions;26 only derivatively do we have a good feeling about what we think
these future actions might be.

Anscombe held that the notion of believing a person is absolutely primary, and
that the notion of propositional belief is very secondary and somehow derivative
from it [Ans79]. This view is not as bizarre as it might seem. The positive attitude
that is operative in believing a person is one of trust. It hardly necessary to add
that trust is a heavily pragmatically laden concept. On the occasion that we trust
a person, we mostly do not trust her with our life, but we always trust her with
some of our actions. Believing a person means having a modicum of trust in her (on
the occasion, at least). Also in believing in a person, trust is a central component.
Even in propositional belief, there is trust: we trust the believed statement as a
‘producer’ of a proposition in a way that is similar to the way in which we can trust
a person as a source of propositions. Propositional belief has primitive origins.

If this is along the right lines, then belief always involves trust. But we are
interested in the converse direction. Is there trust without belief?

As with belief, there is objectual trust (in the first place directed at people),
attitudinal trust, and propositional trust. Victoria trusts her friend Evelyn, she has
trust in Evelyn, and she trusts that there is an external world. An even stronger
case than with belief can be made for the thesis that propositional trust is derivative
from objectual or attitudinal trust. When we say that Victoria trusts that there is
an external world, what do we mean? At least large part of the meaning of that
sentence is that Victoria trusts her outer senses, that she willingly relies on her
outer senses to tell her how things are.

In this sense, even a very young child may be said to trust that there is an
external world. All it takes, is that she accepts the offerings of her outer senses
at face value. For this to be true of her, she need not even yet possess any of the
concepts ‘outer sense’, ‘external world’, or ‘truth’. We, as mature adults, have by
no means outgrown this basic trust in our senses. It is only in extreme cases of
psychic pathology, or in extremely unusual circumstances (involving hallucinogens,
for instance) that this form of trust in our outer senses is absent. In such situations,
our cognitive faculty is debilitated.

Our young child does not believe that there is an external world. She has not yet
mastered the concepts that are needed to entertain this thought: she trusts without
believing. Again, mature adults are no exception. As Audi points out, I can trust
that my good friend survives cancer, without either believing or disbelieving this
[Aud08, p. 92].

24‘Almost’ because it concerns past and present events as well as future ones.
25This is a term of Audi: See [Aud08, p. 90].
26This point is stressed in [Mor05].
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This does not mean that there is no connection between propositional trust and
propositional belief. According to Audi, propositional trust entails a disposition or
openness to the corresponding propositional belief [Aud08, p. 96]. In the context
of a discussion of religious faith instead of secular trust,27 he writes [Aud08, p. 93]:

If I have faith that God loves humanity, I have a certain positive
disposition toward the proposition that this is so. This disposi-
tion is something beyond hope. But the cognitive component of
propositional faith, though stronger than the minimal cognitive
element required for hoping, does not entail belief. Propositional
theistic faith is, to be sure, incompatible with believing that God
does not exist; but that is a different point. Because of the posi-
tive way in which propositional faith is more than hope, it is also
incompatible with a pervasive or dominating doubt that God ex-
ists, though it can coexist with some degree of doubt or even with
a tendency to have moments of deeply unsettling doubt.

However, even the thesis that propositional trust entails a disposition to believe
seems wrong to me, for the following reason. Very often, a person has propositional
trust without having considered the proposition in question, even though, as a ma-
ture adult, nothing prevents her from considering it. Consider Nathalie, who is out
on a day trip without sunscreen or her sun hat. When she leaves her appartment,
she sees the tube of sunscreen on the living room table, and her sun hat on the
coat rack, but she sees no reason to take them—which is not to say that she sees
a reason not to take them! When she looks out the window before she leaves, she
says to herself: ‘it is going to be a glorious day’. It is apparent from these and other
aspects of her behaviour that she trusts that she won’t get sunburnt, even though
she has not asked herself the question. Now suppose that her friend asks her if she
does not think she will get sunburnt. Nathalie chews this over for a few moments,
and judges her trust to be careless. She forms the belief that she will get sunburnt,
and proceeds to act accordingly. This shows that it would be simple-minded to try
to reduce belief to unreflective behaviour—which does not mean, of course, that
there are no close links between belief and behaviour.

With Audi, I distinguish between doxastic (propositional) trust and fiducial
(propositional) trust [Aud08, p. 96].28 Often, propositional trust is in fact accom-
panied by the corresponding propositional belief. Because propositional trust is
often accompanied by propositional belief, there is a strong temptation to analyse
propositional trust in terms of propositional belief. But since doxastic trust does
not entail propositional trust, this temptation must be resisted: trust must be un-
derstood in its own terms [Aud08, p. 101]. This is not easy. The temptation is
great to reduce propositional trust to some combination of propositional belief and
action, or even to behaviour only, However, when we take Audi’s recommendation
to heart, we see that propositional belief does not accompany propositional trust
as often as is commonly thought.

Propositional trust can to some extent be, but need not be voluntary [Aud08,
p. 91–92]. Certainly Victoria’s trust that there is an external world cannot be

27I believe that there are indeed deep connections between trust in cornerstone propositions

and religious propositional faith, but I will not press the point here.
28Again, Audi speaks of faith instead of trust.
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labelled as voluntary. In a discussion of Hume’s scepticism, Strawson writes [Str85,
p. 11]:

[Hume] points out that all arguments in support of the skep-
tical position are totally inefficacious; and, by the same token,
all arguments against it are totally idle. His point is really the
very simple one that, whatever arguments may be produced on
one side or the other of the question, we simply cannot help be-
lieving in the existence of body, and cannot help forming beliefs
and expectations in general accordance with the basic canons of
induction. He might have added, though he did not discuss this
question, that the belief in the existence of other people (hence
other minds) is equally inescapable.

Here Strawson is speaking of belief in the existence of body. But his remarks apply
even more to our trust that there is an external world.

Propositional trust is not a luminous state. Someone can trust that p, without
being aware that she trusts that p.

Some instances of propositional trust are rational or warranted, others are
not. Nathalie’s initial trust that she would not get sunburned, for instance, was
careless and therefore unwarranted. Doxastic propositional trust may be supported
by reasons. In certain cases, therefore, doxastic trust can be justified. In cases
of fiducial trust, there is no belief to be supported by reasons, so they cannot be
justified. Nonetheless, fiducial trust can be rational.29 Rational instances of fiducial
trust are cases of entitled trust. In sum, I claim that fiducial trust is the attitude
that meets the needs of Wright’s account: it is the kind of attitude to which we can
have Wrightean entitlement.

Moreover, I claim that on this point, Wright’s view is in harmony with Burge’s
account. Burge has argued that we have an entitlement to certain belief-forming
competences.30 So, like Wright, Burge recognises entitlements that have objects
other than beliefs. In particular, we have an entitlement to rely on our preception
[Bur03]. Our fiducial trust in the existence of an external world is warranted by
our entitlement to rely on our outer senses. In sum, what appear to be distinctive
features of Wright’s account of entitlement—such as our entitlement to rely on III—
have natural counterparts in Burge’s theory.

Note that this not mean that Burge’s theory provides answers to all questions
regarding entitlement for trust. For instance, as far as I can tell, Burge’s theory
does not speak to the question of the existence and nature of my fiducial entitlement
that my friend will survive cancer. Also, the foregoing should not obscure the fact
that Burge’s epistemological theory is overall very different from that of Wright.
In particular, I remind the reader (see p. 58) that I side with Burge, and against
Wright, on embedding the theory of entitlement in an externalist overall framework.

2.8. Inference and entitlement

Suppose Alice is taught the proof of Pythagoras’ theorem. She believes the
mathematical basic principles involved in the proof in a justified manner. She
follows the proof, and is on the basis of the argument convinced that the theorem

29Audi discusses the question of fiducial faith in [Aud08, p. 100].
30An excellent account of Burge’s view of entitlement to rely on competences is found in

[Gra20].
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holds. In such a scenario, we are inclined to say that Alice has come to know
Pythagoras’ theorem.

Alice does not need to to have a justified belief in the validity of the logical
inference rules used in the proof in order to come to know Pythagoras’ theorem.
She is entitled to trust implicitly in the logical steps that she is taking when she is
following the proof: she reasons blindly [Bog03].

Indeed, Burge would say that we have a prima facie entitlement to rely on
rules of inference in our reasoning. Our entitlement “resides in [our] actual com-
petence to make the relevant deductive transitions, not in an ability to understand
and represent the rule governing the competence” [Bur11b, p. 492]. In Wright’s
terminology, this is another entitlement of cognitive project. We have here another
entitlement of cognitive project [Wri04a]. This shows that entitlements of cogni-
tive project do not only consist in trust that certain matters of fact obtain; they
also comprise trust in the reliability of actions (taking logical inference steps).

Suppose that we are entitled to rely on our logical faculties in this way. In par-
ticular, supposed that we are entitled to trust the Rule of Modus Ponens (MPR)
in this way. Then a next question is whether we are also warranted to, in Wright’s
terminology, claim knowledge of the corresponding logical principle, i.e., the mate-
rial conditional corresponding to MPR. Let us call this corresponding conditional
MPP (“Modus Ponens Principle”). Wright answers this question in the following
way [Wri04a, Section VIII, p. 173]:

. . . [I]f we are entitled to claim knowledge of a statement which we
have recognised to follow from known premises by inference in ac-
cordance with entitled rules, then we are surely entitled to claim
knowledge of a statement which we have recognised to follow from
an empty set of premises by inference in accordance with entitled
rules. But—assuming an entitlement to [MPR] and conditional
proof—that is just what a rule-circular derivation of [MPP] pro-
vides for.

Such a derivation could proceed like this:

1 (i) P Assumption
2 (ii) If P, then Q Assumption

1, 2 (iii) Q (i), (ii) M. Ponens
1 (iv) If (if P, then Q), then Q (ii), (iii) Cond. Proof

(v) If P, then if (if P, then Q), then Q (i), (iv) Cond. Proof

This seems right. So we have a (schematic) justification of the logical principle
(viz. MPP) that guarantees the reliability of the rule MPR. Remember how Pryor
claimed that in a similar way, we obtain a justification of our belief in principle III
that underwrites the reliability of our perceptual faculties (see p.56). This raises
the puzzle why exactly, in Wright’s view, the argument quoted above “transmits
warrant”, whereas no Moorean argument does. I will not try to resolve this puzzle
here.

It is commonly assumed that the kind of epistemic warrant for believing the
conclusion that is generated by application of logical rules is always justification.
But this is not so. Consider again the familiar propositional logical rule →I of
conditional proof (“Arrow-Introduction”):
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(i) P [Assumption]
...

...
...

(k) Q [Assumption]
(k + 1) P → Q (i− k),→ I

The input of →I does not consist of premises (reasons), but of a derivation. A
derivation is not something that has propositional structure, so it does not function
as a reason. Therefore application of →I does not yield justification for belief in
its conclusion. But it can convey epistemic warrant nonetheless: it can produce
entitled belief! So, in some way, →I is a curious logical rule. The reason why this
difference between→I and, for instance, MPR, passes unobserved, is that wherever
there is an entitlement to believe P → Q on the basis of →I, there is a justification
of P → Q nearby. When a reasoner has gone through a logical derivation of the
form

P [Assumption]
...

...
Q [Assumption],

she may observe

“There is a logical derivation of Q from P”,

and use this proposition as her reason for believing P → Q. However, this should
not obscure the fact that this proposition does not figure as a premise in an appli-
cation of the logical rule →I.

Proof systems in which conditionalisation fails are characteristic for partial
logic.31 Suppose we assume the principles of Peano Arithmetic, not in the context
of classical logic, but of partial logic, and where we assume that conditionalisation
holds for arithmetical formulas, but not for all formulas of the whole language.32

Call the system in which we are working S. Then full conditionalisation can be
obtained by adding a following weak proof theoretic reflection rule, in the following
way. Let DerS(x, y) be an arithmetical formula express that in S, from assumption
x, the formula y can be derived. Clearly DerS(x, y) can be constructed in such a
way that

P [Assumption]
...

...
Q [Assumption]

DerS(pPq, pQq)

is an admissible rule of S. (Since it contains a modicum of arithmetic, S has this
much ‘introspective’ power.) Now consider the following weak reflection rule:

`S DerS(pPq, pQq)
P → Q

In the context of classical logic, this rule is equivalent to the rule of local reflection.

31See [Bla02].
32See for instance [Hor11, Section 9.5].
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Putting these two together yields full conditionalisation, and hence full classical
logic. The moral of this is that classical logic may be seen as arising from reflection
on a weaker logic.

2.9. Entitlement to reflection

Daphne’s mother lives in a care home in the UK, far from where Daphne lives
and works. Daphne’s mother is in an advanced state of dementia. She does not
recognise her daughter anymore; Daphne cannot communicate with her anymore.
Daphne has no siblings. Aside from Daphne, there are no friends or relatives who
visit Daphne’s mother in the care home. Daphne herself has not been able to
visit her mother for over six months because of travel restrictions connected to the
coronavirus pandemic. Shortly after her last visit to the nursing home, Daphne’s
mother was assigned a new primary caregiver: nurse Myrtle. Since then, Myrtle
has become Daphne’s sole source of information about how her mother is doing.
Daphne has been calling and skyping with Myrtle on a weekly basis, as she did with
her mother’s previous primary caregiver. Daphne has heard disturbing news reports
of care homes where elderly residents are not well taken care of. But she has no
evidence that this also holds for the nursing home where her mother is residing. In
fact, she has no evidence whatsoever that her mother was not well treated over the
past months. Daphne’s life has been stressful since the outbreak of the pandemic.
She has had to work from home, and take care of her children at the same time,
because the schools are closed. For this reason, she has not been thinking about her
mother as much as she normally does. Until today, Daphne has not asked herself
the question whether Myrtle takes good care of her mother. Nonetheless, over the
past months, Daphne has come to trust Myrtle. (As a matter of fact, Myrtle does
take good care of Daphne’s mother.) Today, after hanging up the phone after a
conversation with Myrtle, Daphne realises that she has come to trust, in the fiducial
sense of the word, that Myrtle treats her mother well. She reflects on this for a
few moments. It would not be easy in the present circumstances, but she might
acquire evidence concerning this matter. But she doesn’t. She does not change her
stance towards Myrtle in any way, and forms the propositional belief that Myrtle
takes good care of her mother.

Daphne has formed her trust in Myrtle through her interaction with Myrtle, and
at least in part in response to Myrtle’s actions and behaviour. If Myrtle’s behaviour
in the skype conversations or her way of speaking in the phone conversations would
somehow have aroused suspicion, then Daphne would not have come to trust her.
Nonetheless, Daphne has not taken Myrtle’s actions and behaviour as evidence
for her trustworthiness: her reaction has been far more immediate and far less
deliberate than that. According to Audi, “[fiducial] faith [that a friend will survive
risky surgery] is not mainly a response to evidence (and need not be so at all)”
[Aud08, p. 100]. I believe that this holds equally true of the closely related concept
of fiducial trust. Moreover, Daphne has not formed her propositional belief that
Myrtle treats her mother well by some form of inference from her trust in Myrtle.
In this sense, the situation here is structurally different from the situation at the
end of the previous Section, where we derived a conditional statement (something
we believe) from a rule of inference (something we do). Viewing Daphne’s transition
from trust to belief as an inference, is a form of over-intellectualisation.
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Daphne’s initial fiducial trust, and her subsequent propositional belief, are ra-
tional. Daphne is entitled to her fiducial trust that Myrtle is kind to her mother.
Moreover, she is also entitled to the propositional belief that she has formed through
reflection on her trust in Myrtle: her rational fiducial trust is her warrant.

Does not Daphne’s prior trust in Myrtle already constitute propositional belief?
No. At the earlier time, she did not have a disposition to assent to the relevant
proposition yet. How she would react if she were to realise that she had come to
trust Myrtle, still hung in the balance. She could instead have reacted like Nathalie
(see p. 62), by giving up or at least qualifying her trust.

As soon as Daphne has realised that she has come to trust that Myrtle takes
good care of her mother, her epistemic position has irretrievably been altered. She
has now lost her state of epistemic innocence. It is now not a rational option for
her anymore to refrain from believing that Myrtle takes good care of her mother,
while continuing, in an unconditional manner, fiducially to trust that Myrtle takes
good care of her mother. Through reflecting on her trust, Daphne has incurred an
epistemic obligation to harmonise her belief and her trust on the matter. This is a
new epistemic duty: she did not have it before she reflected.

Daphne had no epistemic duty to reflect: not reflecting on her trust would
have made her no less rational. Indeed, very small children cannot reflect in this
way—they do not have the cognitive machinery yet,—and this does not make them
irrational. Moreover, she had no rational obligation to react in the way that she
did when she did reflect on her trust. She would have been no less rational if she
had instead suspended her trust and sought evidence instead. This means that
I am embracing a liberal conception of rationality. Van Fraassen canvasses this
conception of rationality in the following way [vF89, p. 171–172]:

The difference [between Russell’s traditional conception of ratio-
nality and the ‘liberal’ conception of rationality] is analogous to
that between (or so Justice Oliver Wendell Holmes wrote) the
Prussian and the English conception of law. In the former, ev-
erything is forbidden which is not explicitly permitted, and in
the latter, everything permitted that is not explicitly forbidden.
When Russell is still preoccupied with reasons and justification,
he heeds the call of what we might analogously call the Prussian
concept of rationality: what is rational to believe is exactly what
one is rationally compelled to believe. I would opt instead for
the dual: what is rational to believe includes everything that
one is not rationally compelled to disbelieve. Rationality is only
bridled irrationality.

In other words, “rationality is a concept of permission rather than of compulsion”
[vF89, p. 180].33

It would not be correct to describe Daphne’s propositional belief as a voluntary
act. This is so merely because, as we have seen earlier (see p. 60), forming a belief
is in general not a voluntary act.

The warrant for the propositional belief that Daphne has formed is a posteriori
rather than a priori. This is because it is an essential ingredient in her process of

33This does not mean that “anything goes”: see [vF89, Chapter 7].
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reflection that she remembers her worldly actions and her behaviour vis-à-vis Myr-
tle. But to remember this, she must have observed her own actions and behaviour
first.

Suppose we grant that Daphne is entitled to the propositional belief that she
has acquired through reflection on her trust. Does her belief constitute knowledge?
This depends, I think, on the strength of her non-justificatory warrant for her prior
trust that Myrtle treats her mother well. Non-justificatory warrant for trust, like
justification (see p. 16), is a matter of degree.34 If Daphne’s entitlement to her trust
is strong enough, then her propositional belief obtained by reflection can amount
to knowledge. Whether that is the case or can be so in the imaginary scenario that
I described, I am not sure.

Daphne has exercised her rational faculty of reflecting on fiducial trust. She
has a prima facie entitlement to rely on this faculty in ways that are similar to her
entitlement to rely on other rational competences, such as memory or perception.
But unlike memory or interlocution (and like perception), this faculty is ampliative.
Like other forms of entitlement, Daphne’s entitlement to reflection is prima facie.
If she had had counter-evidence to the proposition that Myrtle takes good care of
her mother, then she would not have been entitled to form the propositional belief
that she did form. Instead, she would have had an epistemic duty to look into
the matter, i.e., to seek further evidence. Moreover, she would then not have been
entitled to maintain her unqualified trust in Myrtle.

Our entitlement to reflection on fiducial trust flows, in the context of a liberal
conception of rationality, from the principle of rationality of which I made use
earlier:

Through reflection on our fiducial trust that p, we incur an
epistemic obligation to align our fiducial trust that p with our belief that p.

I see no way to motivate the above principle of rationality from any more funda-
mental principles. It is merely an appropriately qualified way of saying that our
beliefs must cohere with our actions. As far as I can see, this is rock bottom.

I hasten to add once more, however, that reflection is not rationally bound to
end in propositional belief. As we have seen earlier, it may just as rationally end
in restricting or abandoning fiducial trust. Or one might decide to seek further
information.

34This is a point that Burge does not seem to dwell on in his writings.



CHAPTER 3

Reflection

We will see that the concept of reflection has a long philosophical history, going
back to the ancient Greeks. It is by no means the aim of this Chapter to give an
exhaustive treatment of this philosophical history. Rather, we will only consider
some episodes in it, and we will not consider any of these episodes in great depth.
Philosophers from the early modern period—both rationalists and empiricists—will
play an important role.

The concept of reflection has been put to work in various ways in the history
of philosophy. But few philosophers have reflected on their own philosophical use
of the concept of reflection, and almost no philosopher has worked out a systematic
philosophical theory of reflection.

A brief comparison with the concept of abstraction may be instructive here. The
concept of abstraction also has been put to philosophical use since the period of the
ancient Greeks. In philosophy, the word ‘abstraction’ can refer to a process and to
the product of a process. Abstraction plays a role not only in philosophy, but also
in a technical way in mathematics (since the nineteenth century), when equivalence
classes are taken and considered as mathematical objects in their own right. The use
of abstraction in mathematics was famously described and philosophically exploited
by Frege in his Grundlagen der Arithmetik [Fre84]. Frege noticed that principles
describing how products of abstraction are related to what they are abstracted
from—for instance, Hume’s Principle—have proof theoretic strength. In this sense,
abstraction in Frege’s sense is a knowledge-producing mechanism.

Like the word ‘abstraction’, the word ‘reflection’ also refers not only to one
or more processes,1 but also to the products of such processes. Like abstraction,
reflection is also a concept that plays a role not only in philosophy, but also in
mathematics.2 One important use of the word ‘reflection’ in philosophy has to
do with “the mind bending back on itself” and with introspection, as we will see
below. In mathematics, reflection has to do, among other things, with the process of
axiomatisation, where mathematicians “bend back” on their own proof practice, in a
given discipline. Gödel observed that principles that certain principles concerning
such reflections (called proof theoretic reflection principles) have proof theoretic
strength.

In recent decades, great efforts in the philosophy of mathematics have been
made to understand abstraction. Despite the work of Gödel and others, it is fair to
say that we do not understand philosophical or mathematical processes of reflection
well at all. There has been no “Frege for reflection”. This is in part because, as we

1We will see later that in one of its philosophical meanings, the word ‘reflection’ refers not

to a process but simply to a relation.
2In fact, reflection also plays a role in physics, although I will not have much to say about

physical notions of reflection in this book.
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will see, ‘reflection’ is a word that can be used to express several different concepts,
whereas ‘abstraction’ is not.

3.1. The many faces of reflection

It is generally bad form to appeal to a dictionary in philosophical discussions.
Nonetheless, in the present case, I think that it is instructive to start our investi-
gation with a close inspection of a dictionary entry.

The Oxford English Dictionary (OED) describes the various meanings of the
word ‘reflection’ thus [LCF+73, p. 1777]:

Reflection, reflexion [. . . ]
1. The action, on the part of surfaces, of throwing back light
or heat (rays, beams, etc.) falling upon them. The phenomenon
of light and heat being thrown back in this way. b. Reflected
light or heat [. . . ] 2. The action of a mirror or other polished
surface in exhibiting or reproducing the image of an object; the
fact or phenomenon of an image being produced in this way [. . . ]
b. An image or counterpart thus produced [. . . ] 3. The act of
bending, turning, or folding back [. . . ] 4. The act of throwing
back, or fact of being thrown or driven back, after impact [. . . ]
b. Phys. Reflex action [. . . ] 5. Animadversion, blame, censure,
reproof [. . . ] b. A remark or statement reflecting on a person
[. . . ] c. An imputation; a fact or procedure casting an imputa-
tion or discredit on one [. . . ] 6. The act of turning (back) or
fixing the thoughts on some subject; meditation, deep or serious
consideration [. . . ] †b. Recollection or remembrance of a thing
[. . . ] c. Philos. The mode, operation, or faculty by means of
which the mind has knowledge of itself and its operations, or by
which it deals with the ideas received from sensation and per-
ception [. . . ] 7. A thought or idea occurring to, or occupying,
the mind [. . . ] b. A thought expressed in words; a remark made
after reflection on a subject [. . . ]

The dictionary entry shows that the meaning of the word ‘reflection’ has a core.
It is often used to refer to a process that consists of a source, a transformation
procedure, and a product. But the dictionary entry also shows that these basic
components of the meaning of the word can be filled out in very different ways.
Indeed, it is clear that the word ‘reflection’ has a rather diffuse meaning. Although
its multiple meanings are clearly related, the word is certainly not uniformly applied
with the same meaning. Some meanings of the word ‘reflection’ will not play a
significant role in what follows. For instance, we will not be much concerned with
meanings 4. or 5.. Other meanings of the term will be of significance to us.
Meanings 2b, and 6c., for instance, will play an important role in this Chapter
and in some later Chapters. Let us call these meanings type 2 reflection and type
6 reflection, respectively. Meaning 3., which we call type 3 reflection, will also be
seen to play a role in the beginning of the philosophical history of reflection.

The concept of reflection has a long history in Western culture: in literature,
physics, poetry, theology, psychology, the arts. . . We will in this Chapter be con-
cerned with the history of reflection in philosophy, and in later Chapters also in the
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mathematical sciences (and especially in logic) in the twentieth century. The his-
tory of reflection goes back at least to Plato. Philosophers have made determinate
attempts to get reflection to do metaphysical and epistemological work for close
to 2500 years. Many avenues have been pursued doggedly over many centuries.
One factor that makes this history difficult to trace is that, as I intimated above,
reflection has not been a real theme in philosophy in the way that, for instance,
the concept of moral value has been since Antiquity. Attempts were made to make
the concept of reflection do philosophical work, i.e., to use it, but in a somewhat
oblique, mostly not fully conscious manner.3 What has been lacking in the history
of philosophy, one might say, is systematic and explicit philosophical reflection on
the philosophical concept(s) of reflection. This I propose to do, from a historical
perspective, in the present Chapter. So the following sections will to a large extent
be an exercise in metaphilosophy.

We will discuss some elements of the history of the concept of reflection in
philosophy. This history is intricate and complicated: far be it from me to claim
that the historical overview that is given here even touches on all of the main
strands of this history. My interest in the concept of reflection is not primarily as
a chapter in the history of ideas. Instead, my leading question will be thematic in
nature: which philosophically fruitful uses can be made of concepts of reflection?
Later in the book,4 one such theoretically fruitful use of reflection (in logic and
the foundations of mathematics), namely type 6 reflection, will be singled out for
special attention.

Philosophical uses of reflection are often metaphorical or even allegorical in
nature. Think for instance of the famous allegory of the cave in Plato’s Republic,
where sensible objects are somehow likened to shadows (read: reflections of outlines
of) of puppets that are projected on a wall. The arduous task of philosophers—
especially of analytic philosophers—is then to extract clear and literal metaphysical
or epistemological content from such metaphors and allegories, and to probe the
philosophical merits of this content. Sometimes there seems reason for optimism;
at other times the philosopher is driven to despair.

The history of reflection in philosophy is indeed a story of hit and miss. Descartes’
Cogito is widely regarded as a success story, whereas the idea that there is a deep
parallelism between the cosmos (‘Macrocosmos’) and Man (‘Microcosmos’) is com-
monly seen as a mistake of monumental proportions.5 Some roads are regarded
with much suspicion today, without being quite dead yet. Neoplatonist ‘emana-
tion’ metaphysics, for instance, is felt by many contemporary philosophers to be
dangerously close to discredited Microcosmos/Macrocosmos hypotheses. Yet it is
not always easy correctly to gauge the prospects of philosophical theories of re-
flection. We will see that in the late Middle Ages, Philo of Alexandria’s theory of
reflection came to be regarded as obsolete. I consider this judgement to be pre-
mature. I will argue, against this judgement, that Philo’s philosophical theory of
reflection was almost two millennia ahead of his time, and that it is one of the
most powerful theoretical ideas that have been developed in the history of Western
thought.

3The use of the word ‘reflection’ or ‘reflectio’ as a term for the referring to the soul’s knowledge

of itself or of its own acts goes back only to the late middle ages, it seems: see [Men12, p. 65].
4See Chapter 8.
5For an eloquent expression of this latter viewpoint, see [Boa80].
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3.2. Echo and the pool

Our historical exploration of the concept of reflection starts with the Greek
myth of Narcissus. The most extensive version of (a version of) the myth that we
have is found in Ovid’s Metamorphoses [Gra92, p. 286–288]:

NARCISSUS was a Thespian, the son of the blue Nymph Leiriope,
whom the River-god Cephisus had once encircled with the windings
of his streams, and ravished. The seer Tereisias told Leirope, the
first person ever to consult him: ‘Narcissus will live to a ripe old
age, provided that he never knows himself.’ Anyone might excus-
ably have fallen in love with Narcissus, even as a child, and when
he reached the age of sixteen, his path was strewn with heartlessly
rejected lovers of both sexes; for he had a stubborn pride in his
own beauty.

Among these lovers was the nymph Echo, who could no longer
use her voice, except in foolish repetition of another’s shout: a pun-
ishment for having kept Hera entertained with long stories while
Zeus’s concubines, the mountain nymphs, ever evaded her jealous
eye and made good their escape. One day when Narcissus went
out to net stags, Echo stealthily followed him through the path-
less forest, longing to address him, but unable to speak first. At
last Narcissus, finding that he had strayed from his companions,
shouted: ‘Is anyone here?’

‘Here!’ Echo answered, which surprised Narcissus, since no one
was in sight.

‘Come!’
‘Come!’
‘Why do you avoid me?’
‘Why do you avoid me?’
‘Let us come together here!’
‘Let us come together here!’ repeated Echo, and joyfully rushed

from her hiding place to embrace Narcissus. Yet he shook her off
roughly, and ran away. ‘I will die before you ever lie with me!’ he
cried.

‘Lie with me!’ Echo pleaded.
But Narcissus had gone, and she spent the rest of her life in

lonely glens, pining away for love and mortification, until only her
voice remained.

(∗)

One day, Narcissus sent a sword to Ameinius, his most insistent
suitor, after whom the river Ameinius is named; it is a tributary of
the river Helisson, which flows into the Alpheius. Ameinius killed
himself on Narcissus’s threshold, calling on the gods to avenge his
death.

Artemis heard the plea, and made Narcissus fall in love, though
denying him love’s consummation. At Donacon in Thespia he came
upon a spring, clear as silver, and never yet disturbed by cattle,
birds, wild beasts, or even by branches dropping off the trees that
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shaded it; and as he cast himself down, exhausted, on the grassy
verge to slake his thirst, he fell in love with his reflection. At first
he tried to embrace and kiss the beautiful boy who confronted him,
but presently recognised himself, and lay gazing enraptured into
the pool, hour after hour. How could he endure both to possess
and yet not to possess? Grief was destroying him, yet he rejoiced
in his torments; knowing at least that his other self would remain
true to him, whatever happened.

Echo, although she had not forgiven Narcissus, grieved with
him; she sympathetically echoed ‘Alas! Alas!’ as he plunged a
dagger in his breast, and also the final ‘Ah, youth, beloved in vain,
farewell!’ as he expired. His blood soaked the earth, and up sprang
the white narcissus flower with its red corollary, from which an
unguent balm is now distilled at Chaeronea. This is recommended
for affections of the ears (though apt to give headaches), and as a
vulnerary, and for the cure of frost-bite.

This text consists of two very distinct parts: the part up to (∗), and the part
from (∗) onwards. We will see how these two parts foreshadow two very different
ways in which reflection has played a role in the history of philosophy.

Both parts of the myth of Narcissus are clearly related to meanings 2 and
2b—“mirroring”—of the term ‘reflection’. The visual reflection of Narcissus in the
pool is of course an essential component of the the part from (∗) onwards. But
an echo is merely the auditive counterpart of a visual reflection, so meaning 2
is of central importance in the part up to (∗) also. Meaning 3 in the dictionary
entry—“bending back”—also plays an important role. It is essential to the story
that echo of Narcissus’ voice is “thrown back” at him, and that Narcissus sees his
own reflection in the pool. However, meaning 6c of the word reflection does not
seem to be present in the myth.

The imperfection of the image as compared to the original plays no role. On
the contrary, the situation is so set up that the reflection appears to be perfect
(“a spring, clear as silver,. . . ”). An essential motif, however, is the unbridgeable
distance between the reflection of Narcissus and Narcissus himself. Indeed, because
the reflection appears as perfect as Narcissus himself, and Narcissus is irresistibly
attracted to his reflection and not conversely, the direction of the reflection relation
becomes somehow unclear.

The part up to (∗) is equally rich and fascinating, if not more so. One theme
here is the concept of repetition: Echo can only repeat what others say. One
observation in the text is that repetition seems by its very nature unproductive
and unoriginal. The text explores, with typical ancient Greek playfulness, whether
by repetition it might nonetheless be possible for fundamentally new content to
be expressed. The suggestion is that this can perhaps be achieved using indexicals
(“here”, “now”). By means of indexicals, Echo attempts to make an assertion that is
about herself and the place and time where she finds herself. In this sense, meaning
3 in the dictionary entry (“bending back”) plays a key role. It is not clear whether
Echo’s attempt is quite successful. The apparently new content—“come (to me)”,
as uttered by Echo, for instance—can be seen as the result of a misunderstanding
on the part of Narcissus, namely that Echo makes an assertion rather than merely
repeat without assertive force. But another interpretation is also possible. Perhaps
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Hera was not completely successful disabling Echo from speaking in her own name.
Perhaps she only succeeded in severely restricting the manner in which Echo was
able to do so. Deception is a common theme in Greek mythology, and it is a theme
in the myth of Narcissus. Just as Zeus found ways to deceive Hera, perhaps Echo
succeeded, at least to some extent, in eluding Hera’s curse?

The myth of Narcissus articulates pre-theoretical understanding of reflection.
We have seen how meaning 3 (“bending back”) plays a role in both forms of re-
flection that are described in the myth of Narcissus, but that apart from that, they
are quite different from each other. In the remainder of this Chapter, we will look
into the way in which these two forms of reflection have migrated into and evolved
through the course of the history of philosophy. In later Chapters, we will be con-
cerned with the way in which the first of these forms of reflection has come to play
a role in logic in the twentieth century. Of this, let me now give a short preview.

Fast forward more than two millennia, and transport the context from inti-
mate relationships to mathematical theorising. Then assertion becomes proof, and
fundamentally new content becomes proof-theoretically independent statements.
A standard arithmetical provability predicate Bew for a mathematical theory S
(extending a weak theory of arithmetic) is a repetition machine:

S ` BewS(A)⇔ BewS(A)⇔ S ` A.

In this context “genuinely new statements” become statements that are independent
of S, and assertion becomes provability in S. Gödel’s 1931 insight consists in the
fact that, using indexicals and the repetition machine, a statement that “bends
back” upon itself and that is genuinely new (compared to what has been asserted,
namely, S) can be produced. This is of course the Gödel sentence for S. It would
be quite a stretch to claim that the first incompleteness theorem is foreshadowed
in the myth of Narcissus. Not even all key ingredients of Gödelian incompleteness
arguments are present in the part of the myth up to (∗). Negation, for instance
plays a crucial role in the construction of the Gödel sentence, but it does not even
figure in Echo’s statements (or repetitions). Nonetheless, the first part of the myth
of Narcissus was a first step on the road to exploring how repetition and indexicals
interact with each other.

3.3. Philo’s angel

Let us now turn to the question how the two philosophical senses of reflection
that are prefigured in the myth of Narcissus entered Western philosophical thought.
In particular, we will describe how the dictionary meaning 2 of the word ‘reflection’
found its way to philosophy through Philo of Alexandria, and how dictionary mean-
ing 6 found its way to philosophy through the later Neo-platonist philosophers.

Philo of Alexandria was a Jewish bible commentator, who lived in Alexandria
in the first century AD. His aim was to reconcile Greek philosophy with the truth
of Scripture (the Pentateuch). We will not go into the details of the complicated
metaphysical system that Philo constructed, but limit our discussion to elements
of it that are directly relevant to our present concerns.

As a philosopher, Philo took a Platonist stance; indeed, he can and has been
seen as a precursor of Neo-platonism. The platonistic concept of idea therefore
plays a key role in his metaphysical thought. He frequently uses the concept ‘idea’
in the structural sense in which Plato and Aristotle use it, namely in the sense of
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pattern. However, he is also the first philosopher to this concept in a radically new
sense, namely in the sense of image.6 (This is probably due or at least related to
the fact that Scripture describes Man as being created after the image of God.)

Philo’s starting point is the thesis, which is also an original thought of Philo,
that God is radically transcendent. The gulf between God and Man is so vast that
no knowledge of God and His intentions with the world is possible for us with-
out mediation. For Philo, this mediation is provided by the externalised Logos,
which can be seen as an abstract image of the mind of God.7 This externalised
Logos is a created (abstract) entity that we humans can to some extent under-
stand. It exists outside the essence of God—which infinitely exceeds our powers
of comprehension,—but we humans cannot distinguish it from the essence of God.
Philo explains this thought in the following passage in his, On Dreams, which is
quoted in [Seg77, p. 163]:

Thus in another place, when he had inquired whether He that
is has a proper name, he came to know full well that He has no
proper name, [the reference is to Exodus 6:3] and that whatever
name anyone may use for Him he will use by licence of language;
for it is not in the nature of Him that is to be spoken of, but
simply to be. Testimony to this is also afforded by the divine
response made to Moses’ question whether He has a name, even
“I am He that is (Exodus 3:14)”. It is given in order that, since
there are not in God things that man can comprehend, man may
recognise His substance. To the souls indeed which are incorpo-
real and occupied in His worship it is likely that He should reveal
himself as He is, conversing with him as a friend with friends; but
to souls which are still in the body, giving Himself the likeness of
angels, not altering His own nature, for He is unchangeable, but
conveying to those who receive the impression of His presence a
semblance in a different form, such that they take the image not
to be a copy, but that original form itself.

In other words, an ‘angel’ reflects the essence of God in the form of an image.
In this way, dictionary meaning 2 of the word ‘reflection’ is at work here. But
this angel-image is such a perfect copy that we cannot distinguish it from God in
any way, so we humans tend to take such ‘angels’ to be God himself. Philo also
observes—he was clever indeed!—that this theory leads to a semantic problem.
Since we cannot distinguish God from certain ‘angels’, there is nothing we can do
to ensure that the word ‘God’ refers to God rather than to one of the angels. So,
literally speaking, on Philo’s view, God is unnameable.

Philo thus postulates a reflection principle: God is reflected, in the sense of
mirroring (type 2 reflection), in an entity in the world (an angel). We will see later8

that reflection principles of this sort are theoretically very powerful: complexity of
the reflected object can be deduced from such principles.

But neither Philo nor his philosophical or theological readers in Antiquity seem
to have been aware of the theoretical strength of such kinds of reflection thoughts.

6See [Wol47a, p. 238]. Plato uses the term ‘image’ only to refer to the visible world.
7Noûs or Logos is one of the most complicated concepts in Greek philosophy. For the role of

the concept of Logos in Philo’s metaphysics, see [Wol47a, Chapter 4]
8See Section 6.5.
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Why was it so hard? It has to do with Philo’s conception of God. Like many
ancient and medieval philosophers, Philo takes absolute simplicity to be one of the
cardinal properties of God [Wol47b, chapter XI, section I], and this muddles the
theoretical picture. If God is absolutely simple, then the reflecting object, if it
reflects perfectly, will also be simple. Philo’s mirroring principle comes into its own
when God is taken to be infinite, where infinity is understood in something like
the contemporary sense of the word, and where the reflecting object is in some
sense part of the reflected object. But the concept of infinity was not theoretically
understood in Philo’s days. Indeed, only the beginnings of any conception of God
as infinite can be discerned in Philo’s work.9

Nonetheless, most elements required for theoretically exploiting his reflection
principle were available to Philo. According to Philo’s metaphysical system, God
created an abstract blueprint of the world, the “externalised” Logos of God [Wol47a,
chapter IV, section IV]. This externalised Logos is complex indeed, and it contains
abstract counterparts of the angels, which are the reflecting objects. If this ex-
ternalised Logos is reflected in an angel that is indistinguishable from God, then
the world must be infinite in the modern sense of the word. It is only because he
did not possess the modern concept of infinity that this line of reasoning was not
available to Philo.

At any rate, Philo postulates a form of reflection that has a direction: from God,
to the world. A few centuries later, Augustin postulates a form of reflection with
an inverse directionality: from the world (which includes ‘our’ natural numbers) to
the mind of God. In Augustine’s writings, an explicit connection with the concept
of infinity is made.

Augustine’s views of infinity did not remain stable throughout his theological
career.10 But his writings contain a thought concerning quantitative infinity that
has proved to be remarkably prescient. Augustin’s thought concerns the multiplicity
of the natural numbers. This multiplicity forms a potential infinity in the world.
But in God’s knowledge this multiplicity is limited in the sense that He can somehow
assign a number to it, so that something that is infinite for us, is finite for God
[Aug, 12.18]:

The infinity of number[s], although there is no number for in-
finities of numbers, is yet not incomprehensible by Him of whose
understanding there is no number. And thus, if what is com-
prehended in knowledge is made finite by the comprehension of
this knowledge, then all infinity is in some ineffable way finite to
God, for it is not incomprehensible to His knowledge.

Thus the infinity of natural numbers is somehow reflected in a bounded entity in
God’s thought. In Mitteilungen zur Lehre des Transfiniten I, this passage is lauded
by Cantor as a prefiguration of his theory of transfinite numbers [Can32, p. 402]:11

Energischer als dies hier von S. Augustin geschieht, kann das
Transfinitum nicht verlangt, vollkommener nicht begründet und
verteidigt werden. [. . . ] Indem nun h. Augustinus die totale, in-
tuitive Perzeption der Menge der natürlichen Zahlen [durch das

9See [Gel05, Section 2].
10See [Dro19].
11For more on the influence on Augustine’s philosophy of mathematics on Cantor, see

[vdVH13].
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Wissen Gottes] behauptet, erkennt er zugleich diese Menge for-
maliter als ein aktual-unendliches Ganzes, als ein Transfinitum
an, und wir sind gezwungen, ihm darin zu folgen.

We will return to Cantor’s views in infinity and reflection in a later Chapter.12

The idea that there is a need for mediation between a transcendent God and
the world already plays a role in certain microcosmos / macrocosmos-theories that
were advocated from late Antiquity onwards, particularly in forms of Neo-platonism
and in early medieval philosophy.13 In many of these theories, Man was taken to
play this mediating role. This is because Man belongs in part to the heavenly world
(because she has a soul), and in part to the material world (because she has a body);
moreover, the two are intimately intertwined [All44, p. 355]. In this sense, Man is
a microcosmos: she is a small-scale copy of the structure of the whole cosmos. Over
the centuries, this idea was developed in myriads of ways. For instance, theories
were formulated that argued that the state is a macrocosmos compared to Man.

Microcosmos / macrocosmos ideas obtained a new lease on life in Renaissance
philosophy, and the concept of type 2 reflection plays an important role in Leibniz’
Monadology.14 Yet, from the end of the middle ages onwards, the influence in
Western metaphysics of this concept of reflection gradually decreases. An awareness
of this evolution is expressed as early as the late 13th century AD by Odo Reginaldus
(as quoted in [Côt02, p. 78]):

How can the finite attain [knowledge of] the Infinite? On this
question some say that God will show Himself to us in a mediated
way, and that he will show Himself to us not in his essence, but
in created things. This view is receding from the aula. . .

Beside the anthropomorphism at the core of many of the microcosmos / macro-
cosmos theories, a fundamental problem with this ‘research programme’ was a poor
understanding and theoretically unconstrained use of the correspondence relation
of reflection. The correspondence relation between microcosmos and macrocosmos
was variously interpreted as some form of similarity, analogy, mirroring, metaphys-
ical causality, symbolising, or a combination of those. This made the epistemic
strength of the inferences from properties of the microcosmos to properties of the
macrocosmos and vice versa difficult to evaluate.

Philo, as we saw, already worked with a clearer notion of similarity: absolute
indiscernibility. But really precise notions of similarity that can do useful work in
this context are of a mathematical nature, and would not become available until
much later. One cluster of relevant notions consists of mathematical concepts of
structural similarity, such as bijection, isomorphism, homomorphism, and the like.
Another cluster of relevant notions, as we will see in a later Chapter,15 comprises
relations of elementary equivalence, i.e., the relation of making the same sentences
true.

12See Section 6.5.
13See [All44].
14Cfr infra, Section 3.7.
15See Section 6.5.
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3.4. See the flying man

The historical path to type 6 reflection is difficult to reconstruct, and is at
present very imperfectly understood. In our discussion of it, we to a considerable
extent follow [Men12].

According to Menn, the origin of this concept of reflection can be traced to
a dissatisfaction, on the part of Aristotle, with Plato’s cosmological theory. Plato
postulated the existence of a World Soul. In order to account for the movement of
the heavens, Plato postulated a spiritual revolving ball coextensive with the mate-
rial cosmos. This spiritual revolving ball is held responsible for the movements of
the stars, and individual revolving spiritual spheres responsible for the movements
of the planets. Already Aristotle in De Anima complained that by conceiving of the
World Soul as physically revolving, Plato commits a ‘materialistic fallacy’ ([Ari,
406b24–407a2], as quoted in [Men12, p. 47]:

The soul does not seem to move the animal in this [sc. merely
mechanical] way, but through some choice and thinking [sc. and
therefore teleologically]. And [the?] Timaeus too physicizes that
the soul moves the body in the same way [as Democritus holds],
[that is] that through being moved itself it moves the body too,
since it is interwoven with it. For after it has been constituted
out of the elements [that is, being, sameness, otherness] and
divided according to harmonic numbers, so that it might have
a connate sensation of harmony and so that the universe might
be locally moved with concordant locomotions, he bent back the
straight line [my emphasis] into a circle; and having divided one
circle into two attached at two [opposite points], he then divided
one of them into seven circles, as if the motions of the soul were
the locomotions of the heaven.

In this passage, we see also that type 3 reflection, namely reflection in the sense of
“bending, turning, or folding back” is at playing a key role.

The Neo-platonists shared Aristotle’s misgivings, and argued that a Vergeist-
lichung of Plato’s theory is urgently called for. They arrived at the view that the
World Soul does not physically move, but continually thinks and thereby moves the
heavens. This is of course a somewhat anthropomorphic way of thinking. According
to a very natural pre-theoretic way of thinking, mental events (beliefs and desires)
cause physical events such as limbs being moved and eyebrows being raised. In a
structurally somewhat similar way, the Neo-platonists believed the World Soul to
move the heavens.

In this way, physical motion is transformed in mental directedness. Moreover,
the Neo-platonists interpreted Plato’s ‘bending back of the straight line’ as the
divine souls thinking themselves and thereby understanding the world (Proclus, In
Timaeum 2.248, 11–23, as quoted in [Men12, p.64–65]):

[. . . ] since the vital aspect of the soul is intellectual and directed
toward returning and unwinds the intelligible multiplicity, it re-
turns again to the same [starting-point]; and since the soul moves
other-moved things [while? by?] being turned toward itself and
moving itself; for all these reasons the circular [shape or motion]
is appropriate to it.
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Thus the idea of autonomous self-reflection is born [Men12, p. 59–60]:

The late Neoplatonists are thus led [. . . ] to develop and defend
the Phaedrus argument by saying that the only genuine primitive
self-motion (that is, a self-motion that is not decomposable into
one part of a thing moving another part) is self-thinking (more
precisely, not just any act in which something thinks itself under
some description, but what we might call reflexive thinking—
thinking whose content is essentially de se) [. . . ]

Already in late Antiquity, especially in Porphyry and in Augustine, one finds
the thought that not only the World Soul and other divine beings self-reflect in the
way described by Proclus.16 Human souls, too, have privileged intellectual access
to themselves as souls. They, too, can be present to themselves in a way that gives
them knowledge of their essence and existence as a thinking being.

Porphyry moreover argued that the knowledge thus obtained is knowledge of
the purest and highest kind. When the subject and the object of knowledge differ
from each other, perfect knowledge is not possible, because the knowledge will then
necessarily be tainted by subjective elements that are extraneous to the object of
knowledge. But self-reflective knowledge does not suffer from this defect, because
in this form of knowledge the subject and the object of knowledge coincide:17

Those people are present to themselves who are able to go in-
tellectually to their own essence and know their essence and in
that knowledge and in the recognition of that knowledge to grasp
themselves in the unity of knower and known [my emphasis]. . .

This argument does not convince contemporary philosophers. If the mystic one-
ness with oneself that seems to be described here is no more than pure self-identity,
then it is not clear how it qualifies as a form of knowledge at all.

Avicenna later likewise defended the thesis that humans can come to know
their own essence and existence by self-reflection. He argued for this by means of a
striking thought experiment argument known as the argument of the Flying Man:18

The inquiry leads us to concern ourselves with grasping the quid-
dity of this thing that is called ‘soul’. We must here indicate
a way to affirm the existence of our soul, with an affirmation
that may serve as an admonition and reminder. This will be a
pertinent indication for one who has the ability to observe the
truth by himself, without needing to be instructed or rebuked,
or averted from errors. We say that one of us must imagine
himself as if he were created all at once and as a whole, but
with his sight covered so that he cannot see anything external,
and created falling through the air or a vacuum, but falling in
such a way that he encounters no air resistance nor anything
else that would allow him to have any sensations, and with his
limbs separated from one another so that they do not meet or
touch. Then consider whether he will affirm the existence of his

16See [Sor07, p. 61–64].
17From Porphyry, Sententiae 41, as quoted in [Sor07, p. 62].
18Avicenna, The healing: Soul 1.1 (Rahman 15.18–16.17) (= De Anima 1.1, from Latin of

Avicenna Latinus, ed. S. Van Riet), quoted in [Sor07, p. 65–66].



80 3. REFLECTION

essence. For he will not have any doubt in affirming existence for
his essence, yet he will not along with this affirm [the existence
of] the extremities of his limbs, nor his innards, his heart, his
brain, or anything external to him. Instead, he will affirm [the
existence of] his essence, without affirming that it has length,
breadth or depth. Nor, if in that state he were able to imagine
there to be a hand or other body part, would that it was a part
of himself. You know that what is affirmed is different from what
is not affirmed, and that what is grasped immediately [literally:
‘what is near at hand’] is different from what is not so grasped.
Therefore the essence whose existence is affirmed [by the Flying
Man] is proper to him, insofar as it is his self, not his body or
his limbs, which he does not affirm. Thus he is admonished and
has a way of being awake to the existence of his soul as some-
thing distinct from the body and immaterial, and he knows and
is aware of it [sc. his soul]. But if he is oblivious of it, he will
need to be rebuked.

Avicenna expresses the conclusion of his thought experiment as follows:19

What [the Flying Man] will then have grasped is his essence,
which he will then perceive. Indeed there is nothing which grasps
a thing without grasping its [own] essence as grasping.

In these late ancient and medieval descriptions of the mind that goes out of
itself and comes back to itself in a reflexive movement, we may descry the origin of
the Cartesian thought that some form of rational introspection lies at the basis of
an understanding of the world.

3.5. Cartesian thoughts

Every philosopher is familiar with the overall structure of the argumentation
in the Meditations [Des41]. There Descartes starts by methodically suspending
all his beliefs on the strength of the possibility that he is deceived by an evil
demon. He then realises that there is at least one belief that survives this process
of methodological doubt. This is the famous Cogito-belief, i.e., the content of the
statement:

I am thinking.

From this, he obtains the insight that he is a Thinking Subject. Moreover, he finds
in his mind an idea of God. He uses this idea to construct a proof of the existence
of God: from the existence in his mind of an idea of God, he “deduces” that a
benevolent God exists. From the existence of a benevolent God, he then concludes
that most of his former beliefs about the external world must be correct after all.

There is a wide consensus that Descartes’ proof of the existence of God is
deeply problematic and probably unsalvageable: this is seen as one main reason
why his foundational programme is ultimately doomed to failure. Nonetheless, at
the same time Descartes is seen as one of the most important philosophers that
ever lived. This is in part because the Cartesian conception of the Subject, as
articulated in the Meditations, has proved to be extremely influential in philosophy

19Avicenna, Reply to Bahmanyâr and al-Kirmân̂ı, paras 58–59, translated by J. Michot, as
quoted in [Sor07, p. 66].
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and far beyond. But it is also because there is a strong feeling that Descartes was
onto something in his reflections on the epistemic significance of the Cogito.20 Let
us to some extent pursue this latter thought with some more rigour and precision
than Descartes himself was able to.

Let the operator Ai stand for “it can be a priori known by i that”, and let
the operator � stand for “it is metaphysically necessary that”. Let c stand for the
proposition expressed by the Cogito sentence “I am thinking”, and let e stand for
the proposition “I exist”. Furthemore, let ci stand for the content of c relative to
subject i (so with ‘I’ in the Cogito sentence interpreted as subject i), and similarly
for ei.

Proposition 3.1. Ai(ci).

Proof. The following is a procedure for coming to know c:
(1) Think proposition c.
(2) By introspection, come to believe c.
(3) By introspection again, form the second-order belief that you believe c.
(4) Claim: This second-order belief is knowledge.

The reason for (4) is the following. By (2), the second-order belief is true. Since
introspection yields justification, by (3) the second-order belief is also justified.
Moreover, no Gettier-condition is present.

(5) This knowledge is a priori, since introspection is a source of a priori belief.
�

From Proposition 3.1, we can go on in Cartesian fashion to infer:21

Proposition 3.2. Ai(ci ∧ ei).

Proof.

(1) Ai(ci) Proposition 3.1
(2) Ai(ci → ei) existential generalisation on ci
(3) Ai(ei) from (1) and (2)
(4) Ai(ci ∧ ei) from (1) and (3) �

Descartes then very quickly infers from this to the conclusion “I am a thinking
substance”; but this goes beyond the content of proposition 3.2. However, Kripke
observed that we are now in a position to conclude that the concepts of necessity
and of a prioricity are not co-extensional [Kri80]:

Proposition 3.3. There are contingent a priori propositions.

Proof. This claim is witnessed by ci and ei, in a situation where i is thinking
(and therefore exists). These propositions are a priori knowable (proposition 3.2).
But since i could have failed to exist, and would in such a situation not have
thought, these propositions are contingent. �

Bernard Williams also recognises that the propositions c and e are of special
epistemological significance. He argues that they have a property that he calls
incorrigibility [Wil78, p. 59]:

20See for instance [Wil78, Chapter 3].
21Pace the reservations formulated by Bernard Williams at the end of Chapter 3 in [Wil78].
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Definition 3.4 (B. Williams).
A proposition x is incorrigible if and only if for all i:

�[(i believes that x)→ x].

Proposition 3.5 (B. Williams).
Propositions c and e are incorrigible.

Proof. Consider any situation w in which i believes c. Since believing is a
form of thinking, i is thinking in w. So, in w, proposition c is true. And since one
cannot believe without existing, also proposition e is true in w. �

Next, suppose that in the Cogito sentence we replace “subject i thinks” by
“formal system S proves”, where system S contains a minimal amount of arithmetic.
Call the resulting proposition c∗. In proof theory, such a proposition is called a
Henkin sentence.22 Then c∗ has a property analogous to the incorrigibility of c:

Necessarily, if c∗ is provable in S, then it is true.

Moreover, Löb has shown that it is consequence of Gödel’s second incompleteness
theorem that c∗ is indeed provable in S (and therefore also true) [BBPJ02, Corol-
lary 18.5].

Now consider the cartesian proposition c, which is the content of the sentence:

I am not thinking this thought.

This proposition also belongs to a noteworthy class of propositions, namely the
elusive ones:

Definition 3.6.
A proposition x is elusive if and only if for all i:

�[((i thinks x)→ ¬x) ∧ ((i does not think x)→ x)].

Proposition 3.7. c is elusive.

Proof. This follows from the self-referent properties of c. �

In this sense, the sentence c is analogous to the Gödel sentence gS for a system S,
for which we have, by Gödel’s first incompleteness theorem, that if S proves gS ,
then gS is false, and if S does not prove gS , then gS is true.

Proposition 3.7 thus shows that it is in principle impossible, for a mind, to
entertain all and only the true propositions in thought. This it can be seen as
a weak incompleteness theorem: as a cartesian incompleteness theorem. Indeed,
Descartes had all the conceptual and theoretical tools that are required for arriving
at this insight. As with the myth of Narcissus (up to (∗)), Descartes merely failed to
consider Cogito-like self-referential propositions that essentially involve the concept
of negation.

22See [BBPJ02, p. 236]. If we substitute “subject i thinks” instead by “it is true that”,
then we obtain the proposition that is known in the truth theory literature as the truth teller.
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3.6. Lockean reflection

In the foregoing Sections, we have seen how concepts of reflection have been
taken to task for doing some heavy philosophical lifting in the history of philosophy.
But to the best of my knowledge it is fair to say that no philosopher prior to
Locke developed a worked-out theory about what reflection is: Locke was the
first philosopher to do so. Moreover, even though his theory of reflection, too,
is rudimentary in certain respects, it is developed in more detail than even his
successors’ theories of reflection.

Locke’s theory of reflection went on deeply to influence later philosophical
thought about reflection. It is not an exaggeration to say that, despite the fact
that his successors took issue with elements of his theory of reflection, Locke’s the-
ory quickly became dominant in philosophy, and continues in analytic philosophy
to be dominant up to this day.

Locke’s theory of reflection is a part of his philosophy of mind and cognition.
At a first approximation Locke can be taken to liken the human mind to a kind of
vessel that contains ideas. He does not have very much to say about the nature of
ideas, except that they are representations. According to Locke, there are only two
sources of ideas in the human Mind: sensation and reflection.

Locke describes the process of reflection in general terms as follows [Loc89, II,
1, 4]:

By REFLECTION then, in the following part of this Discourse,
I would be understood to mean, that notice which the Mind
takes of its own Operations, and the manner of them, by rea-
son whereof, there come to be Ideas of these Operations in the
Understanding.

Thus sensation may be called a faculty of external sense, and reflection may be
called a faculty of inner sense [Loc89, II, 1, 4]:

The other Fountain, from which Experience furnisheth the Un-
derstanding with Ideas, is the Perception of the Operations of
our own Minds within us, as it is employ’d about the Ideas it
has got [. . . ] This source of Ideas, every Man has wholly in him-
self: And though it be not Sense, as having nothing to do with
external Objects; yet it is very like it, and might properly enough
be call’d internal Sense.

Whereas perceptual knowledge, for instance, is first-order, reflective knowledge has
a second-order character for Locke.

Unlike external sense, reflection functions as a source of a priori knowledge. As
in the case of Descartes’ Cogito, type 6 reflection is at work here. From the early
modern period onwards, something like this meaning comes first to philosophers’
minds when they think about reflection as a technical philosophical concept. To
repeat, the Lockean conception of reflection dominates in philosophy. In particular,
it has shaped and continues to exercise a deep influence on philosophical discussions
about introspection, which is taken to be a special “means of learning about one’s
own currently ongoing, or perhaps very recently past, mental states or processes”
[Sch19, p. 1].

Even though reflection plays a central role in his theory of mind, Locke did
not go into great detail about the nature of the mental process of reflection and
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its products. Some interpret Locke as claiming that, necessarily, when an idea is
formed in the mind, then also, by reflection, an idea of that idea is formed. From
this, the conclusion is drawn that the human mind carries out an infinite number of
acts of reflection, and contains infinitely many ideas.23 This, then, is taken by many
to be in conflict with the finiteness of the human mind.24 Others interpret Locke
in such a way that a voluntary act is involved in reflection, which need not always
occur when an idea is formed. Scharp, for instance, argues that Locke believes
that when an idea is formed by the mind, the formation act of the mind leaves an
impression in the mind which is transformed into a reflective idea only if the mind
(voluntarily) turns its attention to this impression.25

This Lockean theme is not of mere historical interest. The idea that when
an idea is formed in the mind, a higher-order idea is necessarily also formed, is
echoed in views by influential contemporary analytic philosophers such as Brandom,
Davidson, and McDowell, who hold that one cannot have beliefs at all without
having higher-order beliefs. I do not propose to carry out Locke-scholarship here,
nor am I qualified to do so. So I will not attempt to adjudicate between the above-
mentioned interpretations of Locke’s theory of reflection. Likewise, we shall not
here further enquire into the merits and demerits of the view that first-order belief
necessitates higher-order belief.26

We have seen in Sections 3.4 and 3.5 how in the works of authors such as
Porphyrius, Avicenna, and Descartes, dictionary meaning 6 of the word reflection is
connected to self-consciousness: to the way in which the mind acquires knowledge
of itself as an entity and of its own essence. Lockean reflection, however, is a
faculty that is restricted to knowledge by the human mind of its own operations.
The question how the human mind obtains knowledge of itself as an entity and of
its nature is answered by Locke as follows [Loc89, IV, 4, 3]:

we have an intuitive Knowledge of our own Existence, and an
internal infallible Perception that we are. In every Act of Sen-
sation, Reasoning, or Thinking, we are conscious to ourselves of
our own Being.

Since Locke believes the knowledge that the Mind has of itself (rather than of
its individual operations) to be intuitive, it is first-order knowledge, rather than
knowledge obtained through a process of reflection.27 The question then arises—
particularly for an empiricist such as Locke—how this intuitive knowledge that the
Mind has of itself comes about.28

3.7. Leibniz and apperception

Leibniz has expressed and advocated core elements of a theory of reflection.
Actually, two concepts of reflection play a role in Leibniz’s work. We will discuss
them in turn. We will see that Leibniz’s conception of one of the concepts of
reflection that is at work in his philosophy is closely related to that of Locke, but

23For a discussion of this objection, see [Sch08, Sections 1.5 and 1.6].
24That the human mind is finite, is claimed, for instance, by Descartes in [Des41, Meditation

3].
25See [Sch08, Section 2].
26For a critical discussion of this view, see [Kor12, Chapter 2].
27For a discussion of this question, see [Thi94, Section II].
28We do not go into this further question here.
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also differs from Locke’s conception of reflection in key respects. Moreover, it will
become clear that it is not easy to understand exactly what Leibniz’s views of this
concept of reflection are, and that Leibniz does not have a clearly worked out theory
of reflection [Thi94, p. 199].

One concept of reflection plays a central role in the Monadology [Lei91]. The
concept of reflection that is at work there, is dictionary meaning 2 of the word
‘reflection’.

A fundamental thesis in the Monadology is that the world consists of monads
that are causally isolated from each other, where every monad reflects each other
monad completely, albeit mostly not very clearly. For any two monads a and b,
then, a is structurally very similar to a part of b, and b is structurally very similar
to a part of a. This implies that every monad is structurally very similar to a proper
part of itself. And it also implies that every monad is structurally very similar to the
world as a whole. As with Philo’s conception of reflection, this makes one suspect
that there is a connection with the concept of infinity here. Also as with Philo,29

one main reason why this connection was not explored, even though Leibniz was
a great mathematician, is the fact that the concept of actual infinity was not well
understood and even by many believed to be intrinsically paradoxical.30

In Leibniz’ picture, God is “the central monad”, which is likewise reflected in
all other monads. Thus we distinguish between reflection of the Absolute in the
world (of monads) on the one hand, and reflection between ‘ordinary monads’ on
the other hand.

Leibniz has also contributed to the theory of the concept of reflection that is
expressed by dictionary meaning 6 of the word ‘reflection’, which he mostly calls
apperception. This will actually be our main concern in this Section.

Leibniz draws a distinction between perception and apperception that is rem-
iniscent of Locke’s distinction between sensation and reflection. Apperception re-
lates to the mind’s past only, and can therefore be seen as a form of immediate
memory [Thi94, p. 199]. In a famous passage from Principes de la Nature et de la
Grâce, fondés en Raison (1714) Leibniz describes the concepts of perception and
apperception as follows:31

[. . . ] il est bon de faire distinction entre la PERCEPTION qui
est l’état intérieure de la Monade representant les choses ex-
ternes; et L’APPERCEPTION qui est la CONSCIENCE ou la
connaissance réflexive de cet état interieur, laquelle n’ést point
donnée à toutes les Ames, ni toujours à la même Ame.

Through apperception of itself, the Mind is then able to produce an idea of
itself in itself:32

Nostre Esprit même nous donne quelque image de cela, et pour
rendre ces notions plus aisées par quelque chose d’approchant,
je ne trouve dans les creatures rien de plus propre à éclaircir ce
sujet, que la Reflexion des Esprits, lors qu’un même Esprit est

29See Section 3.3.
30For a discussion of the relation between Leibniz’s use of reflection in the Monadology on

the one hand, and reflection principles in set theory on the other hand, see [vA09].
31As quoted in [Thi94, p. 197].
32Leibniz, Remarques sur le Livre d’un Antitrinitaire Anglois (1693?), as quoted in [Thi94,

p. 199, footnote 8]. See also [Lei91, par 30].
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son propre objet immediat, et agit sur soy même en pensant à
soy et à ce qu’il fait. Car ce redoublement [emphasis Udo Thiel]
donne une image ou ombre de deux substances respectives dans
une même substance absolue; sçavoir de celle qui entend, et de
celle qui est entendue.

So through apperception the human mind can contain an idea of itself, rather than
just of its actions.33

Thus Leibniz’s view of reflective knowledge differs from that of Locke. On the
former view, “reflection achieves more than Locke says it does. According to Locke,
reflection is a source of ideas of the operation of the mind; for Leibniz, reflection
reaches not only the operations of the mind, but the mind itself” [Thi94, p. 207].
In Leibniz’s own words:34

[. . . ] mais cette reflexion ne se borne pas aux seules operations
de l’esprit, [. . . ] elle va jusqu’à l’esprit luy même, et c’est en
s’appercevant de luy, que nous nous appercevons de la substance.

In particular, then, for Leibniz, in contradistinction to Locke, the knowledge that
the Mind has of itself as an entity is of a second-order nature.

Kulstad, in an important monograph on Leibniz’s theory of reflection ([Kul91]),
argues that Leibniz distinguishes between two kinds of reflection. In perception, as
well as in apperception, an idea in the mind is created by means of a mental act.
Two kinds of reflection on perception (as well as on apperception) are then possi-
ble. In the reflective act, one can focus one’s attention on the product of perception
(apperception), i.e., on the idea in the mind that is thereby produced. Kulstad calls
this kind of reflection simple reflection. But one can also, in the reflective act, focus
one’s attention on the token mental act of perceiving (apperceiving). This kind of
reflection is called focused reflection.

Whether this distinction between two kinds of reflection is clearly discernible
in Leibniz’s writings is subject to debate.35 Also, it is not clear whether in a given
act of reflection, one aspect (simple, or focused) can be present without the other
also being present [Thi94, p. 206]. Nonetheless, it is a philosophically significant
distinction.36

In any case, Leibniz’s views presuppose that every human mind must have an
innate idea of itself from the outset. According to him, many of our (innate and
acquired) ideas are unconsciously present in our mind: these are the so-called petites
perceptions. This may often apply to our idea of ourselves as well. But when, in an
apperceptive act, we turn our attention to this innate idea of ourselves, we become
conscious of it.

Through reflection, we can become conscious not only of our innate ideas,
but also of relations between them. The principle of non-contradiction may be
one such insight. Further reflection then reveals, according to Leibniz, that all of
our mathematical insights can ultimately be derived from this principle of non-
contradiction. (From a contemporary vantage point, this claim seems far-fetched.)

33The thesis that the mind can contain an idea of itself goes back at least to Philo of

Alexandria: see [Wol47a, p. 213–214].
34As quoted in [Thi94, p. 207].
35Thiel, for instance, denies this: see [Thi94, Section III].
36Even critics of Kulstad’s interpretation, such as Thiel, concede this [Thi94, p. 209].
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So reflection is not merely a matter of “pure inner perception”. Nor is this
the case for our apperception of our own minds: as in other acts of apperception,
reasoning and abstraction play a crucial role in it. The following passage is relevant
here:37

L’apperception de ce qui est en nous depend d’une attention et
d’un ordre [my emphasis].

The term ‘order’ in this passage is taken by commentators to refer to the role of
discursive elements and rationality in apperception.

It is the role of rational elements, and the background assumption of the exis-
tence of innate ideas, that allows apperceptive acts to go beyond the goings on in
the mind and to produce substantial knowledge about the world [Lei91, par 30]:38

C’est aussi par la connoissance des vérités nécessaires et par leur
abstractions que nous sommes élevés aux Actes reflexifs, qui nous
font penser à ce qui s’appelle Moy, et a considérer que ceci ou cela
est en Nous: et c’est ainsi qu’en pensant à nous, nous pensons à
l’Être, à la Substance, au simple et au composé, à l’immateriel
et à Dieu même; en concevant que ce qui est borné en nous, est
en lui sans bornes.

Leibniz was rather vague about the details of the role that type 6 reflection
plays in the formation of knowledge exceeding the contents of our experience. Other
rationalists tried to be more precise. In their Port Royal Logic, Arnauld and Nicole
argued that there is an intimate relation between type 6 reflection on the one hand,
and the process of abstraction on the other hand [AN62, 38, emphasis added]:39

Suppose, for example, I reflect that I am thinking, and, in con-
sequence, that I am the I who thinks. In my idea of the I who
thinks, I can consider a thinking thing without noticing that it is
I, although in me the I and the one who thinks are one and the
same thing. The idea I thereby conceive of a person who thinks
can represent not only me but all other thinking persons. By
the same token, if I draw an equilateral triangle on a piece of
paper, and if I concentrate on examining it on this paper along
with all the accidental circumstances determining it, I shall have
an idea of only a single triangle. But if I ignore all the partic-
ular circumstances and focus on the thought that the triangle
is a figure bounded by three equal lines, the idea I form will,
on the one hand, represent more clearly the equality of lines
and, on the other, be able to represent all equilateral triangles
[. . . ] Now in these abstractions it is clear that the lower degree
includes the higher degree along with some particular determi-
nation, just as the I includes that which thinks, the equilateral
triangle includes the triangle, and the triangle the straight-lined
figure. But since the higher degree is less determinate, it can
represent more things.

37Nouveaux Essais I.i.25, as quoted in [Thi94, p. 206].
38For a discussion of the relation between rationality and reflection in Leibniz, see [Ben16].
39In the beginning of this Chapter I argued that there is at least an interesting analogy

between the process of abstraction and the process of reflection: cfr supra, p. 69.
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This shows that for Arnauld and Nicole, as, according to Kulstad, for Leibniz, the
role of attention in type 6 reflection is of great importance.40

That abstraction is a process for forming new ideas, and that these are ideas
of a special kind, is even clearer in a later work by Arnauld, where he tells the
following story [Arn83, 74]:

The philosopher Thales, having to pay twenty workers one drachma
each, counted twenty drachmas and paid each worker. He would
not have been able to do this unless there were at least two
perceptions in his mind: one of twenty men and one of twenty
drachmas [. . . ] Having some spare time he began to reflect, and
thinking about what the two perceptions or ideas have in com-
mon, namely that there is 20 in both, he abstracts from what is
particular in them the abstract idea of the number 20, which can
subsequently be applied to twenty horses, twenty houses, twenty
stadiums. This is a third idea or perception.

The picture, then, seems roughly the following. In an act of type 6 reflection,
multiple ideas are compared (idea of 20 drachma, idea of 20 workers). Attention
is given to the way in which these ideas are similar to each other. On the basis of
this, a more abstract idea is formed (the idea of the number 20), which contains
only the features that the multiple ideas have in common.

3.8. Introspection

From the foregoing, it is clear that Locke’s theory of type 6 reflection is the
birthplace of introspection as an important theme in contemporary epistemology.

Schwitzgebel describes the main properties of introspection as follows [Sch19,
section 1.1]:

(1) Introspection is a process that generates, or is aimed at generating, knowl-
edge, judgments, or beliefs about mental events, states, or processes, and
not about affairs outside one’s mind, at least not directly.

(2) Introspection is a process that generates, or is aimed at generating, knowl-
edge, judgments, or beliefs about one’s own mind only and no one else’s,
at least not directly.

(3) Introspection is a process that generates knowledge, beliefs, or judgments
about one’s currently ongoing mental life only; or, alternatively (or per-
haps in addition) immediately past (or even future) mental life, within a
certain narrow temporal window.

(4) Introspection yields judgments or knowledge about one’s own current men-
tal processes relatively directly or immediately.

(5) Introspection involves some sort of attunement to or detection of a pre-
existing mental state or event, where the introspective judgment or knowl-
edge is (when all goes well) causally but not ontologically dependent on
the target mental state.

(6) Introspection is not constant, effortless, and automatic.

40It is argued in [Pea19] that attention plays an important role in Locke’s theory of reflection,
too.
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Introspection is taken to be a source of reason; introspection is a faculty of the
rational mind. Properties 3,4, and 5 show that introspection is indeed a form of 6
reflection.

The directness condition (property 4) shows that discursive elements play at
best a secondary role in introspection. Moreover, property 2 indicates that intro-
spection does not by itself deliver knowledge of states of affairs outside the mind.
These two elements are in line with Locke’s notion of reflection, and go against
Leibniz’s conception of 6 reflection. Indeed, as we have said before, rationalist
claims that reflection yields knowledge of the world outside the mind are regarded
with much suspicion nowadays.

In contemporary philosophy, the cognitive contents of the rational mind are
not taken to be ideas, but beliefs. But many questions of early modern philosophy
concerning 6 reflection translate into questions concerning introspection.

One such question is: which are the basic logical principles concerning belief (of
a rational subject) that are connected to introspection? Putative such principles
are called introspection principles. If B is a predicate that expresses, then some of
these basic schematic principles are the following:41

PI Bφ→ BBφ (Positive Introspection)
CPI BBφ→ Bφ (Converse Positive Introspection)

NI ¬Bφ→ B¬Bφ (Negative Introspection)
CNI B¬Bφ→ ¬Bφ (Converse Negative Introspection)

If these introspection principles were to hold, then belief would be a luminous
condition in the sense of [Wil00].

If introspection were an automatic process, then Positive Introspection would
be a true principle. However, we have seen earlier that Leibniz observed that this
would mean that the rational mind contains infinitely many beliefs,42 which many
take to be an objectionable conclusion. Moreover, we have seen at the beginning of
this Section that introspection is not typically taken to be an automatic or constant
process (property 6). So principle PI is highly suspect. For similar reasons, NI is
suspect. We will later see that simple diagonal arguments show that almost all
general introspection principles for logical reasons cannot hold in full generality for
a consistent rational mind.43 In other words, belief is not a luminous state of mind.

The early history of proof theory has shown that all sound mathematical theo-
ries S that extend elementary arithmetic have certain positive introspective capac-
ities. Any such theory S, formulated in a language L, contains an ‘idea’ of itself in
the form of a standard provability predicate BewS , such that for each ϕ ∈ L:

S ` BewS(ϕ)⇔ ϕ is a theorem of S.

This can be seen as a positive introspection property.
Moreover, this provability predicate will satisfy what are called the Hilbert-

Bernays derivability conditions for every ϕ ∈ L:

(1) If S ` ϕ, then S ` BewS(ϕ);
(2) S ` BewS(ϕ)→ [BewS(ϕ→ ψ)→ BewS(ψ)];

41We are sloppy with coding here.
42Unless the mind’s belief that p would somehow be identical to its belief that it believes

that p.
43Cfr Section 6.7. See [SH22] for an extended discussion of introspection principles for

rational belief.
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(3) S ` BewS(ϕ)→ BewS(BewS(ϕ)).

The Hilbert-Bernays derivability conditions are regarded as minimal conditions that
a predicate BewS must satisfy if it is to be taken to express the concept provability
in S.

An analysis of the proof of Gödel’s second incompleteness proof shows:

Theorem 3.8. If a provability predicate BewS for a theory S satisfy the Hilbert-
Bernays conditions, then:

S ` BewS(BewS(ϕ)→ ϕ)→ BewS(ϕ).

This is known as Löb’s theorem. From this theorem, it immediately follows
that the negative introspection property

S ` ¬BewS(ϕ)⇔ ϕ is not a theorem of S

fails dramatically for sufficiently strong sound mathematical theories. This is the
moral of Gödel’s second incompleteness theorem.

3.9. Dedekind’s perfectly reflective minds

We now turn to the question whether perfect reflective knowledge of oneself is
theoretically possible, and, if it is, what such possibilities might look like. With the
word ‘reflection’, here, reflection in the sense of meaning 6 is intended. Moreover, a
structural notion of perfection is aimed at: self-knowledge is taken to be perfect if
the structure of the mind is mirrored in an idea in the mind. Thus, in perfect self-
knowledge in this sense, type 2 reflection is also involved. To conclude, throughout
this investigation, I will use categories (mind, idea,. . . ) that were part of the
shared philosophical vocabulary in the early modern period rather than those of
contemporary epistemology.

Perfect reflective self-knowledge is possible if certain assumptions are made,
some of which have been discussed previous sections. The assumptions that are
needed are the following. Firstly, the human mind is not itself an idea. Secondly,
the human mind contains nothing but ideas. Thirdly, the human mind can contain
not only ideas of external entities, but also contain ideas of ideas. This, of course, is
just the concept of reflection that was defended by Locke and by Leibniz. Fourthly,
by reflection, the human mind can form an idea of itself. As we have seen, this as-
sumption was defended by Leibniz, but denied by Locke. Fifthly, ideas can contain
other ideas as part of their content. For instance, an idea of a yellow rubber duck
may somehow contain an idea of yellowness, an idea of rubber, and idea of duck
as parts of its content. In particular, when b is an idea of a, then a is part of the
content of b.

Let us call the human mind M. We have seen that it is populated with (zero
or more) ideas (m0,m1,m2, . . .). Moreover, we have seen that through a process
of reflection, an idea of another idea can be created. If an idea mi is in mind M,
then mi is a part of the content of M. Likewise, if an idea mi is about an idea mj ,
then mj is a part of the content of mi. Let us abbreviate the transitive closure of
the ‘being an idea of’-relation as ≺. Then of course ≺ can be seen as a transitive
directed graph.

We do not want to require of the relation ≺ that it be anti-symmetric. It seems
possible, for example, for two paintings p1 and p2 to be such that p1 represents p2

and p2 represents p1; likewise, it is hard to exclude that an idea a is a representation
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of the idea b and vice versa. Similarly, we make no assumptions about the extent
to which ≺ is or is not a reflexive relation.

Now we ask the following question:

Question 3.9. What do minds that have structurally perfect self-knowledge
look like?

This only becomes a precise question once it is explained in precise terms what is
meant by structurally perfect self-knowledge. This is done in the following natural
way:

Definition 3.10. A mind M has structurally perfect self-knowledge iff

∃mi 6= M : mi ≺M ∧mi
∼= M,

where ∼= stands for the relation of isomorphism. In other words, a mind has struc-
turally perfect self-knowledge if it contains an idea of the Mind that is isomorphic
to the structure of the Mind.44

The model of the completely empty Zen-mind does not represent a mind that
has perfect self-knowledge: according to our assumption one above, the mind is
not an idea, so we cannot have M ≺ M , whereby the Zen-mind is not perfectly
self-knowing in our sense of the word. Moreover, since in addition ≺ is transitive,
also the slightly more complicated model of the Mind M that contains only one idea
m, which is an idea of M does not represent a mind that has perfect self-knowledge.
All this does not mean that, according to the assumptions that we have made, the
Mind cannot belong to the content of ideas—the point is just that the Mind is not
an idea of itself.

Proposition 3.11. The mind M with ideas m0,m1,m2, . . . ,mi, . . . (for all
i ∈ N), such that

. . . ≺ mi ≺ . . . ≺ m0 ≺M,

and which contains no other ideas, is a mind that has structurally perfect self-
knowledge.

Proof. Obviously m0
∼= M . �

Intuitively, this Mind can be conceived of as follows: m0 is an idea of the mind M
formed by reflection,45 m2 is a reflexive idea of m1, and so on, ad infinitum.

Figure 1

44Using the notion of homomorphism instead, ideas of less-than-perfect self-knowledge can

be expressed.
45As mentioned earlier in this Section, this is not something Locke himself would agree with.
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This is a variant of Dedekind’s notorious “proof” of the existence of an infinite
collection [Ded88, 66]:

My own realm of thoughts, i.e., the totality S of all things which
can be objects of my thought, is infinite. For if s signifies an
element of S, then the thought s′ that s can be an object of my
thought, is itself an element of S. [. . . ] then S is infinite, which
was to be proved.

With the word ‘infinite’ in this quote, Dedekind means Dedekind-infinite, which is
defined as follows [Ded88, 64]:

Definition 3.12. A set S is Dedekind-infinite if there is a S′ ( S such that
there is a bijective function from S to S′.

Dedekind-infinity, then, is a reflection property, with ‘reflection’ taken in sense 2 of
the word.

Then we have the following simple observation:

Proposition 3.13. Every perfectly self-knowing mind contains an infinite re-
flection chain

. . . ≺ mi ≺ . . . ≺ m0 ≺M.

Proof. This follows by a simple cardinality argument, using the assumption
that there is an idea m0 of the Mind. �

In other words, every perfectly self-knowing mind is infinite, and the mind M of
Proposition 3.11 is a minimal model of a perfectly self-knowing mind. Moreover,
we see that the minimal model of the proof of Proposition 3.11 in fact contains
infinitely many ideas that perfectly reflect the mind: every mn does so.

Observe that our minimal model of a perfectly self-knowing mind is not well-
founded—it is conversely well-founded. Indeed, no well-founded perfectly self-
knowing minds exist:

Proposition 3.14. No perfectly self-knowing mind has a well-founded ≺-relation.

Proof. This follows from Proposition 3.13. �

Of course we do not want to make too much of the non-well-foundedness involved
here: we might as well have focussed on the converse of ≺.

Now contain the following axiom:

Axiom 3.15. There is a perfectly self-knowing mind.

Proposition 3.13 shows that this is an axiom of infinity. Given minimal assumptions
on minds, ideas, and reflection, this axiom postulates objects (minds) that are
infinite. Dedekind’s “proof” of the existence of an infinite collection can be seen as
an argument for this Axiom.

The Mind described in Proposition 3.11 can in a straightforward sense be seen
as a model

M = 〈{m0,m1, . . .},≺〉
for a first- or second-order language L≺ that has ≺ as its sole non-logical symbol.
If L≺ is second-order, then Axiom 3.15 can be expressed in it, and be seen to hold
in M.
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Axiom 3.15 is a reflection principle—with ‘reflection’ taken in sense 2 of the
word. It follows from work of Frege46 that Axiom 3.15 has significant consistency
strength, i.e., mathematical strength: in a second-order context, it allows one to in-
terpret full second-order Peano Arithmetic. Moreover, Axiom 3.15 entails a version
of the schematic second-order Bernays reflection principle:47

∃m∀Y ∀y ≺ m : ϕ(Y, y)↔ ϕm,P(m)(Y ∩m, y), 48

and that any witness in M of Axiom 3.15, seen as a model in its own right, is
elementary equivalent with M. However, in the context of pure second-order logic,
this Bernays reflection principle does not entail the existence of an ω-sequence,
as can be seen as follows.49 Consider a non-standard model N of second-order
arithmetic containing 2ℵ0 elements, among which there are two (non-standard)
numbers m,n such that according to the model, m < n, and such that any formula
φ(x) holds (in N) of m if and only if it holds (in N) of n.50 Then the restriction
of N to all elements ≤ n (call this model N≤n), Bernays reflection holds. But N≤n

thinks of itself that it is finite.
It may be instructive briefly to compare Axiom 3.15 to the basic first-order set

theoretic reflection principle of Montague and Levy, ([Lev60b], [Mon61]),51 which
says that every (first-order) truth in the set theoretic universe is such that it also
holds when the domain of discourse is restricted to some set in the universe. In
a fairly weak fragment of set theory (consisting of the Empty Set Axiom, Exten-
sionality, and the Singleton Axiom), infinitely many sets can be proved to exist in
the universe, i.e., a potential infinity can be proved to exist. The Montague-Levy
Axiom can then be used to derive from this potential infinity that also an actually
infinite set must exist. There is a sense in which Axiom 3.15 is stronger than the
Montague-Levy principle. We have seen that even in the absence of the Axiom of
Foundation, and without a potential infinity being assumed at the outset, Axiom
3.15 immediately posits an actual infinity.

Iteration is often taken to be of central foundational importance both in arith-
metic and in set theory. The natural numbers are often regarded as “formed” by
iteration of the successor operation; the sets are often regarded as “formed” by
iteration of the power set operation (the iterative conception of set).52 Reflection,
on the other hand, is often seen as an addition to the more basic idea of iteration,
or even to some extent derived from it (since Montague-Levy reflection is provable
in ZFC).

But the foregoing considerations indicate that reflection can likewise be taken
to be basic. Dedekind observed that, in the context of a countable choice axiom,
the postulation of a Dedekind-infinite collection is equivalent to the postulation of
an ω-sequence, or simply infinite system, in his terminology. Dedekind-infinity is

46See [Fre84].
47Bernays reflection is discussed on p.168.
48Here the superscripts m and P(m) indicate relativisation of the first- and second-order

quantifiers, respectively, where P is the power set operation.
49Thanks to Sam Roberts for this observation and for the following argument.
50Indeed, a famous theorem of Harvey Friedman says that every countable non-standard

model of Peano Arithmetic is isomorphic to an initial segment of itself [Kay91, Section 12.1].
This is a strong ontological reflection theorem for non-standard models of arithmetic.

51Montague-Levy reflection is discussed on p. 167.
52See for instance [Boo71].
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motivated by a type 2 reflection thought, whereas ω-sequences are motivated by
type 6 reflection considerations. From a formal point of view, at least, and modulo
the Axiom of Choice, both have an equal claim to fundamentality.

In this way, in the work of Dedekind, a meaningful connection with mathematics
is made, and basic insights into the connection between reflection and infinity are
finally obtained.

3.10. From Hume to Kant and beyond

Let us return to our whistle tour review of the history of reflection in philosophy.
We pick up the thread after Locke and Leibniz.

Hume is sceptical about the possibility of obtaining knowledge of the self
through reflective mental acts [Hum40, Book 1, Chapter 4, par 6]:

[T]here are some philosophers, who imagine we are every moment
intimately conscious of what we call our self [. . . ] For my part
when I enter most intimately into what I call myself, I always
stumble on some particular perception or other, of heat or cold,
light or shade, love or hatred, pain or pleasure. I never can catch
myself at any time without a perception, and never can observe
anything but the perception.

In this way, he denies claims made by rationalist philosophers such as Descartes
and Leibniz. Over time, this Humean claim has become almost a commonplace in
philosophy. For instance, an echo of this view is found in Wittgenstein’s Tractatus,
where he writes [Wit22, par 5.633]:

Wo in der Welt ist ein metaphysisches Subjekt zu merken? Du
sagst, es verhält sich hier ganz wie mit Auge und Gesichtsfeld.
Aber das Auge siehst du wirklich nicht.

This does not mean that Hume agrees with Locke that our knowledge of our-
selves as a subject is first-order and intuitive in nature. Concerning self-knowledge,
he is a more thorough-going empiricist than Locke. Hume argues that there is no
underlying carrier of our ideas and impressions. Rather, the mind is no more than
a plurality or bundle of impressions [Hum40, Book 1, Part 4, par 6]:53

[. . . ] they are the successive perceptions only, that constitute
the mind [. . . ] [T]here is properly [. . . ] no identity [of the mind]
[. . . ] [at] different [times].

However, we ordinarily assume that we do have a mind that is the bearer of our
experiences. To explain our pre-theoretic thought patterns, Hume needs an error
theory. He argues that similarities between different perceptions are responsible
for our error: “our propension to ascribe identity where empirical evidence suggests
diversity ‘is so great’ that our imagination creates the notion that there is something
that underlies the succession of related objects and binds them together into a
unitary and identical entity” [Thi11, p. 391].

Kant agrees with Hume that there is no intuition of the self “through which it
is given as object” [Kan87, B408]. Against Hume, Kant believes that the unity of
consciousness over time requires the assumption of a mind that has the conscious
experiences. But since, for Kant, our knowledge of ourselves is not experiential, the

53For a detailed discussion of Hume’s bundle theory of the mind in its historical context, see
[Thi11, Part VI].
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mind takes the form of a theoretical posit : it is needed to explain how we can have
knowledge at all.

Despite Hume, Kant takes a notion of reflection to be of crucial importance: he
calls this notion transcendental reflection.54 Transcendental reflection “determines
the origins of key cognitive concepts in sensibility, understanding, or reason, and the
a priori roles and relations of these concepts in cognitive judgment, and thus their
contributions to the possibility and validity of knowledge, especially of synthetic
knowledge a priori” [Wes03, p. 141].

A transcendental reflection is an argument that starts from a thought experi-
ment that brings out certain cognitive incapacities. But it also essentially contains
discursive components. Transcendental reflection allows us to obtain knowledge
with modal strength about the structure of our cognition. Thus Kant agrees with
the rationalists (and against the empiricists), but for completely different reasons,
that reflective reasoning can yield synthetic knowledge that exceeds the content of
our mind.

A few examples may be helpful. Kant states that “[o]ne cannot make oneself
a representation that there be no space” [Kan87, A24 / B38]. Trying to imagine
a non-spatial world reveals that non-spatial representations are not possible for us.
From this, Kant infers that our world is necessarily spatial. In this way, knowledge
that goes beyond the content of our mind is obtained. In a similar vein, Kant asserts
that we must be able to identify our representations as our own, for “otherwise I
would have as multicolored, diverse a self as I have representations of which I am
conscious” [Kan87, B 134]. A Humean plurality of experiences is not what our
mind can be; for human beings like us, it is impossible to exist without having a
mind that is sensibly affected.

Such arguments can be labelled thought experiment arguments. In such ar-
guments, thinking about concepts is not typically the main concern. In the first
example that we discussed, Kant is in the first place concerned with the nature of
representations. In Kant’s transcendental reflection on the unitary cognitive mind,
what seems primary at stake, is not the concept of knowledge, but its nature. In this
sense, transcendental reflections are arguments that are not obviously or primarily
of a higher-order nature.

There has been a vast discussion about the persuasiveness of such Kantian
arguments, and about what kind of modal strength is involved here: I do not
propose to adjudicate here in any of the relevant debates. What is important for
us, however, is to observe that if we are dealing with reflection at all here, then
a different notion of reflection is at work here than the concept of reflection that
was at stake in the debate between the rationalists and the empiricists. This is
then not type 6 reflection, but with reflection in the sense of a thought experiment
argument : type 8 reflection, if you will.

Thought experiment arguments have played and continue to play a central role
in analytical metaphysics at least since the 1970s. The role of examples has become
very important here, but it is not completely new [Bur13a, p. 539]:55

54For an account of the nature of transcendental reflection and its role in Kant’s philosophy,

see [Wes03].
55Indeed, Avicenna’s argument of the flying man in Section 3.4 is a thought experiment

argument.
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In the twentieth century a number of philosophers have empha-
sized the role of examples in attaining illumination through re-
flection. This emphasis is not new. Some classical rationalists,
particularly Socrates and Descartes, used examples prominently
in reflection. The aim is to use examples to arrive at principles.
The classical idea is that in making judgements about exam-
ples, we are guided by principles. The examples help make the
principles more explicit.

Kripke and Putnam’s “twin earth” example constitutes an illustration of how
examples guide thought experiment arguments in contemporary philosophy. If a
linguistic community on a far away planet called a substance ‘water’ that behaves
exactly like water, feels like water, looks like water. . . , but has a different chemical
composition (“XYZ”) from the substance that we call ‘water’ here on earth, then
this substance is not water. Hence, necessarily, water is H2O.56 More generally,
natural kinds necessarily have some of the micro-structural properties that they
actually have.

In such philosophical thought experiment arguments, counterfactual reasoning
plays an essential role: they are what if? -arguments. Also, such arguments typ-
ically involve thought about concepts or propositions. This does not make these
arguments higher-order in the same sense as Locke and Leibniz’s reflections are.
For Locke and Leibniz, reflection involves attending to what is in your mind. But,
as Frege and Putnam have argued: concepts and propositions (meanings) ain’t in
the head.

3.11. The value of reflection

It is not much of an exaggeration to say that in contemporary analytic philoso-
phy, only type 6 reflection is an active research theme. One research question that
has received quite a bit of attention in recent years is: what is the value of type 6
reflection? Wherein consists its epistemic importance?

We already know that the history of this question goes back at least to Descartes.57

According to Descartes, our whole knowledge about ourselves, the external world,
and God is obtained largely by type 6 reflection. To most contemporary philoso-
phers, it seems that type 6 reflection cannot bear this weight. Nonetheless, I will
argue in Chapter 8 that type 6 reflection plays an essential role in certain processes
in which new knowledge about the external world is obtained.

The Lockean thought that type 6 reflection provides us with a unique way of
coming to know the operations of our mind is, in some forms, still defended today.
There is a strong feeling that type 6 reflection gives us, in the form of beliefs by
acquaintance (introspection), privileged first person access of the contents of our
mind.58

Nonetheless, this view has come under attack from several corners in the second
half of the twentieth century. In the post-war period, Wittgensteinian ordinary lan-
guage philosophers argued that the mind-body duality that is presupposed in the

56A similar point could be made about Burge’s equally famous “arthritis” thought experiment

argument, which is formulated in [Bur79].
57See Sections 3.5, 3.6, and 3.7.
58For a classical discussion of privileged access, see [Hei88].
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Lockean thought is highly problematic.59 On their view, mental properties attach
to actions rather than to alleged ‘inner events’. This smacks forms of reduction-
ism from the mental to the physical (behaviorism) that is no longer fashionable.
Nonetheless, in more recent times, naturalistic philosophers have argued forcefully
for the less extreme claim that the cognitive sciences, and experimental cognitive
psychology in particular, provide us with much more detailed and reliable informa-
tion about what we believe than introspection can ever do.60

Lastly, there is the thought that type 6 reflection improves the epistemic quality
of our first-order beliefs. The idea is that this type of reflection improves the average
reliability and / or our average justification of the beliefs that we hold. Again, this
is a natural thought. Suppose you have constructed a complicated machine that
produces a specific kind of foodstuffs. Then, motivated by a a desire to ensure
reliability of quality the finished product, you add a variety of control devices to
selected parts of the machinery (thermometers, pressure guages, The worker who
operates the machine then makes adjustments to the machine, depending on her
readings of the monitoring systems. So it is, one might think, with one’s belief
system.61

Here, too, however, naturalist epistemologists voice a sceptical note.62 Studies
from experimental psychology indicate that when a person is asked critically to
reflect on the way in which she has arrived at a given belief (the belief that p),
she tends to engage in confabulation about the sources of her belief: confabulation
by which she herself is taken in. Only rarely does she, through reflection, come
to revise her belief that p, even if this belief has in fact been unreliably formed.
The process of reflection tends in practice to be a self-congratulatory affair. Type
6 reflection on the sources of her belief gives a cognitive agent the illusion of being
in control of her belief-forming mechanisms, but tends in practice to be a very
unreliable monitoring mechanism. This is the more so because so many aspects of
our belief-forming processes take place unconsciously, and are therefore not readily
available to be monitored.

3.12. Burge on reflection

The naturalistic considerations of the previous section are intended to cast
doubt on the hypothesis that reflection actually plays a valuable epistemic role
in our daily cognitive lives. They do not, however, show that type 6 reflection
cannot be a powerful epistemic instrument.63 Tyler Burge has argued that type 6
reflection has epistemic qualities that make it an essential epistemic tool especially
in philosophy.

As a first approximation, Burge characterises the philosophical process of re-
flection in the following terms [Bur13a, p. 534]:

59See for instance [Ryl49].
60See [Kor12, Section 1.3].
61Some even go so far as to argue that justified belief is not possible without reflecting on

one’s reasons for one’s belief—see for instance[Bon85, Chapter 3] Kornblith observes that such
views would lead to an infinite regress [Kor12, Section 1.1], so we will leave them aside here here.

62[Kor12, Section 1.3].
63The main critic of type 6 reflection, Hilary Kornblith, recognises this: see [Kor12, p. 136].
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As a first approximation, reflection is a type of rational cognition
with four significant features. It goes beyond what is immedi-
ately obvious. It is higher-order, in the sense that it involves
thought about psychological states or representational contents,
although its conclusions need not be about psychological states
or representational contents. It aims at constitutive understand-
ing. And it develops such understanding by drawing conclusions,
without acquiring new premises, empirical or otherwise, beyond
what is already understood or known. Usually reflection aims
at improving pre-reflective understanding or knowledge. Much
reflection makes use of empirical background knowledge. Where
the force of its warrant is independent of sense experience, re-
flection is apriori.

Burge’s point of departure is what he calls the rationalist conception of reflec-
tion, of which he sees Leibniz as the main exponent. In other words, he starts from
what we have called type 6 of reflection—leaving aside the sense in which Leibniz’s
monads reflect each other,—but is not concerned with early modern empiricist
theories of type 6 reflection at all.

I have tried to argue that there are different concepts of reflection at work in
the history of philosophy, and that we conflate them at our peril. In particular, it
seems to me that what Kant calls ‘transcendental reflection’ refers to a philosophical
cognitive process that is fundamentally different from type 6 reflection. Burge, in
contrast, takes there to be a uniform target—one type of philosophical cognitive
process—of the rationalist, Kantian, and twentieth century analytical conceptions
of reflection. In particular, Burge subsumes certain forms of conceptual analysis and
philosophical thought experiment arguments under the umbrella of philosophical
reflection.

Burge argues that classical rationalist philosophers attribute three cardinal
properties to reflection [Bur13a, p. 535–537]:

(1) In reflection an individual brings to articulated consciousness steps or
conclusions that are implicitly present, subliminally or unconsciously, in
the individual’s mind before reflection.

(2) Reflection can yield a priori knowledge of objective subject matters, be-
yond thoughts that the reflector is engaging in.

(3) Successful reflection requires skilful reasoning and is difficult: it is not a
matter of one-off introspection or intuition.

Burge endorses Theses 2. and 3., but rejects Thesis 1.
We have seen that according to the rationalist conception of reflection, as well

as according to Kant’s conception of reflection, Thesis 3 is correct. Also if we take
the best known thought experiments of contemporary metaphysics and philosophy
of mind as paradigmatic examples of reflection, Thesis 3 applies. So we may (and
will) take Thesis 3 as given.

Thesis 2, on the other hand, sounds somehow suspect to the contemporary
analytical philosopher. We have already seen that thought experiment arguments
yield “knowledge of objective subject matters, beyond thoughts that the reflector is
engaging in”.64 To be sure, not all such knowledge is a priori. Our knowledge that,

64See Section 3.10.
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necessarily, water is H2O, for instance, is a posteriori—it depends, among other
things, on an empirical scientific discovery. But sometimes the knowledge obtained
by reflection is, according to Burge, a priori [Bur13a, p. 555]:

Reflection can serve as an adjunct to any enterprise. But I be-
lieve it also offers substantive insights that are not parasitic on
or merely supplemental to the natural or mathematical sciences.
The insights are limited and fallible. Their nature remains to
be better understood. But it seems to me that apriori reflection
can yield limited autonomous insight, and even knowledge, in
certain parts of semantics, philosophy of mind, and epistemol-
ogy. This is because we are reasoning about reasoning itself.
Apriori understanding in these areas is constitutive of under-
standing fundamental aspects of critical reason, and of us as
critical reasoners.

The worked-out example that Burge adduces of a priori knowledge obtained through
reflection concerns our knowledge of the concepts of logical consequence and logi-
cal validity, obtained as the result of reflection on the practice of good deductive
consequence [Bur13a, section III]. This is a successful case of informal rigour in
the sense of [Kre67].

Burge’s main reason for disagreeing with Thesis 1 is that reflection is more often
than not applied in a situation where we do not have even an implicit, unclear, or
confused idea or conception of a concept, i.e., in situations where we have not yet
developed a concept at all. We may, for instance, merely have a small number of
examples that we are inclined to see as similar in a way that we cannot describe.
Or we may be disposed to classify a fairly well circumscribable number of examples
as being similar in a significant way without this disposition being in any way
conceptualised by us: think of this disposition as being hard-wired without an
accompanying cognitive representation even at the sub-personal level.

When we consider Kant’s examples of transcendental reflection, Kripke and
Putnam’s thought experiments, or even the analysis of validity and logical conse-
quence, Thesis 1 indeed sounds implausible. As Burge says [Bur13a, p. 539]:

Psychology has brought out that accessible higher-order, person-
level cognitive control plays a very small role in much of our
propositional activity. Principles that best explicate a mathe-
matical or natural-scientific concept are often discoverable only
by developing new knowledge, knowledge that it is not psycho-
logically plausible to impute to the unconscious of reasoners be-
fore the new knowledge is discovered.

In the light of the findings of empirical science it is simply unlikely that we sublim-
inally all along had the concept of natural kind that Kripke and Putnam argued to
be the correct one; it is simply implausible that we already unconsciously had the
Tarskian concept of logical consequence in Antiquity.

3.13. What is reflection?

Now that we have come to the end of our historical journey, let us return to
our main question: What is reflection, in the philosophical sense of the word?
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We have isolated what we have called type 2 reflection. This is a relation
between a reflected object and a reflecting object, which holds when there exists a
salient similarity between them. Not all similarity relations will do. Yet there are
at least two ways of making the notion of similarity precise. It can be done using
a relation of structural ontological similarity (isomorphism, or a related notion), or
using a relation of ideological similarity (elementary equivalence).

We have also isolated what we have called type 6 reflection. This is a process
in which the human mind cognitively relates to its own processes and products.

Both type 2 reflection and type 6 reflection are iterable. Moreover, as we have
seen,65 there exist deep relations between these two types of reflection. And both
of them play a role not only in philosophy, but also in parts of mathematics. Type
2 reflection has in the twentieth century proved to be fruitful in mathematics—in
set theory, for instance; type 6 reflection plays a central role in the motivation of
proof theoretic reflection principles.66

The Kantian notion of transcendental reflection and the modern notion of
thought experiment argument are not clearly related to any of the dictionary mean-
ings of the word ‘reflection’. Burge, however, believes that these should rather be
seen as better conceptions of type 6 reflection: he wants his article on reflection to
be seen as a constructive criticism of the “traditional conception of reflection, and
highlights Kant’s anticipation of a more adequate conception” [Bur13a, p. 534].
A main reason for this suggestion is that, in his view, higher-order elements such
as thinking about concepts play a role in these philosophical cognitive processes.

I am not convinced. As we have seen, in Kantian transcendental reflection,
it is not always, or perhaps not even typically, concepts that are at the center of
the argument. Many of the paradigmatic modern philosophical thought experi-
ment arguments are primarily about the the nature of certain concepts. But being
essentially about or essentially involving thought about concepts is not sufficient
for being an instance of type 6 reflection. Otherwise the concept of 6 reflection
becomes so far as to cover much if not most of philosophical argumentative ac-
tivity.67 It would then cover all varieties of conceptual analysis, such as concept
explication in the sense of Carnap, ordinary language philosophy in the sense of the
later Wittgenstein, informal rigour in the sense of Kreisel,. . . The resulting concept
of reflection in the philosophical sense seems to me too general for us to expect it to
be theoretically very fruitful. What is more, large tracts of mathematical activity
would then also count as reflection in this sense. As an example, recall Lakatos’
case study of the repeated revision of the concept of polyhedron in the course of
the history of proving general forms of Euler’s theorem [Lak76].

The boundaries of type 6 reflection are not completely clear. Type 6 reflection
has a de se component: it is about a cognitive first person relation that one has
to one’s own mind and what is going on in it. Concepts are not in the mind, so
conceptual analysis does not by itself qualify as type 6 reflection, nor do informal
rigour, and axiomatisation of parts of mathematical practice. But what is in our
mind is related to concepts, and to formal theories. Concepts and propositions be-
long to the content of what is going on in our minds; axiomatic theories capture the

65See Section 3.9.
66See Chapter 8.
67An example of a (now largely forgotten) view that the distinctive feature of philosophical

thinking in general is that it is reflective in a technical philosophical sense, is [Hod78].
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content of what we believe. So axiomatically expressing the maximal mathematical
theory that one currently believes, for instance, does count as type 6 reflection.

At any rate, I claim that Kant’s transcendental reflections, the conceptual
analysis of logical consequence, and especially contemporary thought experiments
should not be classified as type 6 philosophical reflections. They may be still
labelled philosophical reflections of some other type—what’s in a name?—but this
would then be some loose sense of the word.

Nonetheless, as we will see later,68 what if -arguments can play a crucial role
in type 6 reflection arguments. As mentioned before, philosophical thought ex-
periments play a major role in contemporary philosophy. Thought experiment in
philosophy is a subject that cries out for meta-philosophical inquiry into its nature
and evidential force. For an interesting theory of philosophical thought experiment
arguments, see [Wil07, chapter 6].

With all this in mind, let us return to Burge’s evaluation of the three cardinal
properties that rationalist philosophers attribute to type 6 reflection. Thesis 3 is
unaffected by the preceding considerations, so it still stands. It also seems to me
that, largely for the reasons that Burge adduces, that Thesis 1 is false for type 6
reflection. We have seen that discursive components form part and parcel of this
kind of reflection. It is simply implausible that the conclusions of such reflective
argumentations are somehow already ‘unconsciously’ present in the mind before it
has gone through the reflective arguments.

Thesis 2 is a different matter. We have seen that Burge’s support for Thesis
2 crucially depends on examples of philosophical argumentation that, in my view,
should not be seen as cases of type 6 reflection: the metalogical conceptual analysis
of the concept of logical consequence, and certain examples of thought experiment
arguments from contemporary philosophy. So Burge’s argumentation leaves Thesis
2 completely open. I will argue later,69, however, that for reasons unrelated to
Burge’s arguments, Thesis 2 also holds for type 6 reflection.

3.14. Taking stock

This Chapter was to a significant extent an attempt at a brief overview of the
history of reflection. We wanted to find out how concepts and conceptions of re-
flection have evolved in philosophy over time, and we inquired into the theoretical
power and fruitfulness of philosophical concepts of reflection. Two main philosoph-
ical concepts of reflection emerged: type 2 reflection and type 6 reflection, where
type 2 reflection is an ontological form of reflection, whereas type 6 reflection is an
epistemic form of reflection. In the remainder of this book, we will predominantly
be occupied with the latter type of reflection, but the former will also be given a
considerable amount of attention.

The concept of type 2 reflection, reflection as mirroring, appears to be the oldest
in the history of philosophy. At least from Philo onwards, for a long period, it led
a largely independent life. The concept went through many incarnations (versions
of Microcosmos / Macrocosmos-theories), up to Leibniz’s Monadology. We have
been mainly concerned with the thought that a transcendent whole is reflected in
some of its immanent small parts. But we have learned from the Microcosmos /

68See Section 8.3.2.
69See Chapter 8.
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Macrocosmos-theories and from Leibniz’s writings that there may also be reflection
relations between small parts of a transcendent whole.

In Plato’s cosmology, a form of type 3 reflection was at work. This form of
reflection lies at the root of a long historical process leading to the isolation of type
6 reflection: mental attention to the contents and operations of one’s mind. A
gradual “Vergeistlichung” of Plato’s World Soul played a crucial role here. By the
time of the Neoplatonists (such as Porphyry), a conception of type 6 reflection was
established. It played an important role in the formation of the Cartesian subject.

In Leibniz’s views on apperception, a sort of synthesis of type 2 and type 6
reflection is attained. On the one hand, the Leibnizian “redoublement”, in which
the Mind forms an idea of itself, is clearly a form of type 6 reflection. On the other
hand, this “redoublement” results in a mirroring (type 2) of the Mind in itself in
the form of a reflexive idea. This furthermore led to a deep connection with the
modern conception of infinity.

Concerning the period starting with Kant and onwards, our review of the his-
tory of reflection in philosophy has been somewhat sketchy. I am aware that already
concerning Kant’s view of reflection, we have barely scratched the surface. More-
over, nothing at all was said about the important role that ideas of reflection play in
nineteenth century Idealism. There is no particular reason for this over and above
the bare fact that I feel utterly incompetent to do so. For all I know, there may be
one or more important concepts of reflection waiting to be discovered in the work
of nineteenth century philosophy.

Already our very limited historical exploration has revealed that type 2 reflec-
tion and type 6 reflection are theoretically powerful and fruitful ideas. In Section
3.5, we saw that type 6 reflection is related to results about the scope and limita-
tions of knowledge; in Section 3.9 we saw how type 2 reflection is related to infinity.
These connections will be deepened and explored further in what follows. We have
already seen that type 6 reflection remained a theme in analytic philosophy from
the post-world-war two years until the present. Especially Burge’s theory of type
6 reflection will turn out to be of importance in what follows.70

70See especially Chapter 8.
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CHAPTER 4

Some foundationally significant theories

After our discussion of the philosophical concepts of epistemic warrant and re-
flection, in this part we slowly turn our attention to formal reflection principles. As
a preamble to this, in this Chapter we review some formally significant mathemat-
ical background theories. In the Chapter thereafter, we review some formal truth
theories, which play a significant role in the discussion of reflection principles of the
proof-theoretic kind. The material that is discussed in the present Chapter and in
the the next Chapter does not contain much that is new. But in later Chapters
we will refer back to it and use the results that are discussed here. Readers who
are familiar with the material may therefore want to skip most of the following two
Chapters, and leaf back later when the need arises.

In the present Chapter, we consider not only theories from pure mathematics
(arithmetic and set theory), but also theories of probability. We will state, or in
some cases sketch, axiomatic presentations of the theories in question, and point
to some important metamathematical results concerning them. We will consider
both ‘full’ theories and important fragments of full theories; we will consider both
first-order and second-order theories.

The foundational significance of the presented theories will also be discussed.
We will see that from a naturalist perspective, the full theories are typically of
most philosophical importance: they are natural formalisations of theories that
mainstream mathematicians reason in. From various foundationalist perspectives,
in contrast, certain fragments of full systems are judged to be of fundamental
importance.

In what follows, we assume that the reader is familiar with classical first-order
logic and the most central metamathematical results.1 Moreover, it will be assumed
that she has some basic background knowledge of second-order logic.2

4.1. Arithmetic

Our theory of the natural numbers is an absolutely basic part of mathematics.
Gödel’s incompleteness theorems show that the collection of all arithmetical truths
cannot be captured by any single axiomatic system. In this sense, our best theory
of the natural numbers will always be incomplete. Nonetheless, we can attempt
axiomatically to capture our best theory of the natural numbers, or fragments of
it. This is an activity that started in the second half of the nineteenth century, and
is still ongoing.

Two logical frameworks for formalising arithmetic need to be distinguished.
On the one hand, we have a framework in which only quantification over natural

1The material in [BBPJ02] suffuces.
2Knowledge of the material in Part II of [Sha91] suffices.

105



106 4. SOME FOUNDATIONALLY SIGNIFICANT THEORIES

numbers is allowed. This is called first-order arithmetic.3 The background theory
for this is classical first-order logic. On the other hand, there is a framework in
which also quantification over collections of numbers is allowed. This is called
second-order arithmetic. The background theory for second-order arithmetic is
some classical theory of second-order logic, which can either be the full standard
theory of second-order logic, or a fragment of it.

In general, theories of the natural numbers are of foundational importance
because over the past two centuries, many have entertained and pursued the hy-
pothesis that much of mainstream mathematics can in some sense be reduced to
first- or second-order arithmetic.

4.1.1. First-order Peano Arithmetic and some of its fragments. The
best known axiomatisation of first-order number theory is known as first-order
Peano Arithmetic (PA). The language of PA (LPA) contains 0, s, +, and · as its
sole non-logical symbols, and contains the following axioms:

PA1 ¬∃x : s(x) = 0;
PA2 ∀x∃y : s(x) = y;
PA3 ∀x, y : s(x) = s(y)→ x = y;
PA4 ∀x : x+ 0 = x;
PA5 ∀x, y : s(x+ y) = x+ s(y);
PA6 ∀x : x · 0 = 0;
PA7 ∀x, y : x · s(y) = (x · y) + x;
PA8 [φ(0) ∧ ∀x(φ(x)→ φ(s(x))]→ ∀xφ(x) for all fomulas φ(x) ∈ LPA.

Here PA8 is not a single axiom but an axiom schema: it is called the mathematical
induction schema. It says that if a definable property (φ) propagates (‘progresses
upward’) in the natural numbers, then it holds for all natural numbers.

Restricting the mathematical induction schema results in important fragments
of PA. For any natural number n, the result of restricting the mathematical induc-
tion schema to Σn-formulas is the system called IΣn.

In a similar way, the systems I∆n (for n ∈ N) are defined. The following
lemma shows that there is no need to distinguish fragments of PA restricted to
universal formulas of a given complexity, for the universal hierarchy coincides with
the existential hierarchy [Bek05, Lemma 4.1]:

Lemma 4.1. For each n ∈ N : IΣn = IΠn.

On the other hand, by increasing n we obtain ever stronger fragments of PA:

Lemma 4.2. For each n ∈ N : IΣn ( IΣn+1.

The system IΣ0 is very weak. Like the even weaker arithmetical system Q,
which results from removing all induction axioms from PA, it does not have a good
theory of its own syntax. This is related to the fact that the natural way of coding
finite sequences of signs (terms, formulas, proof) uses the exponentiation function,
and IΣ0 cannot prove exponentiation to be a total function. To remedy this, one
can extend the language with a basic symbol for exponentiation, and add to Q
the defining axioms for exponentiation, so that the totality of exponentiation is
assumed at the outset.

3The standard reference for the metamathematical investigation of first-order theories of
arithmetic is [HP93].



4.1. ARITHMETIC 107

Especially IΣ1 is considered an important fragment of PA. It is a ‘basic’ system
of arithmetic that is nonetheless strong enough for not only Gödel’s first incom-
pleteness theorem, but also Gödel’s second incompleteness theorem to hold for it:

Theorem 4.3 (Gödel’s second incompleteness theorem). The Gödel sentence
for IΣ1 is independent from IΣ1, and IΣ1 cannot prove its own consistency.

This is a very robust result: it holds for all sound arithmetical systems that are
at least as strong as IΣ1, and in particular for PA. Moreover, a surprisingly large
portion of mainstream arithmetical theorems can be proved in IΣ1.

The collection of true atomic arithmetical formulas is definable by an arithmeti-
cal formula val+, and the set of false atomic arithmetical formulas is definable by
an arithmetical formula val−. Moreover, truth for formulas of restricted complexity
is also arithmetically definable:

Lemma 4.4. For every n ∈ N, the collection of the Σn arithmetical truths is
definable by means of a Σn-formula.

As a counterpoint to this, Tarski has famously shown:

Theorem 4.5 (Tarski). The collection of first-order arithmetical truths is not
definable in the language of first-order arithmetic (LPA).

This is known as Tarski’s theorem on the undefinability of truth. It again is a
very robust phenomenon: Tarski’s theorem holds not just for LPA, but also for all
extensions of LPA.4

PA is perhaps the most natural system for formalising ‘elementary’ number
theoretic proofs. Axioms PA1-PA7 express the most basic properties of the natural
numbers. The principle of mathematical induction is the work horse for carrying
out elementary arithmetical proofs. PA8 is an extremely natural way of express-
ing the principle of mathematical induction. For this reason, combined with the
aforementioned suspicion of many mathematicians that there is a sense in which
much of mathematics can be reduced to the theory of the natural numbers, PA is
a foundationally significant theory.

By theorem 4.3, PA cannot prove all first-order arithmetical truths. Nonethe-
less, in two important articles ([Isa87] and [Isa92]), Isaacson argues that in some
sense the collection of theorems of PA can nonetheless be taken to coincide with
the collection of arithmetical truths. This is known as Isaacson’s Thesis. If it holds,
then despites the incompleteness theorems there is a sense in which PA is complete.

For Isaacson, the notion of arithmetical truth is in part an epistemological no-
tion. For a statement to be an arithmetical truth, it is not in general sufficient that
it belongs to the formal or informal language of arithmetic and is true in the struc-
ture of the natural numbers. In addition, its truth must be “directly perceivable
on the basis of our [. . . ] articulation of our grasp of the structure of the natural
numbers or directly perceivable from truths in the language of arithmetic which are
themselves arithmetical” [Isa87, p. 217]. Isaacson argues that the statements the
truth of which can be perceived in this way are precisely the theorems of PA. In
this sense, then, PA is complete for arithmetical truth [Isa87, p. 222]. For seeing
that any particular statement that is unprovable in PA is nevertheless true in the

4Proofs of these and other standard metamathematical results concerning Peano Arithmetic
can be found in [BBPJ02].



108 4. SOME FOUNDATIONALLY SIGNIFICANT THEORIES

natural number structure, insight is required into concepts that are not strictly
speaking arithmetical. Such notions are called higher-order concepts by Isaacson.
Examples of higher-order concepts are the notion of well-ordering, consistency of a
formal system, provability in a formal system, and truth [Isa92, p. 96], and also the
notion of second-order quantification [Isa87, p. 210]. For example, the principle of
induction up to the small transfinite ordinal ε0 is a truth which can be ‘expressed’
in the language of first order arithmetic (via coding).5 But to see that this principle
is true, insight is required into the notion of well-ordering, which is a set-theoretical
and not a purely arithmetical concept. Therefore the principle of induction up to
the ordinal ε0 is not, in Isaacson’s view, an arithmetical truth.

Most philosophers of mathematics do not follow Isaacson in seeing truth as an
epistemological concept. Nonetheless, Isaacson’s thesis can be formulated without
involving a strong claim about the nature of truth. It can be taken simply to say
that the class of arithmetical theorems that have arithmetical proofs coincides with
PA. Then it is still very much a non-trivial claim. If it holds, then this is another
reason why PA is of foundational importance.

4.1.2. Primitive Recursive Arithmetic and Hilbert’s program. The
weakest natural system of arithmetic that is studied in proof theory is called Robin-
son Arithmetic (after the mathematician Abraham Robinson, who first isolated it).
It is the system Q that was briefly mentioned above: it is obtained by removing all
induction axioms from PA.

An important extension of Q is obtained by adding, for every primitive recursive
function f , the defining equations of f to the axioms of Q.6 The resulting theory is
called Primitive Recursive Arithmetic, and it is abbreviated as PRA. There is also
a so-called logic-free presentation of PRA. This theory is formulated in a language
without quantifiers but with (free) variables. The corresponding theory then of
course also has no quantifier axioms or rules, but otherwise its axioms and rules
are like those of the ‘logical’ presentation of PRA. The quantifier-free consequences
of the ‘logical’ version of PRA are exactly those of the logic-free version.

Within mathematics, Hilbert distinguished between finitary or concrete math-
ematics on the one hand, and infinitary or ideal mathematics on the other hand
[Hil26]. Finitary mathematics is the part of mathematics that can be given a
concrete interpretation, whereas infinitary mathematics cannot. Roughly, finitary
mathematics was thought of as a theory arithmetic that can be interpreted as a
theory of concatenation of physical signs (sequences of strokes, for instance).7 In-
finitary mathematics is then just the rest of mathematics. Finitary mathematics
was taken by Hilbert to be true when interpreted in the intended way. Ideal math-
ematics, in contrast, remains forever uninterpreted, and is therefore not true. Ideal
mathematics has a purely instrumental role. Its aim is to prove finitary propo-
sitions that do not have feasible proofs in finitary mathematics. Hilbert thought
that infinitary mathematics is conservative over finitary mathematics for finitary
statements. That is, he thought that every finitary proposition that has a proof
in infinitary mathematics, also has a proof in finitary mathematics. Moreover, he
suspected that this alleged conservativeness could somehow be proved in finitary
mathematics. To prove these two conjectures was the aim of Hilbert’s program.

5The ordinal ε0 is defined on p. 113.
6For this, LPA is first extended by function constants for all primitive recursive functions.
7For a discussion of Hilbertian finitism, see [Par07, Chapter 7].
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In order to make these two conjectures precise, one first has to clarify what ex-
actly is meant by finitary mathematics, infinitary mathematics, and finitary propo-
sition. Concerning infinitary mathematics, the details do not matter much: let us
take standard Zermelo-Fraenkel set theory8 as an explication of what is meant by
infinitary mathematics. Several ways of making finitary mathematics precise have
been proposed. Most philosophers of mathematics accept Tait’s arguments9 for the
thesis that Hilbert’s finitary mathematics should be identified with PRA, and that
the class of finitary propositions is the class of Π1 arithmetical sentences, which
can be taken to be quantifier-free arithmetical formulas with free variables.

Gödel’s incompleteness theorems showed that these two conjectures of Hilbert
are false. Moreover, the Gödelian incompleteness phenomena are very robust: they
are not very sensitive to exactly how the notions of finitary statement, finitary proof,
infinitary proof are nailed down. Nonetheless, the concepts of finitary mathematics
and of finitary statement are foundationally important. And this implies that PRA
is a foundationally important theory.

4.1.3. Weak fragments of Peano Arithmetic. The system Q and the sys-
tem IΣ0 are very weak fragments of PA. There are some fairly robust fragments
of PA that are stronger than these, but much weaker than IΣ1: we briefly discuss
two of them.

Edward Nelson believed that Hilbert was not cautious enough in his description
of the ‘safe’ part of mathematics. He believed that we are not justified in believing
that all primitive recursive functions are everywhere defined. In particular, he
doubted that the exponentiation function is total. Not only that, but he believed
that PA might well be outright inconsistent [Nel11].10

Nelson then sought to circumscribe what he took to be the safe part of math-
ematics [Nel86]. This led him to the first-order arithmetical theory that is called
S2

1 . The list of axioms of S2
1 is rather long, and not immediately intuitive at first

side, so we do not give the list here.11

The natural way of coding syntax involves the exponentiation function. One
of the noteworthy features of S2

1 is that despite the fact that it does not prove the
totality of exponentiation, it can still serve as a theory of syntax.

A slightly stronger system of arithmetic is the system of Elementary Arithmetic
(EA). It is formulated in an extension of LPA by a two-place function symbol e,
which expresses the exponentiation function, So it is built into the language of EA,
as it were, that exponentiation is a total function.

EA contains all the axioms of PA except its induction scheme, which is severely
curtailed. Moreover, it contains natural recursive axioms that govern the behaviour
of the exponentiation function:

(1) ∀x : e(x, 0) = 1;
(2) ∀x∀y : e(x, y + 1) = e(x, y) · x.

To conclude, EA contains a very restricted amount of mathematical induction.
Say that bounded quantification is defined by taking ∀x < t : ϕ to stand for ∀x :
x < t → ϕ, and ∃x < t : ϕ to stand for ∃x : x < t ∧ ϕ, where x is not allowed to

8See Section 4.2.
9See [Tai81]. For a different proposal, see [Kre60].
10It would take us too far to go into Nelson’s reasons for his concerns here. For a brief

discussion of Nelson’s worries, see [Par07, p. 303–305].
11The list, and a discussion of the axioms, can be found in [HP93, Section V.4].
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occur in t. The principle of bounded induction is like Axiom PA8, except that all
quantifiers in φ are required to be bounded. EA contains the principle of bounded
induction.

One sense in which EA is weak is given by the fact that already PRA proves
the consistency of EA ([Avi03, Theorem 2.1]). Another sense in which it is weak
is that it cannot prove the totality of iterated exponentiation functions. In another
sense, EA is remarkably strong. The vast majority of theorems of finitary number
theory can be derived in EA. It has even been conjectured (by Harvey Friedman)
that Fermat’s Last Theorem can be proved in EA.12

4.1.4. Second-order Peano Arithmetic and some of its fragments.
Second-order arithmetical theories are formulated in an extension of the language
LPA that is called LPA2 . This language is obtained from the language LPA by
adding to it second-order variables (X,Y, . . .) and second-order quantifiers. These
second-order quantifiers are taken to range not over individual natural numbers,
but over properties or sets of numbers.

Second-order arithmetical theories can also be seen as theories of mathematical
analysis. Real numbers can be seen as certain infinite sets of natural numbers, e.g.
as Dedekind cuts or as Cauchy sequences. Thus second-order systems of arithmetic
allow the development of a theory of real numbers.

Full second-order arithmetic (PA2) has full second-order logic as its back-
ground, including the unrestricted second-order comprehension scheme:

∃X∀y(X(y)↔ φ(y)) for all φ ∈ LPA2 in which X does not occur free.

Moreover, PA2 contains axioms PA1–PA7, and the scheme PA8 is replaced by the
second-order induction axiom:

∀X : [X(0) ∧ ∀y(X(y)→ X(s(y))]→ ∀yX(y).

One important fragment of PA2 results from replacing the second-order induc-
tion axiom by the axiom scheme that is just like PA8 except that φ now ranges over
all the formulas of LPA2 , and restricting the comprehension scheme to formulas that
may contain free second-order variables but do not contain any second-order quan-
tifiers. This restricted comprehension scheme is called arithmetical comprehension.
The resulting sub-theory of PA2 is called ACA.13

The theory ACA is nonetheless proof-theoretically stronger than PA. Formally,
this is expressed using the notion of proof theoretic conservativeness, which is de-
fined as follows:

Definition 4.6. Let S, S′ be axiomatic theories such that S ⊆ S′, and L,L′ be
languages such that L ⊆ L′. Then we say that S′ is proof theoretically conservative
over S for the language L if and only if for all ϕ ∈ L:

S′ ` ϕ⇔ S ` ϕ.

We then have:

Theorem 4.7. ACA is not proof-theoretically conservative over PA for the
class of formulas of LPA.

12These matters are discussed in [Avi03].
13See [Hal14, Definition 8.41, p. 107].
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In particular, ACA proves the consistency of PA.
In ACA, the only sets of natural numbers that are recognised—i.e., postulated

to exist, i.e., allowed in the range of the second-order quantifiers—are the ones
that can be defined in first-order Peano Arithmetic. The general doctrine that the
only collections of natural numbers that are recognised as existing are collections
that are definable in a non-circular manner, is called predicativism. (The individual
natural numbers themselves are taken as given by this doctrine.)

An example of an impredicative definition is the definition of a set of natural
numbers A as the intersection of all sets of natural numbers that satisfy a given
condition Φ. The reason is that this definition indeed is in a sense circular : the
entities in terms of which A is defined—the domain of discourse over which the
second-order quantifiers in this definition are ranging—contains the set A itself!

ACA is a basic system of predicative analysis, since first-order arithmetical
definitions are clearly non-circular. Stronger theories of predicative analysis can be
obtained by moving to higher-order languages (third-order, fourth-order,. . . ) and
iterating the procedure of recognising properties that can be defined by predicative
means. For instance, we can add third-order variables (X ,Y, . . .) and third-order
quantifiers to LPA2 , and thus obtain the language LPA3 . Beside adding the obvious
logical quantifier rules governing these new quantifiers, we can then extend the
mathematical induction scheme of PA2 to LPA3 , and add a predicative third-order
comprehension axiom:

∃X∀Y (X (Y )↔ φ(Y )) for all φ ∈ LPA3 containing no third-order quantifiers.

The resulting theory is called RA2 (here ‘RA’ stands for Ramified Analysis), where
ACA = RA1.14 Moreover, it can be shown that RA2 is proof-theoretically stronger
than ACA. Continuing in this way, the systems RAn, for n ∈ N are obtained.
Then RAω, the union of all the systems RAn, for n ∈ N, is a natural system of
second-order arithmetic. Continuing in this way, taking unions at limit stages,
this procedure can be iterated into the transfinite, yielding progressively stronger
systems RAα, with α ranging over ordinals.

Predicativism as a foundational stance goes back to the mathematician Her-
mann Weyl, who thought that the use of impredicative definitions is mathematically
inadmissible. He took ACA to be predicatively acceptable, and believed that like-
wise the finite levely RAn for n ∈ N, are predicatively unobjectionable [Wey18].
Feferman argued that even for certain transfinite ordinals α, the systems RAα, are
predicatively acceptable theories of analysis. Indeed, if any first-order arithmetical
definition is non-circular, then a definition of a set of numbers that quantifies only
over sets that are unobjectionably definable in a first-order way, should likewise
be regarded as non-circular. And so on. A question that will occupy us later is
how far predicative definability can thus be extended in a predicatively acceptable
manner.15

Shapiro has argued that the full second-order system PA2 is a better frame-
work for formalising our theory of the natural numbers than PA.16 One of his
main considerations is that in applications of mathematical induction in ordinary
mathematical practice, we are usually not concerned with excluding quantification

14The hierarchy of systems to which this gives rise was first defined in [Fef64].
15See Section 6.2.3.
16See [Sha91].
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over properties of natural numbers in the induction formula. Similarly, in ordi-
nary mathematical practice we are usually not at all concerned with the question
whether a property of natural numbers is predicatively definable at all. Hence, he
also finds PA2 a more suitable for the formalisation of our theory of the natural
numbers than ACA.

Beside the theories RAα, There are many systems of second-order arithmetic
that are situated “between” ACA and full PA2. In fact, today ACA is no longer
considered to be one of the most important subsystems of PA2. The statement that
least fixed points of all positive inductive operators exist is clearly an impredicative
statement, and hence unprovable in the systems RAα. The fragment of second-
order arithmetic that has this statement as its core second-order axiom is called
ID1. This system is impredicative (at least in the sense of Weyl and Feferman),
but is somehow close to being predicative.

4.1.5. Ordinal notation systems and transfinite induction. In what fol-
lows, we will often be in a situation where the background setting is some first-order
arithmetical theory. In such situations we will want to describe, within the object
language, aspects of extending a starting formal theory by new principles trans-
finitely many times.

In order to refer to the stages of such revision processes, we have to talk about
(countable) transfinite ordinals that mark the stages of these processes. Direct
reference to these ordinals is not possible within the context of arithmetic, which
after all only directly talks about the finite natural numbers. But by use of coding,
it is possible to simulate reference to, and use of, transfinite ordinals within an
arithmetical setting. Such coded systems for discussing transfinite ordinals are
called ordinal notation systems. There are many such. But only some of them will
play a role in the remainder of this book: powers of ω, epsilon-numbers, and the
Veblen hierarchy. We describe these notation systems informally, leaving aside the
details of how they are coded in arithmetic.

4.1.5.1. Epsilon numbers.
We take it as read that powers of ω can easily defined arithmetically. Using

powers of ω in the base clause, the epsilon numbers εα are then inductively defined
as follows:

Definition 4.8.

(1) ε0 = sup{ω, ωω, ωωω , ωωω
ω

, . . .};
(2) εα+1 = sup{εα, εαεα , εαεα

εα
, εα

εα
εα
εα

, . . .};
(3) ελ = sup{εβ | β < λ}.

So the epsilon function ε is a fast growing function: εn+1 is in some sense much
larger than εn. Moreover, the epsilon numbers are fixed points: it can easily be
seen that ε0 = ωε0 , and that in general we have

εεα+1 = (εα)εα+1 .

4.1.5.2. The Veblen hierarchy.
We now turn to the (binary) Veblen functions, which form hierarchy of even

faster growing arithmetically definable normal functions17 on the ordinals. We start
by defining what it means to be a normal function:

17‘Normal’ means continuous and strictly increasing.
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Definition 4.9. A function f on the ordinals is normal if and only if f is
strictly increasing and continuous at limit stages,

where being continuous at limit stages means that for every limit ordinal λ, we
have

f(λ) = sup{f(α) | α < λ}.
If ϕ0 is any normal function on a segment of the ordinals, then for any ordinal

α > 0, ϕα is the function enumerating the common fixed points of ϕβ for β < α.
These functions ϕα are then all normal.

We are only concerned with the special case where we take ϕ0(α) = ωα. Then
the resulting family of functions ϕα is called the Veblen hierarchy. The function
ϕ1 in this hierarchy is the same as the ε function: ϕ1(α) = εα. The functions
ϕ2, ϕ3, . . . are then increasingly fast growing functions on the ordinals.

The first ε number ε0 will be of importance later: it is the least fixed point of
ϕ0, i.e., the least α such that ωα = α. In a similar way, ϕ2(0) is the least ordinal
α, such that εα = α.

The function Γ enumerates the fixed points of the Veblen hierarchy, i.e., the
ordinals α such that ϕα = α. Also the ordinal Γ0, the smallest ordinal α such that
ϕα = α will be of importance later. This ordinal Γ0 is called the Feferman-Schütte
ordinal.

4.1.5.3. Kleene’s O.
To conclude this section, we discuss an arithmetical notation system that is

due to Stephen Kleene, and which can deal with even larger countable ordinals.18

Moreover, since it is slightly less straightforward, we will be somewhat more explicit
about the arithmetical coding.

This ordinal notation system is called Kleene’s O. We call |a| the ordinal
denoted by an ordinal notation a in Kleene’s notation system O of arithmetical
notations of ordinals. O is partially ordered by a relation <O. The set O and the
relation <O are simultaneously defined as the smallest set and relation for which
the following holds:

Definition 4.10.

(1) 0 ∈ O, and |0| is the ordinal number 0;
(2) If a ∈ O ∧ |a| = α, then 2a ∈ O ∧ |2a| = α+ 1 and a <O 2a;
(3) Let {e} is the e-th partial recursive function. If {e} is total, the range of
{e} is a subset of O, and for all n, {e}(n) <O {e}(n+ 1), then 3 · 5e ∈ O
and for all n, {e}(n) <O 3 · 5e and |3 · 5e| = limk|{e}(k)|.

(4) a <O b <O c→ a <O c.

We have a <O b, for two ordinal notations a and b, if and only if |a| < |b|. The
relation <O induces a tree structure on O whereby O is well-founded. O branches
only at limit ordinals, and at limit ordinals it branches countably infinitely.

The supremum of the ordinal numbers that are named in Kleene’s O, i.e.,
sup{|a| : a ∈ O}, is called the first non-constructible ordinal ωCK1 (‘omega-1-
Church-Kleene’). It is the first ordinal number of which the order type is undefinable
in the language of first-order arithmetic.

A path P is a subset of O such that (i) for any a, b ∈ P either a ≤O b or
b ≤O a, (ii) if b ∈ P and c ≤O b then c ∈ P . For any a ∈ O, a set P =

18See [Kle38].



114 4. SOME FOUNDATIONALLY SIGNIFICANT THEORIES

{ b | b <O a} is called a path within O. The length of a path P is the ordinal of
the restriction of <O to P . For any path P within O, the order type of P , denoted
as |P |, is less than ωCK1 . A path P is a path through O if |P | = ωCK1 . The relation
<O is not recursively enumerable; indeed, it is Π1

1-complete. However, for any a,
the restriction of <O to { b | b <O a} is recursively enumerable.

4.1.5.4. Transfinite induction.
The principle of transfinite induction for α, where α is an ordinal, says that if

you have any property Φ that is progressive, which means that, for every ordinal β
if it holds for all ordinals γ < β, then Φ holds also for β, then Φ holds for α. It is not
hard to see that for any α, the principle of transfinite induction up to α is true, for
this follows immediately from the principle of transfinite induction that is provable
in standard set theory. We have seen how we can simulate talk of small transfinite
ordinals in an arithmetical setting, using ordinal notation systems. This allows us
to formulate principles of transfinite induction in the language of arithmetic.

Let us now define principles of transfinite induction formally. We fix upon a
natural notation system for ordinals and call it O. Then both O and the order-
ing relation ≺ on ordinals defined by elements of O are definable in first-order
arithmetic.

Definition 4.11 (Transfinite induction). Let A be a formula.

(1) Transfinite induction for A for α ∈ O, denoted as TI(A,α), is the formula

Prog(λxA)→ A(t),

where t is a notation in O for α, and Prog(λxA) states that A is progres-
sive along ≺, i.e.,

∀x ∈ O[∀y ≺ xA(y/x)→ A(x)].

(2) For a language L and ordinal α ∈ O, the schema of transfinite induction
for α, TIL(α), is the collection of formulas

{TI(A,α) | A ∈ L},
and the schema of transfinite induction up to (but not including) α, TIL(<
α), is the collection of formulas

{TI(A, β) | A ∈ L ∧ β < α}.

In general, the principle TIL(< α) is strictly weaker than the principle TI(α).
We will see later that there is a strong correlation between proof theoretic

strength of a mathematical theory S on the one hand, and the amount of transfinite
induction that S can prove on the other hand. The stronger S is, the larger the
greatest ordinal α such that it can prove transfinite induction up to α; in this case,
α is called the proof theoretic ordinal of S.

In this sense, the amount of transfinite induction that a system S can prove is
often taken as a measurement of the mathematical strength of S. A typical example
of this is Gerhard Gentzen’s celebrated theorem:

Theorem 4.12.

(1) PA ` TIL(< ε0);
(2) PA 6` TIL(ε0).

This means that ε0 is the proof theoretic ordinal of PA.
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4.2. Set theory

Set theory is a universal framework for mathematics, in the sense that all proofs
in all branches of mathematics can in principle be carried out in set theory. Of
course this is not to be understood as a practical recommendation for carrying out,
for instance, proofs in algebraic number theory, in the framework of set theory.

4.2.1. First-order. The language of first-order set theory (LZFC) contains
only one non-logical symbol: the relation symbol ∈ (elementhood). The axioms of
standard first-order set theory (ZFC) are the following:19

ZFC0 Existence
∃x (x = x)
ZFC1 Extensionality
∀x∀y (∀z (z ∈ x↔ z ∈ y)→ x = y)
ZFC2 Foundation
∀x [∃y (y ∈ x)→ ∃y (y ∈ x ∧ ¬∃z (z ∈ x ∧ z ∈ y)]
ZFC3 Set comprehension scheme / Separation
∀z ∀w1, . . . , wn ∃y ∀x (x ∈ y ↔ x ∈ z ∧ Φ) for each predicate Φ
ZFC4 Pairing
∀x∀y ∃z (x ∈ z ∧ y ∈ z)
ZFC5 Union
∀F ∃A ∀Y ∀x (x ∈ Y ∧ Y ∈ F → x ∈ A)
ZFC6 Replacement Scheme
∀A∀w1, . . . , wn [∀x ∈ A∃!yΦ → ∃Y ∀x ∈ A∃y ∈ Y Φ] for each predicate
Φ

Using Axioms ZFC1–ZFC6, the concepts of subset (⊆), empty set (∅), and ordinal
successor (S) can be defined. In terms of these defined concepts, the remaining
axioms of ZFC can be introduced:

ZFC7 Infinity
∃x (∅ ∈ x ∧ ∀y ∈ x (S(y) ∈ x))
ZFC8 Power set
∀x∃y ∀z (z ⊆ x→ z ∈ y)
ZFC9 Choice
∀F [(∀A ∈ F (A 6= ∅) ∧ ∀A,B ∈ F (A ∩B = ∅))→
∃K ∀A ∈ F ∃!y ∈ A (y ∈ K)]

Naively, one can take PA to describe the natural number structure. Equally
naively—or perhaps even more so,—one can take ZFC to describe the set theoretic
universe V : the collection of all sets. According to the iterative conception of sets,20

the set theoretic universe V is somehow generated in ordinal stages by iterating
the power set operation into the transfinite, starting from the empty set.21 This
philosophical view is inspired by the theorem of ZFC that says that V is stratified
in layers, called ranks Vα, indexed by ordinals. For every set x, there is then a
smallest ordinal α such that x ∈ Vα.

19In the presentation of some of the axioms below, we here (exceptionally) make use of
variables in capital letters as means of referring to sets. This is just done to increase readability
of the axioms; they are not intended to be variables of higher order.

20See [Boo71].
21At limit stages, unions are taken of what is generated in all previous stages.
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ZFC is a natural encapsulation of the general proof principles that are generally
accepted in mainstream mathematics. In fact, in most of mainstream mathematics,
not all proof principles in ZFC are used in their full strength. This is related to the
fact that most mathematical objects that are of real interest to most mathemati-
cians ‘live’ in rank Vω+5 or thereabouts. Despite this, few working mathematicians
would object to any of the axioms of ZFC in their full generality. Thus, from a
naturalist perspective, ZFC is of great foundational importance.

4.2.2. Second-order. The theory ZFC quantifies over sets. But, by Russell’s
famous diagonal argument, V cannot be a set:

Theorem 4.13 (Russell). ZFC ` ¬∃y : ∀x(x ∈ y).

So V does not belong to ZFC’s domain of discourse; ZFC does not formally recog-
nise V as a mathematical entity. For similar reasons, ZFC does nor recognise the
collection of all ordinal numbers Ord as a mathematical entity.

This does not necessarily mean that V does not exist as a mathematical entity.
Collections of sets that cannot themselves be sets, such as the collection of all sets
or the collection of all ordinals, are called proper classes. (Sets are then “improper”
classes.) We can officially recognise proper classes of the mathematical world by
adding second-order variables and second-order quantifiers to LZFC , thus obtaining
the language L2

ZFC of second-order set theory. Then, in analogy with second-order
theories of arithmetic, mathematical theories of sets and proper classes can be
formulated: such theories are called class theories.

The class theory that is the natural analogue of full second-order number theory
(PA2) is called MK (for Morse-Kelly), or also ZFC2. We obtain it by formula-
ting the axioms of ZFC in the extended language L2

ZFC , replacing the replacement
scheme ZFC6 and the set comprehension scheme ZFC3 by its second-order universal
closures, and adding the full class comprehension scheme:

∃X∀y : y ∈ X ↔ Φ(y) for every Φ not containing X free .

The theory ZFC2 is much stronger than ZFC:

Theorem 4.14. ZFC2 is proof-theoretically non-conservative over ZFC for
LZFC .

Nonetheless, there are elementary natural set theoretic questions that even
ZFC2 cannot decide, such as Cantor’s famous Continuum Hypothesis (CH):

Definition 4.15 (CH). There are no collections of sets of natural numbers
C such that the cardinality of C is strictly greater than the cardinality of N but
strictly smaller than the cardinality of R.

Theorem 4.16 (Gödel, Cohen). CH is independent of ZFC2.

Because its comprehension scheme postulates the existence of classes that are
defined by quantifying over the collection of all classes, the theory MK is an im-
predicative theory of classes. Even if one accepts impredicatively defined sets, one
might feel uneasy about impredicatively defined proper classes. In this case, one
may opt for a predicative theory of proper classes. The standard predicative theory
of proper classes is called NBG (Von Neumann-Bernays-Gödel). It is obtained by
restricting the full class comprehension scheme to formulas Φ ∈ L2

ZFC that con-
tain no bound variables. This restriction to predicative comprehension makes NBG
proof-theoretically much weaker than ZFC2:
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Theorem 4.17. NBG is proof-theoretically conservative over ZFC for LZFC .

One theory of classes that is intermediate between NBG and ZFC2 will play
some role later. This theory is called ECA.22 It consists of NBG except that instead
of the second-order quantified axioms of Separation and Replacement, it has the
full second-order schemes of Separation and Replacement:

∀z ∀w1, . . . , wn ∃y ∀x (x ∈ y ↔ x ∈ z ∧ Φ) for Φ any formula of L2
ZFC ,

∀a ∀w1, . . . , wn [∀x ∈ a ∃!yΦ→ ∃Y ∀x ∈ a∃y ∈ Y Φ] for Φ any formula of L2
ZFC .

Where ZFC2 stands to ZFC as PA2 stands to PA, ECA stands to ZFC as ACA
stands to PA.

The foundational significance of class theory derives mostly from the use that is
made of it in set theory itself. Not much use is made of proper classes in mainstream
mathematics. But in set theory, we do find uses of proper classes. For instance,
we find them in the investigation of large cardinals, which are sets that are too
large for ZFC prove their existence.23 For some such uses NBG suffices. For others,
stronger class theories come in useful.

4.2.3. Large cardinals. Large cardinal axioms, also known as strong prin-
ciples of infinity, are axioms hat posit the existence of sets that are very large,
and that cannot be proved to exist in ZFC. Such principles have been intensively
investigated since the 1940s. A distinction is made between small large cardinal
axioms, large large cardinal axioms, and axioms that posit the existence of sets
that, were they to exist, would be very large, but whose existence is incompatible
with ZFC. The standard textbook on this subject is [Kan94], on which we rely
heavily in what follows. This subsection is a whistle tour of some of the main large
cardinal principles.

The large cardinal axioms that are known are linearly ordered by strength. For
(almost) any large cardinal axioms LC and LC ′ that are known, we know either
that LC implies LC ′, or vice versa, or both.

4.2.3.1. Small large cardinals. The small large cardinal Axioms are those that
are compatible with every set being constructible. Here the constructible universe
L is defined by transfinite recursion as follows:24

Definition 4.18.

(1) L0 = ∅;
(2) Lα+1 contains all and only the sets y that consist of the sets z such that

Lα |= ϕ(a1, . . . , an, z) for some ϕ(x1, . . . , xn, y) ∈ LZFC and a1, . . . , an ∈
Lα;

(3) Lγ =
⋃
β<γ(Lβ);

(4) L =
⋃
α∈Ord(Lα), where Ord is the class of all ordinals.

Thus in the recursive definition of L we take the ordinals as given, at successor
stages we take definable subsets, and at limit stages we take unions.

L is then a proper class size structure of sets. It can be shown that L is the
minimal structure containing all ordinals that makes the axioms of ZFC true. The

22See [Fuj23, p. 151].
23We will look at some of them in the next subsection.
24The constructible sets were first defined by Gödel. For a good discussion of the properties

of L, see [Dev84].
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statement that the universe V consists of all and only the constructible sets can
then be expressed as a first-order set theoretic statement, which is often abbreviated
as V = L. The statement V = L is independent of the axioms of ZFC.

The weakest important modest large cardinal that we encounter is the Axiom of
(strongly) Inaccessible Cardinals (IC), which can be formulated as follows [Kan94,
p. 19]:

Axiom 4.19 (IC). There is a cardinal κ such that (Vκ, ε, Vκ+1) |= ZFC2.

We know that (V, ε, C) |= ZFC2. So the structure (Vκ, ε, Vκ+1) “reflects” the prop-
erty of making all of making all of ZFC2 true.

A stronger important small large cardinal principle is the Axiom of Weakly
Compact Cardinals (WCC):25

Axiom 4.20 (WCC). There is a cardinal κ such that for every Π1
1 formula (with

a second-order parameter) ϕ and for every A ⊆ Vκ: if (Vκ, ε, Vκ+1, A) |= ϕ , then
there is an α < κ such that (Vα, ε, Vα+1, A ∩ Vα) |= ϕ,

where in the latter structure Vα serves as the interpretation of the first-order vari-
ables, Vα+1 serves as the interpretation of the second-order variables, and A ∩ Vα
serves as the interpretation of the second-order parameter. (The former structure
then specifies interpretations of variables and parameters in an analogous manner.)

Thus the level Vκ “reflects” all Π1
1 sentences with second-order free variables.

We will later see that this is indeed a paradigmatic example of a set theoretic
reflection principle.

All weakly compact cardinals are (strongly) inaccessible, but the converse is
not the case. Thus Axiom 4.20 is properly stronger than Axiom 4.19.

4.2.3.2. Large large cardinals. Large large cardinals are those that are incom-
patible with the assumption that every set is constructible. Few doubt the truth
of any of the well-known small large cardinal Axioms. The truth of large large
cardinals is more controversial, and doubt increases as we move up in the hierarchy
of strength of large large cardinal Axioms.

The first important large large cardinal Axiom that we encounter has a measure-
theoretic origin:

Definition 4.21. A measure over a set S is a function m : P(S)→ [0, 1] such
that:

(1) m(S) = 1
(2) m({x}) = 0 for all x ∈ S
(3) for pairwise disjoint {Xn ⊆ S | n < ω}, we have

m(
⋃
n

Xn) = Σnm(Xn).

It is easy to see that ω is a measurable set. But the existence of uncountable
measurable sets cannot be proved in ZFC: it is a large cardinal property. This is a
motivation for the Axiom of Measurable Cardinals (MC):26

25There are a number of conceptually different but mathematically equivalent definitions
of weakly compact cardinals. The definition that is given here is chosen because of its direct
connection with the subject matter of reflection.

26For an introduction to the concept of measurable cardinal, see [Kan94, Chapter 1, Section
2].
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Axiom 4.22 (MC). There are uncountable measurable cardinal numbers.

It can be proved that all measurable cardinals are weakly compact. Moreover,
measurable cardinals are indeed large large cardinals:

Theorem 4.23. ZFC + (MC) ` V 6= L.

Almost all large large cardinal axioms, and some small large cardinal axioms,27

can be expressed as elemenary embedding principles, which are defined as follows.28

Definition 4.24. An inner model of V of a theory S is a transitive substructure
of V that makes S true and that contains all ordinals.

Typically, S will be a fairly strong theory of sets, such as ZFC or ZFC2. A standard
example of an inner model for ZFC is Gödel’s constructible universe L.

Definition 4.25.

(1) A first-order elementary embedding from V into an inner model M is a
proper class size bijective function j such that for all formulas Φ(x1, . . . , xn) ∈
LZFC , we have:

V |= Φ(x1, . . . , xn)⇔M |= Φ(j(x1), . . . , j(xn)).

This is denoted as j : V 7→1 M .
(2) A second-order elementary embedding from V into M is defined as a class

function such that for all Φ ∈ L2
ZFC :

V |= Φ(x1, . . . , xn, Y1, . . . , Ym)⇔M |= Φ(j(x1), . . . , j(xn)), j(Y1), . . . , j(Ym).

This is denoted as j : V 7→2 M .

An embedding function j is said to be non-trivial if it is not the identity function
on the ordinals. For every embedding function j and for every ordinal α, j(α) ≥ α.
If j is non-trivial, then there must be a smallest ordinal κ that is moved by j. This
ordinal κ is then said to be the critical point of j; this ordinal typically has large
cardinal properties.

Embedding principles thus are axioms that postulate the existence of non-trivial
embedding functions, often with certain specific properties. The strength of an
embedding principle tends to be positively correlated with the extent to which it
forces the inner model M to resemble the set theoretic universe V .

The function j in embedding principles is then a proper class. So elementary
embedding principles are class theoretic statements. Nonetheless, the strength of
embedding principles does not crucially depend on this second-order feature, since
embedding principles relating instead (set-sized) initial fragments Vα of V to “inner
models” Mα that contain all ordinals of Vα still have the intended large cardinal
strength. The latter are of course first-order principles.

The following Theorem shows that the Axiom of measurable cardinal can be
regarded as an embedding principle:

Theorem 4.26. An uncountable cardinal κ is measurable if and only if there
is an inner model M and an embedding j such that j : V 7→1 M with critical point
κ.

27Axiom 4.20 is a case in point.
28For an introduction to the relation between large cardinal axioms and elementary embed-

dings, see [Kan94, Chapter 1, Section 5].
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Figure 1

By imposing additional conditions on j and on M, stronger embedding princi-
ples are obtained. In particular, in stronger embedding principles, M looks more
and more like V itself.

Continuing our discussion of the large cardinal hierarchy, we next arrive at
the Axiom of 1-Extendible Cardinals (EC), which can be seen as a second-order
strengthening of Axiom 4.22 ([Kan94, p. 311]):29

Definition 4.27 (EC). A cardinal κ is 1-extendible if and only if there is an
inner model M and an embedding j such that j : V 7→2 M with critical point κ.

Again all 1-extendible cardinals are measurable cardinals, but not vice versa.
In the same way that one distinguishes between sets and classes, one can make

a type distinction between classes and hyperclasses. Then one can consider V
not only with its classes, but also with its hyperclasses, and consider embedding
functions j that are not only elementary for sentences of class theory but even for
sentences of hyperclass theory (i.e., embedding functions that are 3-elementary),
one can in those terms formulate an analogue of Axiom 4.27: this stronger axiom
is the Axiom of 2-Extendible Cardinals. And by climbing up further through the
type theoretic hierarchy in the same way, one arrives at the Axiom of α-Extendible
Cardinals, for any given ordinal α. A cardinal number that has the property of
being α-Extendible for every ordinal α is called an Extendible Cardinal. Being
an Extendible Cardinal is (in some informal sense) a much stronger large cardinal
property than being α-Extendible for some given α.

Another important concept in large cardinal theory is the property of super-
compactness, which again has an elementary embedding characterisation [Kan94,
p. 298]:

Definition 4.28 (SC). A cardinal κ is γ-supercompact (SC) if there is an
inner model M and an embedding j : V 7→1 M such that κ is the critical point of
j, γ < j(κ), and M is closed under sequences of length γ of elements of M .

Analogous to the case of extendibility, a cardinal is said to be supercompact if it is
γ-supercompact for every ordinal γ. The least supercompact cardinal is larger than
the least α-extendible cardinal (for every ordinal α), whereby supercompactness is
a very strong large cardinal property, but it is smaller than the least extendible
cardinal.

29The concept of extendible cardinal traces back to [Rei74].
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To conclude, we arrive at one of the strongest large large cardinal Axioms
that is believed to be consistent with ZFC, namely Vopenka’s Principle (VP). This
Axiom is not formulated as an embedding principle ([Kan94, p. 335]):

Definition 4.29 (VP). For every proper class of first-order structures C, there
are structures A,B ∈ C such that A is isomorphic to a substructure of B,

where a structure is just what one would expect, i.e., a set with some operations
on it.

(VP) is a very strong large cardinal principle because it entails the existence of
many extendible cardinals, for instance.

Figure 2

Many set theorists find all the above large cardinal Axioms plausible. Moreover,
large cardinal Axioms are proof-theoretically strong. In particular, they decide
many questions about small initial segments of V . Gödel’s program consists in
solving as many set theoretic questions that are independent of ZFC using large
cardinal Axioms as possible by using large cardinal Axioms. This program has so
far been moderately successful, as is witnessed by the history of research on the
Continuum Hypothesis. It has been shown, by essential appeal to large cardinal
Axioms, that at least some natural weakening of the Continuum Hypothesis, which
is nevertheless highly nontrivial, is true ([Woo01]). However, it has also proved to
be highly unlikely that large cardinal Axioms can ever decide the full Continuum
Hypothesis, even though CH is of course a question about the rank Vω+2.

4.2.3.3. Choiceless cardinals. Reinhardt observed that natural ultimate limit
of this process (of embedding V into inner models M that look more and more like
V ) is to postulate a non-trivial embedding from V into itself :

Axiom 4.30 (R). There is a non-trivial elementary embedding from V into V .
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But this is was then soon found to be incompatible with ZFC [Kun71]:

Theorem 4.31. ZFC ` ¬∃ non-trivial j : V 7→1 V.

It has been observed that the proof of Theorem 4.31 makes essential use of
the Axiom of Choice. Indeed, a rich structure theory of “choiceless cardinals” is
currently being developed in the context of ZF (without the Axiom of Choice).
In particular, various strengthenings of Axiom R have been proposed, and in the
absence of the Axiom of Choice, they appear (so far!) to be consistent. This
gives the appearance of there being a whole realm of cardinals beyond the “choicy”
cardinals.

4.3. Probability

In this concluding section, we begin by formalising Kolmogorov’s classical the-
ory of probability. However, the main aim of the concluding section of this chapter
is to present two formal theories of probability. The first of these theories intends
to capture concepts of finitely additive probability. The second theory contains
a version of the principle of σ-additivity. In a later section,30 we will use these
theories as background for our discussion of probabilistic reflection principles.

4.3.1. Kolmogorov. We start with the standard or ‘classical’ theory of prob-
ability, which we will call K. It was first formulated by Kolmogorov in [Kol33].
Usually, Kolmogorov’s theory is presented only semi-formally.31 Here, we give a
precise axiomatisation of it.

Probability values are real numbers between 0 and 1. So the intended domain
of discourse is R, and the language of probability theory includes a first-order
language LR that contains symbols for certain elementary relations and operations
on the real numbers (such as ≤, for instance). In particular, we will assume that
LR contains a predicate (N) that holds of all and only the natural numbers. This
allows us to assume that formulas of the language LR belong, coded as natural
numbers, to the domain of discourse. The background language may of course also
contain empirical predicates and constants. But they will not play a role in what
follows—Schmieröl!,—so we will pretend that some such are included in LR, but
make no specific assumptions about them.

The formal language of probability theory LPr takes probability to be a property
of closed sentences. It therefore contains a function symbol Pr, which takes codes
of sentences (i.e., natural numbers) as arguments, and delivers real numbers as
function values. We set LPr = LR ∪ {Pr}.

Kolmogorov’s probability theory is a typed theory, in the sense that Kol-
mogorov’s probability axioms are about statements in which the concept of prob-
ability does not occur. So they are about sentences of a background language LR
in which the probability symbol Pr does not occur, and are stated in the language
LPr.

Kolmogorov’s probability theory (K) is then formulated in the language LPr.
It contains some standard theory R of the real and the natural numbers: the exact

30See Section 6.7.
31This is primarily due to the fact that the axiom that ‘all necessary events have probability

1’ is introduced without giving a formal theory of the concept of necessity.
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details do not matter in what follows.32 In addition, K contains the following
axioms governing the probability predicate:

K1 Pr is a function such that ∀φ ∈ LR : 0 ≤ Pr(φ) ≤ 1;
K2 ∀φ, ψ ∈ LR : Pr(φ ∨ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∧ ψ);
K3 ∀φ ∈ LR : Pr(¬φ) = 1− Pr(φ);
K4 ∀φ(x) ∈ LR : Pr(∃x ∈ N : φ(x)) = limn→∞(φ(1) ∨ φ(2) ∨ . . . ∨ φ(n));
K5 For all φ(x) ∈ LR:

` φ
` Pr(φ) = 1

.

Conditional probability can be defined in the usual way:

Definition 4.32. If Pr(ψ) 6= 0, then

Pr(φ | ψ) =
Pr(φ ∧ ψ)

Pr(ψ)
,

and Pr(φ | ψ) is undefined otherwise.

From David Lewis’ triviality result, which we state somewhat imprecisely here,
we know that conditional probability cannot be equated with probability of a ma-
terial conditional:

Lemma 4.33 (Lewis). For most probability functions p, there are sentences
φ, ψ ∈ LR such that

p(φ | ψ) 6= p(ψ → φ).

Axioms K1–K3 are basic axioms of Kolmogorov’s theory. Axiom K4 is a ver-
sion of the principle of σ-additivity. The schematic rule ‘Necessitation’ rule K5
approximates the informal Kolmogorov axiom that all necessary statements have
probability 1. An important subsystem of K, which we call K−, is obtained by
removing the principle of σ-additivity (K4) from K. The theory K− is the standard
system of finitely additive probability.

Proposition 4.34. The theories K and K− are consistent and have standard
models,

where ‘standard’ means that the domain is R, and the symbols +, ·, . . . are inter-
preted in the normal way.

Basic laws of classical probability theory can be formally proved in the system
K. For instance, we can prove the following useful substitution rule:

Proposition 4.35. For all φ, ψ ∈ LR:
if K(−) ` φ↔ ψ, then K(−) ` Pr(φ) = Pr(ψ).

Proof. We reason in K(−) from a proof (in K(−)) of φ↔ ψ. By K5, we infer
that Pr(φ ↔ ψ) = 1. A simple calculation in K(−) shows that for all φ, ψ ∈ LR,
K(−), using K2 and K3, proves that Pr(φ→ ψ) = 1→ Pr(φ) ≤ Pr(ψ). So the fact
that Pr(φ↔ ψ) = 1 allows us to conclude, in K(−), that Pr(φ) = Pr(ψ). �

In fact, it is easy to see that against the background of the axioms K1–K4, Propo-
sition 4.35 is equivalent to the Necessitation rule K5.33

32Details are given in [Las09, Section 3.2].
33Laskey’s axiom system for Kolmogorov probability in [Las09] is therefore equivalent to our

system K: her theory is like ours, except that she has the inference rule Proposition 4.35 instead

of our inference rule K5.
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4.3.2. Typefree probability. We have seen that the theories K and K− are
typed : they contain no principles that impose restrictions on the probability of
statements that themselves contain the concept of probability. We can turn K
and K− into untyped or typefree theories Ku and K−u by simply removing the type
restrictions that are built into their axioms. The procedure of ‘untyping’ axiom
K2, for instance, yields the following principle:

K2u ∀φ, ψ ∈ LPr : Pr(φ ∨ ψ) = Pr(φ) + Pr(ψ)− Pr(φ ∧ ψ)

The motivation for the principles of K is supposed to extend to form a mo-
tivation of the principles of Ku. This holds also for the Necessitation rule. The
Necessitation rule of K is motivated by arguing that provable mathematical sen-
tences are not only true, but even necessarily true. Similarly, the Necessitation rule
of Ku is motivated by arguing that provable statements (possibly about the notion
of probability) express conceptual truths about mathematics and probability, and
such conceptual truths are necessarily true. The motivation is then completed by
Kolmogorov’s claim that necessary truths have probability 1.

For Ku and K−u , an analogue of Proposition 4.35 can be proved (and in the
same way):

Proposition 4.36.

For all φ, ψ ∈ LPr: if K
(−)
u ` φ↔ ψ, then K

(−)
u ` Pr(φ) = Pr(ψ).

Kolmogorov’s axioms are often taken to govern both concepts of subjective and
concepts of objective probability. We want to do the same for our systems Ku and
K−u of typefree probability. We will be especially occupied with the interpretation
of Pr as typefree rational subjective probability.

The distinction between typed and untyped theories carries over to truth theo-
ries in the obvious way. The history of axiomatic truth theory has taught us that
care should be taken when ‘untyping’ typed truth theories. The same holds for
untyping probability theory. Indeed, just as the diagonal lemma allows us to con-
struct liar sentences for truth theories, the diagonal lemma allows us to construct
probabilistic liar sentences for axiomatic theories of probability, i.e., sentences λp
such that for instance

λp ↔ (Pr(λp) < 1).

Thus the sentence λp “says of itself” that it has probability < 1.
The good news is ([CHL22, Theorem 3]):

Theorem 4.37. The theory K−u is arithmetically conservative over the back-
ground theory and has standard models.

This does not mean that K−u is an uncontroversial basic system of self-referential
subjective probability. Indeed, in the area of type-free subjective probability, there
is very little established common ground. That being said, I do know of any theo-
rems of the system K−u that are clearly objectionable.

However, when we add σ-additivity, we come dangerously close to inconsistency
([CHL22, Theorem 1]):

Theorem 4.38. The theory Ku is consistent but ω-inconsistent.34

34A theory S is ω-inconsistent if S proves ∃x ∈ N : ϕ(x) for some formula ϕ, but at the same
time for every n ∈ N proves ϕ(n).
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For this reason, we will later, in our investigation of probabilistic reflection princi-
ples, mostly adopt the system K−u , rather than Ku, as background theory.

There is a sense in which we do not have much freedom to extend even K−u .
Simple diagonal arguments show at even the probabilistic versions of the weak
principles35 of positive introspection (PI) and converse positive introspection (CPI)
cannot be consistently added to K−u ([CHL22, Proposition 3, Proposition 5]):

Proposition 4.39.

(1) The positive introspection principle

Pr(ϕ) = 1→ Pr(Pr(ϕ) = 1) = 1

cannot be consistently added to K−u ;
(2) The converse positive introspection principle

Pr(Pr(ϕ) = 1) = 1→ Pr(ϕ) = 1

cannot be consistently added to K−u .

In [SH22], the notion of (type-free) justified belief 36 is axiomatised. The prop-
erties of the resulting basic system of justified belief are similar to those of K−u . In
particular, adding introspection principles to this basic system typically results in
inconsistency. These results can perhaps be taken to cast doubt on the ultimate
coherence of certain scenarios of perfectly reflective agents, which were discussed in
Section 3.9.

35See Section 3.8.
36The notion of justified belief was discussed in Section 1.2.





CHAPTER 5

Axiomatic truth and deflationism

In this Chapter, we review basic facts about theories that describe how truth
can be used as a primitive concept in our reasoning. Such theories are developed
in the field of axiomatic truth theory.

In axiomatic truth theory, truth is conceived of as a property that some sen-
tences (of a given language) have, and that other sentences lack. Truth is then
formally expressed by a primitive predicate that is governed by truth axioms. These
axioms are considered against the background of axioms that describe the syntax
of sentences. For instance, a truth theory might claim, of a given sentence ϕ, that
ϕ is true if its negation is not true. Then the theory must be able to recognise,
for instance, the syntactical fact that from prefixing a negation sign to a sentence,
another sentence results.

Theories of syntax can be coded in first-order arithmetical theories. Whereas
the former are investigated in branches of linguistic mostly semi-formally, arith-
metical theories have been intensively investigated as fully formal theories. For
this reason, the background theory of syntax is in axiomatic truth theory mostly
expressed as a formal theory of arithmetic. We have seen in the previous chapter
that there are many first-order theories of arithmetic that differ in mathematical
strength. For definiteness, we will in this chapter mostly take one fixed weak arith-
metical theory as the background theory of syntax. But it turns out that almost
all of the basic theoretic and meta-theoretic features of axiomatic truth theories
are insensitive to mild perturbation of the background syntax theory. We will see
that it is only when a second-order theory (or set theory) is taken as background
theory over which the truth axioms are formulated, that the truth axioms must
take slightly different forms.

Axiomatic truth theories can be classified along two dimensions. On the one
hand, there is a distinction between disquotational and compositional truth theo-
ries. On the other hand, there is a distinction between typed and untyped truth
theories.

Disquotational truth theories roughly contain only axioms of the form

‘A’ is true if and only if A.

Compositional truth theories, on the other hand, contain axioms stating that truth
commutes with the familiar logical particles. For instance, a compositional truth
theory may contain an axiom that says that any conjunction is true if and only if
both of its conjuncts are true.

In typed truth theories, the truth axioms attribute the property of truth only
to sentences that do not themselves contain the truth predicate. The purpose of
this stratagem, which is due to Tarski,1 is to immunise against the argument of the

1See [Tar83].
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liar paradox. Type-free truth theories, on the other hand, attribute truth also to
certain sentences that themselves contain the concept of truth, whilst still guarding
against liar-like paradoxes.

The debate about what might be our best axiomatic theory of truth—if there is
such a thing—is intimately intertwined with the contemporary philosophical debate
about the nature of the property that is expressed by the truth predicate. Sub-
stantivists about truth claim that the truth predicate expresses a substantial and
philosophically pivotal property. Deflationists, on the other hand, deny this and
maintain that the truth predicate merely expresses a “metaphysically light” prop-
erty, the only function of which is to express and reason with certain generalisations
that we could not otherwise express or reason with.

In this Chapter I will mostly take PA as a background theory over which
truth theories are formulated, simply because this is what is mostly done in recent
literature about axiomatic truth and deflationism.

5.1. Disquotational theories

We have seen in the previous chapter that for every (sufficiently strong) lan-
guage, the notion of truth is undefinable in that language.2 So if we want to make
use of the notion of truth in our reasoning, we have to add a new predicate for it
explicitly to the language. For instance, if we want to use the notion of truth in a
discussion of arithmetic, we have to add it as a new primitive predicate (T ) to the
language. Thus we have to extend the language LPA with the predicate T , yielding
a larger language LT .

5.1.1. Unrestricted disquotation. We have to add axioms that regulate
the behaviour of the truth predicate in order to ensure that it behaves properly.
For example, from the assumption that the Twin Prime Conjecture is true, we want
to derive the Twin Prime Conjecture. In this context, a fundamental observation
is that truth is a device of semantic ascent and of semantic descent.3 It seems that
from T (φ), we ought to be allowed to infer φ, and, conversely, from φ, we ought
to be able to derive T (φ). This disquotational nature of the truth predicate is
captured in the Tarski-biconditionals, which are the statements of the form:

T (φ)↔ φ.

Truth theories in which the principles regulating the logical behaviour of the truth
predicate are Tarski-biconditionals are called disquotational truth theories.

However, when all Tarski-biconditionals are added to a minimally strong back-
ground theory (such as Robinson Arithmetic (Q)), then the argument of the liar
paradox shows that the resulting theory (call it L), is inconsistent. In fact, some-
thing slightly stronger can easily be proved ([KM60]):

Lemma 5.1. The theory that consists of PA, formulated in the extended lan-
guage LT , plus the T -Out scheme

T (ϕ)→ ϕ,

and the Necessitation rule
` φ
` T (φ)

,

2See Theorem 4.5.
3See [Qui86, Chapter 1].
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is inconsistent.

Proof. We reason in this theory. By the diagonal lemma, there is a liar
sentence L such that PA ` L ↔ ¬T (L). Suppose T (L). By T -Out, this yields L,
which is equivalent to ¬T (L). So we have reached a contradiction, and can reject
the assumption, i.e., we have ` ¬T (L), whereby ` L. Then by Necessitation, we
also have ` T (L), whereby we have reached a contradiction. �

This Theorem was intended to generate liar-like intensional paradoxes. After
all, if we interpret the predicate T not as truth but as necessity, for example, then,
intuitively, Necessitation and T-Out appear plausible basic principles. Nonetheless,
the resulting theory is inconsistent. At any rate, Theorem 5.1 shows a fortiori
that the unrestricted Tarski-biconditionals cannot all be consistently added to a
background theory of syntax.

In response to this problem, Horwich proposed that our best theory of truth
should collect as many jointly consistent Tarski-biconditionals as possible ([Hor98,
p. 42]). Unfortunately, this strategy does not work. Not only is there no unique
maximal consistent set of Tarski-biconditionals; in addition, no maximal consistent
set of Tarski-biconditionals is recursively enumerable ([McG92]). This shows that
the task of formuilating an optimal disqutational truth theory is non-trivial.

5.1.2. Typed disquotational truth. The Tarski-biconditional that is used
in the argument for the liar paradox is a sentence that itself contains the truth pred-
icate. Tarski realised that if only those Tarski-biconditionals that do not themselves
contain the truth predicate are added as axioms regulating the truth predicate, then
no inconsistency can be derived. The resulting theory is called TB. To be precise,
it consists of PA, with the new truth predicate T allowed in the induction axiom,
plus all the following Tarski-biconditionals:

T (φ)↔ φ with φ a closed sentence of LPA.

These are called the restricted Tarski-biconditionals.
TB is a basic theory of truth. A slight strengthening is obtained from TB if

in the Tarski-biconditionals free variables are allowed to occur, which are assumed
to be universally quantified over from the outside. These are called the uniform
Tarski-biconditionals, and the theory is called UTB. The theory UTB explicates
the notion of a predicate being true of a sequence of objects. In other words, it is
a theory of the satisfaction relation. The concept of truth is then a limiting case of
the concept ‘true of’, namely it can be seen as being true of a sequence of 0 objects.
A slight weakening of TB, called TB−, is obtained by restricting the induction
scheme to formulas that do not contain occurrences of the truth predicate T . The
theory UTB− is defined in a similar way: it is just like UTB, except that the truth
predicate is not allowed in the induction scheme.

Theories of truth that do not claim truth of any sentence that itself contain the
truth predicate, are called typed truth theories. TB and UTB are thus typed truth
theories.

As adumbrated in the introduction to this Chapter, Tarski’s restriction of the
instances of the Tarski-biconditionals to truth-free sentences is motivated by a desire
to avoid contradictions caused by liar paradox-like reasoning. This strategy is
clearly successful. TB is consistent, and indeed has a standard model in the natural
numbers.
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Indeed, a stronger property holds: In typed disquotational truth theories, no
‘new’ mathematical sentences can be derived, i.e., TB is proof-theoretically conser-
vative over its background theory PA for purely arithmetical sentences ([Hal14,
Theorem 7.5, p. 55]):4

Theorem 5.2. The theories TB(−) and UTB(−) are proof-theoretically conser-
vative over PA for the background language LPA.

One should not be tempted to conclude from this that disquotational truth theories
are always conservative over the background theory. For instance, UTB[S2

1 ]—i.e.,
the UTB axioms added to the system S2

1—is not arithmetically conservative over its
background theory S2

1 ,5 and we will later see that also some typefree disquotational
theories are not proof-theoretically conservative over their background theory for
arithmetical sentences.

Beside the concept of proof-theoretic conservativeness, there is also the notion
semantic notion of conservativeness, which may be of equal philosophical impor-
tance:

Definition 5.3. Theory S′ in language L′ is semantically conservative over
theory S in language L if and only if every model of S can be expanded to a model
of S′.

Proof theoretic conservativeness will play an important role in what follows, whereas
philosophical issues regarding semantic conservativeness will largely left aside.

An old observation says that proof theoretic deflationism and semantic defla-
tionism do not coincide:

Theorem 5.4. Proof theoretic conservativeness implies semantic conservative-
ness, but the converse does not hold.6

For instance, UTB− is proof-theoretically conservative over PA, but UTB− is not
semantically conservative over PA.

5.1.3. Stay positive. Tarski’s culling of the Tarski-biconditionals is draco-
nian. Banning all Tarski-biconditionals in which φ contains occurrences of T seems
an overreaction to the liar paradox. Indeed, the liar sentence is a very special
T -containing sentence. Consider, in contrast to the liar sentence:

It is true that the Twin Prime Conjecture is true
if and only if the Twin Prime Conjecture is true.

This Tarski-biconditional (and many others like it) is completely innocuous: it has
no untoward consequences. Yet it is not provable in TB.

Halbach observed that Tarski-biconditionals that do lead to problems, the for-
mula ϕ contains negative occurrences of the truth predicate, where the notion of a
negative occurrence of T in φ is defined as follows:

Definition 5.5. An occurrence of T in φ is positive if it occurs in the scope of
an even number of negation signs (where 0 is counted as an even number); otherwise
the occurrence is negative.

4The concept of proof-theoretic conservativeness was defined on p. 110.
5See [NP19, Proposition 3].
6For a discussion of the relation between semantic and proof theoretic conservativeness, see

for instance [Cie15].



5.1. DISQUOTATIONAL THEORIES 131

Halbach then proposed to restrict the Tarski-biconditionals to sentences in
which the truth predicate only occurs positively.7 The resulting theory is called
PTB (for: Positive Tarski-Biconditionals). As before, we can define the variants
PTB−, and PUTB(−) (Positive Uniform Tarski-Biconditionals). PTB and variants
on it are untyped truth theories: they easily prove truth iterations such as “it is
true that it is true that 0=0”.

The theory PTB again proves no ‘new’ arithmetical sentences ([Cie17, Theo-
rem 6.0.5, p. 92]):

Theorem 5.6. PTB is proof-theoretically conservative over PA for the back-
ground language LPA.

However, this is not the case for PUTB ([Hal09]):8

Theorem 5.7. PUTB is proof-theoretically (highly) non-conservative over PA
for the background language LPA.

Just to give an example, PUTB proves the consistency of PA. This is surprising:
one would not expect a theory of a philosophical concept such as truth to have new
mathematical consequences! However, there is no immediate reason for concern, for
all the new arithmetical consequences of PUTB are true arithmetical statements.

A natural way of extending Halbach’s theory PTB is by expanding the language
LT with a primitive falsity predicate, thus generating the language LT, F . We then
consider the sublanguage L+

T, F , which is obtained by allowing the negation symbol
from LT, F only to prefix atomic arithmetical formulas. Moreover, we consider the
Tarski biconditionals T (ϕ) ↔ ϕ with ϕ restricted to L+

T, F , which are called the

truth biconditionals, plus the falsity biconditionals F (ϕ) ↔ ϕ, where ϕ is the dual
of ϕ. Here we define duals recursively as follows [HL17, section 9.2]:

Definition 5.8. The dual of an atomic arithmetical formula is its negation;
the dual of an atomic formula of the form Tt is Ft and vice versa, the dual of A∧B
is the disjunction of the dual of A and the dual of B, and so on.

PA plus these two sets of biconditionals is called TFB (for: Truth-Falsity-
Biconditionals). It is then an easy exercise to work out that TFB proves statements
such as TF (0 = 1). As expected, we have ([HL17, Theorem 12, p. 226]):

Theorem 5.9. TFB is proof-theoretically conservative over PA for the back-
ground language LPA.

5.1.4. Partial. There is yet another natural way to deal with the liar paradox
in a disquotational manner. The core of the response is to preserve the inferential
versions of the full Tarski-biconditionals, i.e., the following two inference rules:

T -In
φ

T (φ)

T -Out
T (φ)

φ

7This follows immediately from [Hal09, Theorem 5.1, p. 792].
8Like all truth theories with restricted induction that I know of, PUTB− is proof-theoretically

conservative over its background mathematical theory.
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The motivation for this is the thought that truth is no more than a device for
quotation and disquotation.

The deduction theorem holds for classical logic:

Theorem 5.10. φ ` ψ ⇔ ` φ→ ψ.

Thus, over classical logic, the left-to-right direction of the deduction theorem
ensures that the combination of T -In and T -Out is equivalent to the full Tarski-
biconditionals. In other words, merely replacing the unrestricted Tarski-biconditio-
nals by their inferential counterparts does not block the liar paradox.

The logical rule that plays the central rule in the proof of the left-to-right
direction of the deduction theorem is the rule of Conditionalisation (or →-In):

φ (Hyp)
...

ψ (Hyp)

φ→ ψ
.

In order to block the liar paradox, the rule →-In must be restricted. In the
present context, this does not seem entirely unreasonable, for the following reason.
A trivial application of Conditionalisation yields the conclusion that ` L→ L, or,
equivalently, ` ¬L ∨ L. The argument of the liar paradox shows that either of
the two disjuncts in this statement yield a contradiction if the inferential version
of the unrestricted Tarski-biconditionals are accepted. This is a motivation for
refraining from asserting the law of excluded middle for L, and therefore to restrict
Conditionalisation. In other words, we are moved to reasoning in partial logic rather
than in classical logic.

On the other hand, we should have no qualms about applying Conditionalisa-
tion to formulas for which we know that excluded third holds. So the rule →-In
should be replaced by the following rule of Restricted Conditionalisation:

T (φ) ∨ T (¬φ) φ (Hyp)
...
ψ (Hyp)

φ→ ψ
.

In order to give the rule of Restricted Conditionalisation teeth, we assert as an
axiom scheme that the law of excluded middle holds for all formulas that do not
contain occurrences of the truth predicate.

When details are further filled in, one arrives at a system of partial logic that
is called Basic De Morgan Logic (BDM).9 In the framework of BDM, theories
of arithmetic can then be formulated. For instance, the axioms of Elementary
Arithmetic can be laid down.10 When we then also add the inference rules T -In
and T -Out, we arrive at the basic disquotational theory that is called TS0.11

The theory TS0 is consistent and arithmetically sound, and of course again
conservative:12

9For a precise presentation, see [FHN21, Section 2.1].
10Some care should be taken in the formulation of the induction scheme: see [FHN21,

Section 2.2].
11See [FHN21, Section 2.2].
12See [FNH17b, Section 2.4].
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Theorem 5.11. In partial logic, TS0 is proof-theoretically conservative for the
background arithmetical language over Elementary Arithmetic.

In sum, according to TS0, truth is a very simple notion. It is governed by com-
pletely unrestricted semantic ascent and descent rules. The price for this “trans-
parency” of the concept of truth is that we can then, on pain of contradiction, no
longer fully endorse the laws of classical logic.

5.2. Compositional theories

We now turn to the discussion of truth theories that take principles that state
that the concept of truth commutes with logical operations to be basic truth axioms.
We distinguish between typed and untyped compositional truth theories.

5.2.1. Typed compositional truth. Davidson famously argued that truth
is a compositional concept: the truth predicate distributes over the logical connec-
tives.13 Yet disquotational theories do not recognise this fact uniformly.14 Consider,
as an example, the basic disquotational theory TB. It can prove, for instance, the
distributivity of the truth predicate over negation pointwise; but it cannot prove
this fact in full generality:

Proposition 5.12.

(1) For all φ ∈ LPA: TB ` T (¬φ)↔ ¬T (φ);
(2) TB 6` ∀φ ∈ LPA : T (¬φ)↔ ¬T (φ).

A reaction to this phenomenon has been to take the general principles stating
the compositionality of truth to be basic truth axioms. Given that the collection of
true atomic arithmetical formulas is arithmetically definable by a formula val+,15

the standard axioms for typed compositional truth (over arithmetic) look like this
[Hor11, p. 71]:

CT1 ∀ atomic φ ∈ LPA : T (φ)↔ val+(φ);
CT2 ∀φ ∈ LPA : T (¬φ)↔ ¬T (φ);
CT3 ∀φ, ψ ∈ LPA : T (φ ∧ ψ)↔ (T (φ) ∧ T (ψ));
CT4 ∀φ(x) ∈ LPA : T (∀xφ(x))↔ ∀xT (φ(x)).

The typed compositional truth theory CT consists of adding these truth axioms
to PA, where the truth predicate is allowed to occur in instances of the induction
axiom.

The idea behind CT is thus straightforward. Since an explicit definition of the
class of true atomic arithmetical sentences can be given by means of the arithmetical
formula val+, truth for complex arithmetical sentences can be reduced to truth of
atomic arithmetical formulas through the compositional truth axioms CT2–CT4.

The theory CT− is obtained by restricting the induction scheme to formulas in
which the truth predicate does not occur. Just as TB is the most important typed
disquotational theory of truth, CT is the most important typed compositional truth
theory.

The theory CT is at least as strong as the theory TB ([Hor11, Proposition 29,
p. 75–76]):

13See [Dav67].
14See [Hor11, Section 6.1].
15See Section 4.1.1.
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Proposition 5.13. TB ⊆ CT.

The second part of Proposition 5.12 shows that this inclusion is proper.
In fact, CT is much stronger than TB. We will now see why, unlike typed disquota-
tional truth theories, typed compositional truth theories tend to be arithmetically
non-conservative over the mathematical background theory unless occurrence of
truth predicates in the induction scheme is severely restricted.

A fundamental observation concerning CT is the following [Hal11, Theorem
8.39]:

Theorem 5.14. CT ` ∀ϕ ∈ LPA : BewPA(ϕ)→ T (ϕ).

Proof. (Sketch.)
This theorem is proved, in CT, by an induction on the length of proofs in PA.
For the basis case, we must show that the logical axiom schemes are true and
that the arithmetical axioms of PA, including the axiom scheme of mathematical
induction, are true. Let us look only at the proof that the arithmetical axiom that
states that there is a least natural number is true, and at the proof that all instances
of mathematical induction are true.
(a) By Proposition 5.13,

¬∃y(0 = s(y))↔ T (¬∃y(0 = s(y)))

is a theorem of CT. Also, since ¬∃y(0 = s(y)) is an axiom of PA, the theory CT
proves it also. So CT indeed proves T (¬∃y(0 = s(y))).
(b) The following is an instance of the induction axiom of CT:

∀φ ∈ LPA : [Tφ(0) ∧ ∀y(Tφ(y)→ Tφ(y + 1))]→ ∀xTφ(x).

By the compositional truth axioms of CT, the truth predicate can be moved to the
front:

T{∀φ ∈ LPA : [φ(0) ∧ ∀y(φ(y)→ φ(y + 1))]→ ∀xφ(x)},
which is what we wanted to prove.
If we take Modus Ponens to be the only logical rule of inference, then the inductive
case is easy. By the inductive hypothesis, we may assume that we have a CT-proof
of T (φ) and a CT-proof of T (φ → φ). By the compositional truth axioms of CT,
there will then also be a proof in CT of T (φ). �

We will see later how this proof plays an important role in the contemporary defi-
nition about our epistemic warrant for proof-theoretic reflection principles.16

By instantiating φ by 0 = 1 in Theorem 5.14, we see that Theorem 5.14 entails
that CT is arithmetically non-conservative over PA. The precise arithmetical proof
theoretic strength of CT is that of the system ACA of predicative second-order
arithmetic ([Hal11, Theorem 8.42, p. 108]):

Theorem 5.15. CT and ACA prove the same first-order arithmetical sen-
tences.

Combined with Theorem 4.7, this entails that CT is arithmetically non-conservative
over PA.

For set theory, there is a similar connection between ZFC and a subsystem of
ZFC2 ([Fuj12, p. 1507]):

16See Section 9.4.
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Theorem 5.16. The theories ECA and the CT[ZFC] prove the same sentences
of LZFC ,

where CT[ZFC] is the theory that is obtained by adding the typed compositional
truth principles to ZFC. There is actually a wrinkle in the definition of theories
such as CT[ZFC], to which we now turn.

One special feature of arithmetic is that every object that arithmetic is about—
i.e., every natural number—has a standard name (a standard arabic numeral, for
instance). This is what enables theories such as CT to define truth for atomic
arithmetical sentences. But there are also theories that are about objects that do
not all have standard names. Set theory is one such theory. When a truth theory
has one of the latter theories as background theory, it must take a slightly more
complicated form.

One possibility is to work not with a primitive truth predicate but with a
primitive satisfaction predicate Sat(x, y), which intuitively says “formula x is true
of set y”. Then analogues for the truth axioms are formulated for the satisfaction
predicate, and a truth predicate is defined in terms of satisfaction:

T (x) ≡ Sentence(x) ∧ ∀ySat(x, y),

which says that a sentence is true if and only if it is—vacuously, because it is a
closed formula—“satisfied by” (or true of) each set.

A second possibility is to work with an internally coded infinitary language
of set theory, roughly as follows. Let Lε be the first-order language of set theory,
with ε and = as its only non-logical symbols, and let LTε be the extension of this
language with a primitive truth predicate. Now let LTV to be the extension of LTε
with a constant ȧ for each set a in V . Then it is not hard to see that ZFC can
develop an internal syntax theory for this highly uncountable language LTV . Using
this internal syntax theory, the compositional truth axioms can be expressed. For
instance, we can then express that a universal statement ϕ in the finitary language
LTε if and only if all instantiations of it are true in the highly uncountable language
LTV .17 For definiteness, we assume that, if the problem arises (such as in the case
of CT(ZFC)), we deal with domains that contain un-named objects in this second
way.

The situation is different when we restrict the induction scheme of CT ([KKL81]):

Theorem 5.17. The theory CT− is arithmetically conservative over its back-
ground arithmetical theory PA.

Nonetheless, adding a minimum amount of induction for the extended language
LT makes CT− non-conservative. More precisely, if we define CT0 as the theory
that results from adding mathematical induction for ∆0 formulas of the extended
language to CT−, then we have [WL17, Theorem 3.1]:

Theorem 5.18. CT0 is arithmetically non-conservative over its background
arithmetical theory PA.

In Section 4.2.2, we saw that predicative comprehension can be iterated, yield-
ing ever stronger systems RAα of predicative analysis. In a similar way, we can
construct ever stronger typed compositional truth theories in stages. The first stage
after the construction of CT looks as follows. We add a new truth predicate T1

17For details, see [Fuj12, Section 2].
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to LT , yielding a more expansive language LT,T1
. Then we formulate PA in this

more expensive language, allowing also the new truth predicate T1 to occur in the
induction axiom and in the logical axioms. The truth axioms of CT are added to
govern the ‘old’ truth predicate T . But also new typed compositional truth axioms
can be added that govern the new truth predicate T1:

CT11 ∀ atomic φ ∈ LPA : T1(φ)↔ val+(φ);
CT21 ∀φ ∈ LT : T1(¬φ)↔ ¬T1(φ);
CT31 ∀φ, ψ ∈ LT : T1(φ ∧ ψ)↔ (T1(φ) ∧ T1(ψ));
CT41 ∀φ(x) ∈ LT : T1(∀xφ(x))↔ ∀xT1(φ(x)).

All these principles together constitute the truth system CT1, of which the theory
CT is of course a sub-theory. It can then again be verified that CT1 is a well-
behaved theory, and also that it is arithmetically non-conservative over CT. In a
similar way, a next stronger compositional theory CT2 can then be constructed, and
so on, where at limit stages we simply take the union of all truth theories that have
already been constructed. At some stage, we will run into problems with coding
transfinite ordinals as natural numbers, but we will not worry about this here, and
consider this iteration process only up to ‘small’ countable ordinal stages.

Then the following generalisation of Theorem 5.15 can be proved:

Theorem 5.19. Up to relatively small transfinite countable ordinals α, the
theories RAα and CTα prove the same first-order arithmetical sentences.

Proof. As in the case of Theorem 5.15, the proof actually shows that the two
theories can be relatively interpreted in each other in a way that leaves arithmetical
sentences unchanged. �

Since such theories RAα are predicatively acceptable, Theorem 5.19 shows that the
hierarchy of typed compositional truth theories CTα give an alternative description
of at least the arithmetical content of predicative analysis. There is a school of
thought that argues that when two theories can be relatively interpreted in each
other, they have the same mathematical content. If that is so, then the hierarchy
of typed truth theories can be seen as an alternative way of spelling out the content
of predicative analysis.

We will see later that there is a tight connection between proof theoretic re-
flection principles and transfinite induction.18 Similarly, there ia also a tight con-
nection between truth principles and transfinite induction [Lei16, Theorem 1.6,
Lemma 3.11]:19

Theorem 5.20.

(1) CT ` TI(φ,< εε0) for all φ ∈ LPA;
(2) CT ` TI(φ,< ε0) for all φ ∈ LT .

The above are not only lower bounds, but also upper bounds.

5.2.2. Untyped compositional truth. We have seen how in the case of
disquotational truth theories, there are two kinds of untyped truth theories: theories
framed in classical logic, and theories based on non-classical logic. The same holds
for compositional truth theories. We now discuss each kind in turn.

18See Section 6.2.1.
19The principle of transfinite induction up to α for the formula φ (TI(φ,< α)) was defined

on p. 114.
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5.2.2.1. Classical.
The most influential untyped theory of typefree truth is the theory KF (‘Kripke-

Feferman’), which was formulated and investigated by Feferman in his article
[Fef91]. It can be seen as an attempt to formalise externally, in a classical context,
a certain type of partial models for LT . But the theory KF can also be motivated,
simply as a natural consistent classical axiomatic typefree truth theory, without
specific reference to these models.

In our discussion of probability,20 we saw that at least the principles of typed
finitely additive probability can safely be ‘untyped’, but that most probability 1-
introspection principles cannot then consistently be added as extra axioms. General
truth iteration principles, in contrast, seem very plausible. From a proof theoretic
point of view, Feferman’s theory KF can be seen as an attempt to validate these
principles while at the same time coming as close to fully ‘untyping’ CT as possible.

The theory KF consists of adding the following compositional truth axioms to
the background arithmetical theory PA:

KF1 ∀ atomic φ ∈ LPA : T (φ)↔ val+(φ);
KF2 ∀ atomic φ ∈ LPA : T (¬φ)↔ val−(φ);
KF3 ∀φ ∈ LT : T (¬¬φ)↔ T (φ);
KF4 ∀φ, ψ ∈ LT : T (φ ∧ ψ)↔ (T (φ) ∧ T (ψ));
KF5 ∀φ, ψ ∈ LT : T (¬ (φ ∧ ψ))↔ (T (¬φ) ∨ T (¬ψ));
KF6 ∀φ (x) ∈ LT : T (∀xφ (x))↔ ∀yT (φ (y));
KF7 ∀φ (x) ∈ LT : T (¬∀xφ (x))↔ ∃yT (¬φ (y));
KF8 ∀φ ∈ LT : T (T (φ))↔ T (φ);
KF9 ∀φ ∈ LT : T (¬T (φ))↔ T (¬φ);

KF10 ∀φ ∈ LT : ¬(Tφ ∧ T¬φ).

Thus KF is a strongly compositional type-free theory of truth (KF1–KF7) that
includes natural truth iteration axioms (KF8–KF9).

Axiom KF10 expresses the consistency of the extension of the truth predicate.
It is a bit of an odd duck. Unlike the other truth axioms, it does not reduce the
truth of statements to the truth of other statements or to elementary facts: it is
not “inductive”. For this reason, Axiom KF10 is sometimes left out. Axiom KF10
is for instance left out of the official version of KF in [Fef91]. Indeed, a number of
variants of KF are discussed in the literature.21 For many purposes, the differences
between variants do not matter much—leaving out Axiom KF10 does not diminish
the mathematical strength of KF, for instance.22 But it is a natural axiom, and if
we include it, then KF is able to prove that truth is closed under Modus Ponens:

Proposition 5.21. KF ` ∀φ, ψ ∈ LT : [T (φ) ∧ T (φ→ ψ)]→ T (ψ)

The theory KF proves one half of the Tarski-biconditionals:

Proposition 5.22. For all φ ∈ LT : KF ` T (φ)→ φ.

Proof. This is proved by a straightforward induction on the complexity of
φ. �

From Proposition 5.22, together with our earlier Lemma 5.1, an asymmetry with
typefree Kolmogorov probability immediately follows:

20See Section 4.3.
21In Section 6.3.1.2 we will encounter one such variant of KF.
22This is shown in [Can89].
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Corollary 5.23. The theory that results from adding the Necessitation rule
for the truth predicate to KF is inconsistent.

The reader will have noticed that even disregarding Axiom KF10, the theory
KF is not fully compositional. In particular, KF does not contain an axiom that
states that the truth predicate commutes with negation. It is in fact very easy to
verify that adding the untyped version of the negation Axiom CT2 to the theory
KF yields an inconsistent system. But the omission from this Axiom from KF
can be motivated. Concerning paradoxical sentences such as the Liar, it seems as
wrong to assert that they are false—i.e., that their negation is true—as it would
be to assert that they are true. But if the untyped version of CT2 is added as an
axiom, then the resulting system proves that for every statement either it or its
negation is true.

The axiomatic theory KF was developed by Feferman23 as a natural formalisa-
tion of Kripke’s24 semantic theory of truth, to which we now turn. The reasoning
of the liar paradox appears to show that assuming the liar sentence to be true leads
to a contradiction and that assuming it to be false also leads to a contradiction.
This led Kripke to propose that the liar sentence has no truth value at all: it is
neither true nor false. In the literature, this is often expressed by calling the liar
sentence “gappy”.

This means that in order to reason with paradoxical sentences such as the liar
paradox, we have to reason not in classical logic, where every sentence is taken
to have exactly one of two truth values (‘true’ and ‘false’), but in partial logic,
where sentences are also allowed to be gappy. A system of partial logic tends to
propose an evaluation scheme similar to the familiar truth clauses from classical
logic for the logical connectives. One of the most natural and popular evaluation
schemes for partial logic, and the scheme that we will work with here, is the strong
Kleene evaluation scheme. The truth clauses for strong Kleene logic are given by
the following tables (where ? denotes the absence of a truth value, i.e., gappiness):

Figure 1

23See [Fef91].
24See [Kri75].
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The material implication is defined in terms of ¬ and ∨ exactly as in classical
logic. The clauses for existential and universal generalisations are just the infinitary
analogues of the clauses for conjunction and disjunction. Given the ordering

0 < ? < 1,

we take the truth value of a formula of the form ∀xϕ(x) to be the infimum of its
instances, and we take the truth value of a formula of the form ∃xϕ(x) to be the
supremum of its instances.

Concerning atomic sentences of the form Ft, a strong Kleene model assigns an
extension and an anti-extension to F , which are required to be disjoint, and takes
Ft to be true if the denotation of t is in the extension of F , false if the denotation
of t is in the anti-extension of F , and gappy if the denotation of t is neither in the
extension, nor in the anti-extension of F .

So the case of the atomic sentences together with the inductive cases together
define a semantic evaluation relation that holds between partial models M and
sentences ϕ of a given language. We denote this relation as M |=sk ϕ. We say that
a partial model makes a whole theory S true, i.e., M |=sk S, iff M |=sk ϕ for every
ϕ ∈ S.

For our purposes, the truth predicate T will be the only non-classical predicate,
i.e., it will the only predicate such that the union of its extension and its anti-
extension does not exhaust the domain of discourse. Beside the truth predicate, our
models will of course have to interpret the arithmetical vocabulary. But they will
always interpret the arithmetical vocabulary in the standard way in the standard
natural numbers. So all our partial models M will be of the form

〈N, 〈M+,M−〉〉,

where M+ is the extension of T according to M, and M− is the anti-extension of
T according to M.

Kripke intends to construct a ‘good’ or intended model for typefree truth in
stages, which are indexed by ordinals. In each subsequent stage of the process that
Kripke describes, an improved model is produced. The intended model for LT is
then generated as a ‘limit’ of these approximations.

The way of producing ever better models for typefree truth is supposed to
mirror the way in which the concept of truth is learned by young children. The
little daughter proudly announces that she has learned that 1+2=3. Then her
mother introduces the concept of truth by adding that therefore it is true that
1+2=3. And she continues that that in turn implies that it is true that it is true
that 1+2=3. And so on. Somewhat later, the child learns that the natural numbers
go on indefinitely, and therefore the “and so on” means that when for any finite
number n, n copies of “it is true that” are prefixed to “1+2=3”, the result is still
a true statement. And then she learns that even that sentence is true. And so on.

This process is abstractly expressed by Kripke in his inductive definition of a
particular model of typefree truth. He starts with a model in which the extension
and anti-extension of the truth predicate are empty. At every successor stage, the
sentences that are made true (in the partial, strong Kleene sense) at the previous
stage are added to the extension of the truth predicate, and the sentences that are
made false (in the strong Kleene sense) are added to the anti-extension of the truth
predicate. At limit stages, unions are taken. Formally, the extensions and anti-
extensions of the approximations—and therefore the approximations themselves,
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since they are determined by their extensions and anti-extensions—are simultane-
ously defined inductively as follows:

Definition 5.24.

M+
0 ≡M−0 ≡ ∅

M+
α+1 ≡ {ϕ |Mα |=sk ϕ}

M−α+1 ≡ {ϕ |Mα |=sk ¬ϕ}

M+
λ ≡

⋃
β<λ

M+
β whenever λ is a limit ordinal

M−λ ≡
⋃
β<λ

M−β whenever λ is a limit ordinal

It is clear that the sentence 0 = 0 first enters the extension of the truth predicate
at stage 1, the sentence T (0 = 0) first enters the extension of the truth predicate
at stage 2, and so on. In this way, the inductive process captures the way in which
the truth concept is learned by the young child.

For elementary cardinality reasons, this inductive procedure of generating more
and more truths and falsehoods closes off at some stage:

Theorem 5.25.

There is an ordinal κ such that M+
κ = M+

κ+1 and M−κ = M−κ+1.

In other words, Mκ = Mκ+1: from stage κ onwards, no improved models are gen-
erated. The ordinal κ is called the closure ordinal of Kripke’s inductive definition.

The model Mκ = 〈N, 〈M+
κ ,M

−
κ 〉〉 is the intended model (or ‘limit model’) of

LT that we have been looking for. Mκ is called the minimal fixed point model of
Kripke’s inductive definition of models of LT .

It turns out that according to the minimal fixed point model Mκ, the liar sen-
tence is indeed gappy—it belongs neither to the extension nor to the anti-extension
of T ,—which is a pleasing result. Similarly, the negation of the liar sentence turns
out to be gappy. These two facts together imply that the logical law of excluded
middle does not fully hold in Mκ, whereby Mκ is not a model of full classical logic.

The judgements by Mκ concerning the truth status of sentences of LT appear
to be impeccable. In particular, no sentences have ever been found that are made
true by Mκ in the strong Kleene sense of the word (or equivalently, that belong to
M+
κ ) that do not also intuitively appear to be true.

Then Kripke goes on to define the ‘closed off version’ of Mκ, which is the
classical model M?

κ = 〈N,M+
κ 〉. In other words, according to the classical model

M?
κ, the anti-extension of the truth predicate is the union of the anti-extension of

the truth predicate according to Mκ and the collection of the sentences that are
gappy according to Mκ. This of course implies that M?

κ is a model of classical logic.
Like Mκ, the model M?

κ turns out also to be a very special model for the
language LT . It is a natural model for our highly compositional, typefree, and
classical theory of truth:

Theorem 5.26. M?
κ |= KF .
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So KF is a consistent theory, and it has standard models. Moreover, the typed
compositional theory CT is a sub-theory of KF.

In fact, KF is a much stronger theory than CT, as we will now see.

Definition 5.27. Theory S1 is proof-theoretically equivalent to theory S2 for a
class of formulas Φ if and only if there are primitive recursive functions f1, f2 such
that f1 transforms any S1-proof of a formula in Φ into an S2-proof of that same
formula, and f2 transforms any S2-proof of a formulas in Φ into an S1-proof of that
same formula.

Then Feferman has shown that ([Fef91, Theorem 4.1.1, p. 23]):

Theorem 5.28. The theories KF and RAε0 are proof-theoretically equivalent
for sentences in LPA.

Some take this to mean that KF is just another way of presenting a hierarchy
of predicatively acceptable systems of analysis. In fact, this appears to be how
Feferman himself saw the import of theorem 5.28.25 Moreover, given theorem 5.15,
this can also be taken to show that KF can be seen as a succinct way of expressing
the whole hierarchy of typed compositional truth theories up to level ε0.

Theorem 5.28 indicates that the connection between truth principles and trans-
finite induction also persists for typefree truth theories ([Lei16, Theorem 1.6]):

Theorem 5.29.

(1) KF ` TI(φ,< ϕε0(0)) for all φ ∈ LPA;
(2) KF ` TI(φ,< ε0) for all φ ∈ LT .

So even though CT and KF prove the same amount of transfinite induction for
the whole language, the typefree axioms of KF boost this much more for arith-
metical induction for the underlying purely arithmetical language than the typed
truth axioms for CT do. Moreover, given Theorem 5.28, we see that KF proves a
substantial fragment of predicative analysis.

Feferman also defined the schematic version KF(P) of the Kripke-Feferman
theory. In KF(P), a schematic predicate P is added to the background language
LPA, yielding the expanded background language LP . Moreover, the theory of type-
free truth KF(P) that is built over this background language, and is formulated in
the language LP,T , contains the axioms of KF and is closed under the schematic
substitution rule Sub, which is defined as [Fef91, p. 21]:

Definition 5.30.
` Φ(P )

` Φ(B)
,

with Φ(P ) any formula in LP , and B any formula in LP,T .
The system KF(P) is mathematically substantially stronger than KP ([Fef91,

Theorem 5.1.1, p. 30]):

Theorem 5.31. The theories KF(P) and RAΓ0
are proof-theoretically equiva-

lent for sentences in LPA.

Let us go back to the theory KF. In Proposition 5.26 we are using the modelling
relation in the classical sense of the word, and not in the strong Kleene sense of the

25See [Fef91, p. 3].
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word. Observe that this is a bit odd. Why does Kripke switch from partial models
to a classical model at the very end of the approximation process?

Most probably Kripke’s motivation for ‘closing off’ the minimal fixed point
model Mκ was a desire to uphold classical logic. Moreover, we have seen that M?

κ

satisfies a very natural compositional theory of typefree truth. Indeed, KF can be
seen as a natural axiomatisation of M?

κ. Nonetheless, the switch to the closed off
model does cause problems, to which we now turn.

A serious conceptual problem with KF is that it is in a sense self-undermining.
There are sentences that it claims (i.e., proves) but at the same time claims (i.e.)
to be untrue:

Lemma 5.32. KF ` λ ∧ ¬T (λ), where λ is the liar sentence.

This is of course not something that we expect of a theory of truth. It seems to
violate a law of assertion: only assert what you know to be true. This problem with
KF, and therefore also with M?

κ, was first isolated in [Rei86]. Moreover, in this
article Reinhardt also sketches and defends a possible solution.26

Reinhardt urges us to focus not on KF, but on what he calls the inner logic of
KF (IKF), and which is defined as follows:

Definition 5.33. IKF ≡ {ϕ | KF ` Tϕ}

Clearly IKF is a recursively enumerable and therefore axiomatisable collection
of sentences. In fact, IKF proves exactly the same arithmetical sentences that KF
does:

Proposition 5.34. For all ϕ ∈ LPA : IKF ` ϕ⇔ KF ` ϕ.

And unlike the theorems of KF, the theorems of IKF are all unobjectionable:

Proposition 5.35. IKF ⊆M+
κ .

Of course this implies that IKF is not closed under full classical logic.
One challenge that Reinhardt formulated in his article, is to give a natural

axiomatisation of IKF.27 Indeed, one may wonder at this point if IKF can be seen
as a natural truth theory at all. Reinhardt argues that in the absence of a natural
reasoning system for IKF, we can still rely on KF to a limited degree. It follows from
Proposition 5.32 that we cannot fully trust KF, whereas it follows from Proposition
5.35 that IKF is unobjectionable. For this reason, Reinhardt proposed that we use
KF only as an engine for generating theorems of the form Tϕ, i.e., elements of
IKF, which we then fully and unconditionally accept. In other words, Reinhardt
advocates an instrumentalist stance towards KF.

5.2.2.2. Partial.
We have seen that KF is not fully compositional. If we wants to make KF

more fully compositional by stipulating that truth commutes with negation, then,
on pain of contradiction, the truth predicate cannot be governed by classical logic.
But if we retreat to partial logic as described by BDM,28 then we can arrive at a
fully compositional theory of typefree truth, which is called PKF.29

26See [Rei86].
27We return to Reinhardt’s challenge in Section 5.2.2.2.
28See Section 5.1.4.
29This truth theory is described and investigated in [HH06].
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The truth principles of PKF are based on the rule-counterparts of the truth
axioms of KF. To be precise, aside from a rule-version of the axioms of Peano
Arithmetic, PKF contains the rules:

PKF1
val+(t1 = t2)

T (t1 = t2)

T (t1 = t2)

val+(t1 = t2)

PKF2
T (φ) ∧ T (ψ)

T (φ ∧ ψ)

T (φ ∧ ψ)

T (φ) ∧ T (ψ)

PKF3
T (φ) ∨ T (ψ)

T (φ ∨ ψ)

T (φ ∨ ψ)

T (φ) ∨ T (ψ)

PKF4
∀xT (φ(x))

T (∀xφ(x))

T (∀xφ(x))

∀xT (φ(x))

PKF5
∃xT (φ(x))

T (∃xφ(x))

T (∃xφ(x))

∃xT (φ(x))

PKF6
T (φ)

T (T (φ))

T (T (φ))

T (φ)

PKF7
¬T (φ)

T (¬φ)

T (¬φ)

¬T (φ)

Observe that Axiom PKF7 ensures that truth fully commutes with negation.
It is important to note that in the inference rules of PKF, t1, t2, φ and ψ func-

tion as variables ranging over terms and formulas, respectively. So as in the truth
axioms in CT and unlike the truth axioms of TB, the inference rules universally
quantify over terms and formulas. It is just that in PKF this is done implicitly,
using free variables which are always treated as universally quantified over, while
in CT this is done explicitly.

PKF contains a natural tyefree disquotational theory of truth:

Proposition 5.36. TS0 ⊂ PKF.30

Unlike the disquotational theory TS0, however, the system PKF is not conser-
vative over its background theory [HH06, Theorem 39]:

Theorem 5.37. The theories PKF and RAωω prove the same arithmetical sen-
tences.

This means that PKF is mathematically stronger than the typed compositional
theory CT, but weaker than KF.

It follows from Proposition 5.34 and Proposition 5.37 that the theories PKF and
IKF do not coincide. Nonetheless, the theories PKF and IKF are closely related.
Nicolai has shown that [Nic18, Theorem 1]:

Theorem 5.38. IKF = PKF + transfinite induction up to ε0 for LT .

30The system TS0 was described in Section 5.1.4.
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In other words, the only thing preventing IKF from coinciding with PKF is that
it does not contain enough transfinite induction; as far as truth laws go, the two
coincide. He thus meets Reinhardt’s challenge that was discussed at the end of
Section 5.2.2.1.

5.3. Deflationism

Let us now turn to philosophical views about truth and their relations to ax-
iomatic theories of truth. We concentrate on what is called truth theoretic defla-
tionism. The core of this view is the rather nebulous thesis that truth is not a
substantial notion and does not isolate a substantial property. In particular, being
true is not a substantial philosophical property, and truth is not a deep philosophical
concept.

Philosophical views about truth intend to address questions about the nature
of the property of truth, and on the content and function of the concept of truth.
These views can be divided in deflationist and substantivist philosophical theories
of truth. The issues involved are subtle, and I will not be able to do justice to the
complexities of the relevant philosophical considerations involved.

5.3.1. The correspondence theory. Traditionally, truth has been thought
of as one of the most weighty, central, and complicated philosophical concepts.
The correspondence theory of truth is one of the views that subscribes to this view.
For more than a millennium, it has been the most popular substantivist theory of
truth. Because it takes truth to be a weighty, central, and complicated philosophical
concept, it is called a substantivist theory of truth.

According to this view, truth is a relation between propositions or maybe
thoughts on the one hand, and facts or perhaps states of affairs on the other hand.
The core idea is that truth is correspondence between a proposition or thought on
the one hand, and a fact or state of affairs on the other hand: adaequatio rei et
intellectus, in Thomas Aquinas’ terms.

One of the reasons why, according to the correspondence theory, truth is deep
and complicated, is that the concepts proposition, thought, fact, and state of affairs
are unquestionably deep and complicated. Indeed, nothing like a consensus was
ever reached about what a satisfactory philosophical theory of these concepts would
more or less look like. Another reason why, according to the correspondence theory,
truth is a complicated matter, is that no consensus could ever be reached about the
approximate nature of the correspondence relation involved. The upshot is that
there are wildly different views about the content of the correspondence theory of
truth.

In the semantic work of Tarski, we witness an attempt at arriving at a more
tractable and exact theory. Instead of taking propositions of thoughts as truth
bearers, Tarski takes sentences (of a given language) to be the bearers of the concept
of truth. Moreover, he dispenses with facts and states of affairs altogether. Instead,
he makes use, in his definition of truth, of a collection D of objects (a domain of
discourse),31 plus a collection of sub-collections of D and a collection of relations
on D. All these notions are relatively well-understood: grammars are good theories

31Tarski took this domain of discourse to be fixed and consisting of all the objects that exist.
Later, this assumption was relaxed so that any collection of objects is admissible as a possible

domain of discourse.
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of the collection of sentences of languages, and set theory is a good theory of
collections and relations. In terms of these tractable concepts, Tarski defines the
notion of truth with mathematical exactness. Whether the resulting theory can be
seen as a form of the correspondence theory of truth, is open to debate. Tarski
himself thought so ([Tar44]); some other philosophers demur.32

The lack of precision is not the only problem with the correspondence theory
of truth. It is the ambition of the correspondence theory to give a real defini-
tion of truth, i.e., an explicit definition of truth where the definiens expresses the
essence of truth. But it is not clear that this ambition can be realised. It might
be that truth, like aesthetic beauty, and moral goodness perhaps, is one of the
most basic philosophical concepts, that admits of no reductive definition in terms
of more primitive notions. Tarski’s own work in semantics seems to point in this
direction, since his explicit definition of truth, for a given language, is formulated
in an essentially richer metalanguage. If an explicit definition of truth, let alone a
‘real’ definition of truth, is unattainable, then it seems advisable to concentrate on
uncovering the laws of truth. This is of course exactly what is done in the field of
axiomatic theories of truth.

5.3.2. Minimalism. In this subsection, we discuss Horwich’s version of de-
flationism about truth, as he develops it in [Hor90].

Horwich believes truth to be an undefinable, primitive concept. So, for him, a
truth theory in the strictest sense consists of a collection of basic principles. More
in particular, he holds that the correct theory of truth consists of a collection of
unproblematic instances of the Tarskian equivalence schema:

〈p〉 is true ⇔ p,

for p ranging over all propositions, and where 〈p〉 stands for a standard name for p.
He calls this the minimal theory of truth (MT).

There are two reasons why Horwich’s theory MT is only semi-formal. First,
the Tarski-biconditionals of MT are not formulated “on top of” a formal theory
of propositions. This is unlike the case of modern axiomatic theories of truth,
where the background arithmetical (or, equivalently, syntacticall) theory is made
fully explicit. In the latter case, the naming machinery can be explicitly defined,
using a coding scheme. In the former case, the unclarity surrounding the notion
of proposition also infects the naming machinery. (Does every proposition have a
standard name?) Secondly, it is not clear exactly which Tarski-biconditionals are
in, and which are out. The semantic paradoxes show that not all of them can be
in, and we have seen in earlier Sections in this Chapter that it is a highly nontrivial
task to decide what the best disquotational truth theory is.

Based on his semi-formal minimal theory of truth MT, Horwich then develops
a philosophical view about the nature and function of the concept of truth. This
can be called the minimalist conception of truth. We will see how Horwich’s view
about the nature of truth flows from his view about the function of the concept of
truth.

Horwich believes that the content of the concept of truth is given by a simple
and natural collection of Tarski-biconditionals. This doctrine, which has been held

32For a discussion of this question, see for instance [Sch98].
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by a number of authors at a number of times,33 is called disquotationalism. So
Horwich’s minimalist conception of truth is a specific form of disquotationalism.

The question of the nature of truth is deeply related to the question what role
the notion of truth plays in our intellectual endeavours. This is a question about
the range of applications of the concept of truth. Horwich’s view about the function
of the concept of truth has a positive aspect and a negative aspect. The positive
aspect describes how and where the concept of truth plays a helpful role, and the
negative aspect tells us where the concept of truth cannot play a helpful role (and
why that is so).

Everyone agrees that the concept of truth is a useful conceptual device for
expressing generalisations. The concept of truth allows us to assert an infinity of
sentences in one finite statement. Without the concept of truth, we could not assert
assert all the consequences of Newton’s theory of motion, for there are infinitely
many of them. The concept of truth, however, allows us to do it:

All consequences of Newton’s theory of motion are true.

Thus truth allows us to express certain kinds of infinite conjunctions (and disjunc-
tions). This role of being a tool for expressing complex propositions is one that it
shares with the familiar logical words such as ‘not’, ‘or’, and ‘some’.

Expressing truth generalisations is one thing; reasoning with them is another.
Quine ([Qui86]), and Horwich in his footsteps ([Hor90]), maintain that all that is
needed, is licencing quotational and disquotational inferential moves, i.e., inferring
ϕ from T (ϕ) and vice versa. Thus, they argue, a suitable set of Tarski-biconditionals
suffices to govern our reasoning with truth generalisations. We have seen in Section
5.1.1 that it is a highly non-trivial task to specify exactly which collection of Tarski-
biconditionals is optimal for performing this task.

But logic is neutral in substantive disputes, whereas truth has traditionally been
thought to play a vital role in philosophical debates. For instance, one important
philosophical question is the question of scientific realism, i.e., whether what is
entailed by our best scientific theories is likely to be true. There seems at first blush
no hope of answering this question without enquiring into the nature and laws of
truth. Similar points can be made for other philosophical debates. To give another
example, how are we to evaluate the ‘traditional’ theory of knowledge, according to
which knowledge is true justified belief, without asking deep and difficult questions
about truth?

Horwich rejects this view, and reasons more or less as follows. Controversial
philosophical theses are indeed for convenience’s sake formulated using the concept
of truth. Take, for example:

Our best scientific theories are approximately true.

If we formalise the predicate ‘best scientific theory’ as B(x), and for simplicity’s
sake forget about the qualification ‘approximately’, then this statement has the
following form:

∀x : B(x)→ T (x).

However, Horwich would insist that truth theory does not play a substantive role
in establishing or refuting this thesis. Roughly, according to Horwich, we should
concentrate on the corresponding truth-free scheme

B(ϕ)→ ϕ for all ϕ belonging to the ‘language of science’.

33See for instance [Hal01a], [HL17].
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Since the truth predicate does not play a role in this scheme, we can establish or
refute it using background theories of philosophy of science and / or metaphysics,
without drawing on the laws of truth at all. So truth theory is not needed after all.
Other examples of controversial philosophical theses in which the truth predicate
occurs can be analysed in a similar way, according to Horwich.

This is the negative part of Horwich’s view of the function of the concept of
truth. A corollary of this line of reasoning is that truth is not a philosophically
substantial notion. Therefore the minimalist conception of truth can be classified
as a species of truth theoretic deflationism.

One question that is not answered by Horwich’s ‘negative’ argument, however,
is whether the truth generalisation ∀x : B(x) → T (x) can in such a situation be
established. Halbach showed that even though a truth theory consisting of natural
Tarski-biconditionals can prove (over a background theory) the instances of this
truth generalisation (by simple applications of the ‘quotational direction’ of the
truth axioms), it cannot prove the truth generalisation itself ([Hal99]).34 Thereby
Horwich’s contention that a suitable set of Tarski-biconditionals suffices to govern
our reasoning with truth generalisations is open for debate.

This issue is called the truth generalisation problem ([Hal14, p. 57]). We will
come back to it later.35 But for now, let it suffice to say that Horwich would
probably maintain that for the philosophical debate about realism, all that matters
is the truth-free schematic assertion.

5.3.3. Conservativeness deflationism. One can generalise from Horwich’s
line of reasoning to the following general philosophical conservativeness claim:

Our best truth theory is proof theoretically conservative
for the background language over any reasonable background theory.

This is a form of truth theoretic deflationism, for it maintains that truth does
not play an essential role in philosophical debates: the only function of the truth
predicate is to express truth generalisations.

Let us call this view conservativeness deflationism.36 It has been explicitly or
implicitly endorsed by several authors. Horsten and Leigh defend a type-free dis-
quotational truth theory as our fundamental theory of truth, and thus indirectly
endorse conservativeness deflationism.37 Waxman explicitly endorses conservative-
ness deflationism in the following passage:

Is there any reasonable scope for denying that a deflationist the-
ory of truth must be conservative? [. . . ] the transition [from the
claim that truth is insubstantial to the claim that truth is con-
servative] has considerable intuitive force, for it seems extremely
uncomfortable to maintain that truth is an insubstantial or non-
robust property if the addition of truth principles leads one to
rule out what were previously considered to be live possibili-
ties concerning a (truth-free) subject matter. Perhaps the best

34See Theorem 5.2 above.
35Cfr infra, Section 9.6.1.
36There are also authors who advocate a semantic version of this conservativeness claim, but

we will not discuss it here.
37See [HL17].
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way of understanding the transition is as a proposed explica-
tion: the informal notion of metaphysical insubstantiality is to
be (possibly partially) explicated in terms of the formal crite-
rion of conservativeness. It is striking, and a mark in favour of
the plausibility of this understanding, that the conservativeness
requirement has attracted considerable support among deflation-
ists themselves. [Wax17, p. 445–446]

Horwich defends conservativeness deflationism for philosophical background
theories. The background theories that he finds most relevant in this context are
theories in metaphysics, epistemology, philosophy of science, ethics, action theory,
and philosophy of language. Most theories in those disciplines are expressed in an
informal manner, and are hard to formalise in an uncontroversial way. Thus, even
though Horrwich’s version of truth conservatism is proof theoretic at heart, it is
not only due to its sensitivity to the question what our best truth theory is that
this claim is in practice hard conclusively to establish or refute.

One may also wonder whether proof theoretic deflationism holds for scientific
and mathematical background theories. In the literature on truth theory, only ques-
tions of proof theoretic conservativeness of truth theories over formal arithmetical
theories has received much attention. Such questions are seen as tractable test cases
for conservativeness deflationism. Moreover, such questions have a wider import.
Since not only many ‘higher’ mathematical theories but also many highly theoretical
scientific theories (such as relativity theory, for instance) have arithmetic embed-
ded into them, non-conservativeness results for truth theories over arithmetic carry
over to non-conservativeness results for truth theories over these theories. And
since at least weak theories of arithmetic are interpretable in grammars, such non-
conservativeness results also carry over to many linguistic theories. And one may
wonder whether highly developed philosophical theories of meaning (such as com-
positional theories of meaning) might not also have grammars somehow built into
them or at least presupposed. If so, then non-conservativeness results might also
carry over to theories in philosophy of language, in which case Horwich’s claim of
conservativeness deflationism for philosophical theories would at least not be true
across the board.

But in order to arrive at truly precise proof theoretical questions, we must move
away from Horwich’s minimal theory MT and return to the setting of previous
Sections, where truth was seen as a predicate of sentences of a language, and where
a truth theory is always formulated against the backdrop of a fully explicit theory
of syntax (arithmetic). TB and PTB are then precise candidate counterparts of
Horwich’s somewhat vague theory MT.

We have seen in Section 5.1 that in the typed setting, disquotational theories
are usually conservative over arithmetical theories. We have also seen that composi-
tional truth theories tend to be non-conservative, and that in general, compositional
truth axioms cannot be derived from disquotational axioms. Since standard typed
compositional truth axioms are unobjectionable, it seems that compositional truth
theories are better than disquotational theories. Hence, it has been argued, conser-
vativeness deflationism does not hold for arithmetic ([Hor95], [Sha98], [Ket99]).38

And this has caused many philosophers to take a somewhat dim view of conser-
vativeness deflationism in general. Nonetheless, it should not be forgotten that

38For a recent discussion of conservativeness deflationism, see [MR20].



5.3. DEFLATIONISM 149

Horwich could still be in large part right. It might be that in most philosophical
theories, arithmetic is not interpretable, and that as a result thereof, proof theoretic
conservativeness even of compositional truth theories holds for those background
theories.

5.3.4. Truth as a logico-linguistic concept. The fact that many philoso-
phers had second thoughts about conservativeness deflationism has not resulted
in truth theoretic deflationism becoming less popular. Rather, it has resulted in
attempts to generate alternative reconceptualisations of the philosophical insub-
stantiality of the concept of truth. There are many such, but in this section, and
in this monograph more generally, we briefly consider only one of them.

We have seen in Section 5.3.3 how the truth predicate is a tool for expressing
certain forms of infinite conjunctions and disjunctions. This suggests the view that
the truth predicate is closely related to the familiar logical connectives. Indeed,
Field suggested that the concept of truth is a logical notion ([Fie99, p. 534]). Ac-
cording to the theory of inferentialism in the philosophy of logic, as championed for
instance by Prawitz,39 the meaning of the logical constants is given by introduction
and elimination rules. A disquotational truth theory may be taken to contain a
truth introduction (ascent) and a truth elimination (descent) component. Thus,
if one takes disquotational axioms to give the meaning of the truth predicate, as
some philosophers do, then the truth predicate seems closely related to the logical
constants. One is thus led to the claim that truth is a logico-linguistic concept
([HH02]).

Since truth is a property of sentences, sentences are governed by grammar, and
grammar is intertranslatable with arithmetic, it is no wonder that truth theory
interacts with arithmetic. And then it is perhaps not surprising that truth is
nonconservative over arithmetic. Thus the conception of truth as a logico-linguistic
concept seeks to demystify the non-conservativeness of truth.

Given the machinery of coding, the natural numbers play a double role in
formalised truth theories. They are not only what arithmetic is about, but also
play (as codes) the role of what grammar is about. In the formalisation of truth
theories, it is possible to disentangle syntax and arithmetic by keeping the entities
that play the syntactical roles separated from the entities that serve as the subject
of arithmetic. Formally, one distinguishes between two sorts of variables: variables
that range over natural numbers on the one hand, and variables that range over
linguistic expressions on the other hand. If these two sorts are kept separated by
the formal theory, then the nonconservativeness phenomena disappear.40

This development can be seen as pointing to consilience between conservative-
ness deflationism on the one hand, and the doctrine of truth as a logico-linguistic
doctrine on the other hand. But it need not be seen in this way, for the core of
the doctrine of truth as a logico-linguistic notion is divorced from specific proof
theoretic conservativeness claims. Indeed, perhaps the view of truth as a logico-
linguistic concept should not commit itself to the conservativeness of truth. Even if
one distinguishes between variables ranging over the natural numbers and variables
ranging over linguistic expressions, non-conservativeness is not far away. If one

39See [Pra83].
40See [LN13].
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adds certain natural bridge principles connecting these two sorts of entities, then
the non-conservativeness phenomena reappear.

Since truth is in part a linguistic notion, it comes as no surprise that truth
plays a substantive role in philosophy of language, as is witnessed by many decades
of philosophical work on truth conditional theories of meaning. At the same time,
it still seems reasonable that the notion of truth does not figure in an essential
manner in philosophical disciplines in which arithmetic does not play a role.

The thought is that there then still is a sense in which truth is philosophically
‘light’, and the conception of truth as a logico-linguistic concept may still be called
in a sense deflational. Whether that is right, is not quite clear, however. This is
mainly due to the linguistic aspect of truth on this conception. Meaning is also a
linguistic notion, for instance. But it is clearly a philosophically substantive one.

Nonetheless, at this point in the dialectic, it may be thought that the doctrine
that takes truth to be a logico-linguistic notion is the better view, since it is not
affected by the nonconservativeness of truth phenomena. In Chapter 9, we will see
that this is not the end of the story: a connection between truth and proof theoretic
reflection adds an interesting twist to it.



CHAPTER 6

Reflection principles in the mathematical sciences

In chapter 3, we distinguished between ontological and epistemic reflection
relations and processes, and traced their philosophical history. Now we are ready
to discuss the role that principles that describe these forms of reflection play in the
mathematical sciences.

There are two main types of reflection principles in the mathematical sciences:
proof theoretic reflection principles, which describe forms of ontological reflection,
and set theoretic reflection principles, which describe forms of epistemic reflection.
Both types of reflection play a role in reducing incompleteness: proof theoretic re-
flection principles reduce Gödelian incompleteness, whereas set theoretic reflection
principles play a role in reducing incompleteness that stems from other sources, such
as forcing. Of course we know since Gödel (Theorem 4.3) that in the mathematical
sciences incompleteness can never be completely eliminated.

We have seen how epistemic reflection is related to mental processes that take
place in time, which makes them iterable in a natural way. Accordingly, we will
see that proof theoretic reflection principles are as a rule iterable in natural ways,
and what the properties of iterations of proof theoretic reflection principles are.
We have seen in Section 3.3 that certain forms of repetition are also a feature
of ontological reflection. The direction of ontological reflection is “inward” into
reality, so to speak, whereas the direction of epistemic reflection can rather be seen
as “upward”.

First, we will discuss proof theoretic reflection, which is an important theme
in proof theory. We will distinguish purely mathematical reflection principles from
reflection principles that can only be expressed using non-mathematical concepts
such as truth and rational belief. Secondly, we discuss set theoretic reflection prin-
ciples. We also address the question about the relation between set theoretic and
proof theoretic reflection principles. In particular, we are interested in the ques-
tion whether there is a strict dichotomy between the two kinds of mathematical
reflection principles, or whether there is some sort of gradual spectrum in which
reflection principles are situated. Thirdly, we have a look at reflection principles
in probability theory. We will see that this is presently largely unknown territory.
Nonetheless, I will argue that the subject holds promise: I recommend it for fur-
ther investigation. All this then serves as preparation for later chapters, where
we turn to philosophical questions of epistemic warrant for mathematical reflection
principles.

6.1. Proof theoretic reflection principles

We are interested in the iteration of proof-theoretic reflection principles over
formal theories, where a proof-theoretic reflection principle for a given theory S is
a formalised soundness statement for S: it expresses that everything provable in S
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is also true. This way of formalising soundness was already articulated by Kreisel
and Levy in 1960 [KL68, p. 98]:

By a “reflection principle” for a formal system S we mean,
roughly, the formal assertion stating the soundness of S:

If a statement ϕ (in the formalism S) is provable in S
then ϕ is valid.

Such reflection principles cannot straightforwardly be formulated in mathemat-
ical settings [KL68, p. 98]:

Literally speaking, the intended reflection principle cannot be
formulated in S itself by means of a single statement. This
would require a truth definition TS , with a variable a over (Gödel
numbers of, or, simply, over) formulas of S, and a definition of
the proof relation ProvS(p, a) (read: p is (the Gödel number of)
a proof of a in S). The reflection principle for S would be

∀p∀a[ProvS(p, a)→ TS(a)].

Such a truth definition TS , does not exist [. . . ]

This difficulty was circumvented by approximating the intended reflection prin-
ciple by means of purely arithmetical principles, as we will shortly see. But this is
not the only possible way forward. Instead, a primitive truth predicate T can be
added to the language of arithmetic, thus generating the language LT = LPA∪{T},
and new axioms governing the behaviour of the truth predicate can be added to
the background arithmetical theory. This is what some proof theorists started to
do in the late 1970s. Moreover, over the past decade the resulting formal systems
were related to a philosophical discussion about the function or role of the concept
of truth.

We have seen how one important role for the concept of truth is to express
and reason with generalisations over statements.1 Exactly this function of the
truth predicate is what allows us to express Kreisel’s formalisation of soundness
statements directly in the object language. Suppose that S is an arithmetical theory.
Then, if we a standard provability predicate BewS for a given theory S, this global
reflection principle for S can be expressed in the language LT as follows [KL68,
p. 98]:

GRF(S) Global Reflection Axiom:

∀ sentence ϕ ∈ LT : BewS(ϕ)→ T (ϕ).

Clearly, for this to have any operational meaning, typed Tarski biconditionals have
to be added to the background theory S.

We have actually already encountered GRF(PA): Theorem 5.14 told us that
GRF(PA) is non-conservative over PA for the language LPA.2

By Tarski’s theorem on the undefinability of truth (Theorem 4.5), the lan-
guage of arithmetic does not contain its own truth predicate, as Kreisel says in the
quotation above. So in the language of arithmetic this guiding idea can only be
approximated to varying degrees, and this is exactly what arithmetical proof theo-
retic reflection principles do. We can distinguish the following types of reflection
principles for S:

1See Section 5.3.2.
2This theorem easily generalises for all theories S ⊇ PA.
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Con(S) Consistency:

¬BewS(0 = 1)

Rfn(S) Local Reflection Scheme: For all closed sentences ϕ:

BewS(ϕ)→ ϕ

RFN(S) Uniform Reflection Scheme: For all formulas ϕ(x):

∀x : BewS(ϕ(x))→ ϕ(x)

Here Con(S) is a (weak) proof theoretic reflection principle because it is (trivially)
equivalent to BewS(0 = 1) → 0 = 1, i.e., it can be regarded as a weak soundness
assertion.

Restricted versions for these principles are also considered: one can consider
Rfn(S) (RFN(S)) for sentences (formulas) of a specific syntactic complexity. ∆0-
Rfn(S), for instance, is the local reflection principle for the ∆0 fragment of S, and
is equivalent to ConS .

A particular “intermediate” proof theoretic reflection principle that has received
some attention in the history of proof theory is the principle of ω-consistency of a
theory S (ω-Con(S)):

∀ϕ ∈ L : BewS(∃xϕ(x))→ ¬∀xBewS(¬ϕ(x)).

This principle is strictly stronger than Con(S): by the second incompleteness theo-
rem, it is easily seen that ¬ω-Con(PA), for example, is consistent but ω-inconsistent.
That this principle can indeed be seen as a proof theoretic reflection principle fol-
lows from the following theorem of Smorynski [Smo77, p. 851]:

Theorem 6.1. For every finitely axiomatizable theory S in the language of
arithmetic: S is ω-consistent if and only if Σ2-Rfn(S+PA) holds.

We concentrate on theories S that are formulated in the language of first-
order arithmetic or an extension thereof. Moreover, we concentrate on theories
that contain a good theory of its own syntax. In practice, this means that we shall
mainly be dealing with theories that are at least as strong as Elementary Arithmetic
(EA).3

It is also clear that:

(*) S + Con(S) ⊆ S +Rfn(S) ⊆ S + URF (S)

It then follow from Theorem 4.3 that for all minimally strong arithmetical theo-
ries S, all of Con(S), RFN(S), URF(S) are arithmetically non-conservative over S.
Moreover, we will see later that all the inclusions in (*) are proper.4

Under mild assumptions, the global reflection principle is the strongest of them
all:

Proposition 6.2. If S contains UTB, then S + URF (S) ⊆ S +GRF (S).

Uniform reflection is related to Hilbert’s ω-rule, which we will call ωR ([Hil96,
p. 1154]):

Definition 6.3. An application of the ω-rule is an inference from the premises
` ϕ(n) for each natural number n, to the conclusion ` ∀xϕ(x).

3Sam Buss’s theory S1
2 (see p. 109) is also strong enough for our purposes.

4See Corollary 6.16 below.
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Unlike the familiar rules of inference, ωR is an infinitary rule: it has an infinite set
of premises.

The ω-rule is much more powerful than the reflection principles that we have
considered so far. If ωR is added to a modest theory of arithmetic, then the result
is true arithmetic:

Theorem 6.4. For every true arithmetical sentence φ:

EA+ ωR ` φ.

Proof. Straightforward mathematical induction on the complexity of φ. �

Unfortunately, the ω-rule for a (consistent) system S (extending EA) is non-
effective, since there is no decision procedure for deciding, for arbitrary formulas
ϕ(x), whether for each natural number n, the formula ϕ(n) is provable in S.

The rule-versions of local and uniform reflection will later also play a role:

RfR(S) Local Reflection Rule:

` ϕ
` BewS(ϕ)

RFR(S) Uniform Reflection Rule:

` ∀xBewS(ϕ(x))

` ∀xϕ(x)

It is not hard to see that the local reflection rule is conservative. For any of the
standard minimally strong arithmetical theories S that we have been considering,
it is easy to see that [Cie17, Fact 13.1.1, p. 238]:

Lemma 6.5. S+RfR(S) is proof theoretically conservative over S.

Proof. For an arbitrary sentence ϕ, assume that S + RfR(S) ` ϕ. Since S is
sound for Σ1 sentences, for all ψ, if S ` BewS(ψ), then S ` ψ. So, for any proof of
ϕ in S+RfR(S), we can systematically eliminate the uses of RfR(S), and transform
it into a proof of ϕ in S. �

Surprisingly, the uniform reflection rule, in contrast, is equivalent to the uniform
reflection principle [Fef62, Theorem 2.19]:5

Theorem 6.6. For any extension S of EA, S + RFR(S) is equivalent to S+
RFN(S).

Proof. The right-to-left direction is obvious, so we concentrate on the left-to-
right direction.

We first show that for any formula ϕ(x):

(∗) S ` ∀x, y : BewS [ProofS(y, ϕ(x))→ ϕ(x)].

We reason in S.
On the one hand, we have:

ProofS(y, ϕ(x))⇒ BewS(ϕ(x))⇒ BewS [ProofS(y, ϕ(x))→ ϕ(x)].

5We here give Beklemichev’s proof of this Theorem in [Bek05, Proposition 2.1].
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On the other hand, we have

¬ProofS(y, ϕ(x))⇒ (by Σ1-completeness)

BewS [¬ProofS(y, ϕ(x))]⇒
BewS [ProofS(y, ϕ(x))→ ϕ(x)].

To conclude, applying the law of excluded third in S, we establish (∗).
Now we reason in S + RFR(S). Applying RFR(S) to (∗), we obtain

ProofS(y, ϕ(x))→ ϕ(x).

From this, the desired result immediately follows. �

This surprising fact, which is often called Feferman’s little reflection theorem, will
play a role in later discussions.6

It is commonly thought that, over set theory, large cardinal principles are much
stronger than proof theoretic reflection principles. Gödel, for instance, expresses
this view as follows [G4̈6, p. 151]:

Any proof of a set-theoretic theorem in the next higher system
above set theory (i.e. any proof involving the concept of truth
[. . . ]) is replaceable by a proof from such an axiom of infinity.

But this is too quick. As far as consistency strength goes, strong axioms of infinity
are indeed generally much stronger than large cardinal principles. But as far as out-
right implication goes, this is not generally the case. For the Axiom of measurable
cardinals,7 for instance, we have:8

Theorem 6.7. ZFC + (MK) 6` Rfn(ZFC).

6.2. Iterating proof theoretic reflection

In this section we concentrate on arithmetical reflection principles. We post-
pone the discussion of global reflection until later.

6.2.1. Iterating reflection. We can iterate the procedure of adding a reflec-
tion principle to a given theory S. For a given theory S and a given reflection
principle R(S) we denote the result of adding R(S) to S as follows:

Definition 6.8. R[S] = S +R(S).

Then we can define iteration of adding reflection principles thus:

Definition 6.9.

(1) R0[S] = S;
(2) For α a successor ordinal, Rα+1[S] = R[Rα[S]];
(3) For λ a limit ordinal, Rλ[S] =

⋃
α<λRα[S].

In working with reflection iterations, use is made of the ordinal notation systems
that were defined in Section 4.1.5.

Already for finite iterations of reflection principles, interesting phenomena emerge.
One such phenomenon concerns the relation between mathematical induction and

6In particular in Section 7.4.2 and in Section 7.4.3.
7See p. 119.
8Thanks to Karl-Georg Niebergall for pointing this out to me.
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uniform reflection. Firstly, there is an intimate connection between restricted math-
ematical induction and restricted uniform reflection [Bek05, Theorem 7]:

Theorem 6.10. For every n ∈ N : IΣn = EA+RFNΣn+1
[EA].

This immediately entails an extremely tight connection between full mathematical
induction and full uniform reflection:9

Corollary 6.11. PA = EA+RFN [EA].

We will see that substantial fragments of second-order arithmetic extend this phe-
nomenon, by proving transfinite iterations of uniform reflection.

Moreover, there are systematic relations between iterated consistency exten-
sions, iterated local reflection extensions, and iterated uniform reflection extensions.
Concerning the relation between consistency extensions and uniform reflection ex-
tensions, we have Schmerl’s theorem ([Sch79], [Bek95, p. 27]):

Theorem 6.12. For ordinals α ≥ 1 :

PA+RFN1+α[PA] = PA+ Conεα [PA].

So, in particular:

Corollary 6.13. EA+RFN [EA] = EA+ Conε0 [EA].

Concerning the relation between consistency extensions and local reflection exten-
sions, Beklemishev has shown [Bek95, Theorem 1]:10

Theorem 6.14. For ordinals α ≥ 1 :

PA+Rfnα[PA] = PA+ Conω
α

[PA].

So, in particular:

Corollary 6.15. EA+Rfn[EA] = EA+ Conω[EA].

Together, the previous theorems show that the inclusions in equation (*) on
p.153 above are proper, i.e.:

Corollary 6.16.

S + Con(S) ( S +Rfn(S) ( S + URF (S).

Concerning the relation between uniform reflection and global reflection, we have
([Lel23]):

Theorem 6.17. The collection of purely arithmetical consequences of CT− +
GRF [PA] coincides with the theory PA+RFNω[PA].

So over a conservative compositional theory of truth (CT−), global reflection is
strictly the strongest reflection principle of them all.

9See [KL68].
10Actually, this is a special case of Beklemichev’s Theorem 1, which is much more general.
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6.2.2. Progressions. We now turn to the question how far reflection iter-
ations can be extended, and to the question to what extent arithmetical incom-
pleteness can be thereby reduced. In this effort, we again make use of the ordinal
notation systems that were described earlier.11

Given a proof theoretic reflection principle R, and given Kleene’s ordinal no-
tation system O, we define the notion of a progression as follows:

Definition 6.18. An R-progression of a theory S is a primitive recursive map-
ping taking any ordinal notation a in some path in Kleene’s ordinal notation system
O to a Σ0

1-formula ϕa that recursively enumerates the axioms of a theory Sa, such
that:

(1) S0 = S;
(2) Ssuc(a) = Sa + Ra[S];
(3) Slim(a) =

⋃
b<a Sb.

Any progression thus yields a progressive reflection sequence, which is a se-
quence of theories of the form

S0, S1, . . . Sω, Sω+ 1, . . . Sα, . . . ,

where Sα+ 1 is an extension by the relevant reflection principle for Sα, and Sλ, for
limit ordinals λ, has as axioms the union of the axioms of earlier theories.

In the following section we will survey three main results:

(1) Turing’s completeness theorem for consistency progressions;
(2) Feferman’s completeness theorem for uniform reflection progressions;
(3) Feferman’s results about autonomous progressions.

Turing used consistency progressions in an attempt to reduce incompleteness
in arithmetic. He proved the following theorem [Tur39]:

Theorem 6.19. For any true Π0
1 sentence ϕ there is an a ∈ O such that

|a| = ω + 1 and Sa ` ϕ. Moreover, there is a primitive recursive function that
associates such an a with each true Π0

1 sentence ϕ.

At first sight this looks impressive, but, unfortunately the epistemological im-
port of Turing’s completeness theorem is limited. Theorem 6.19 only tells us that
for any true Π0

1 sentence ϕ there is a consistency progression with length ω + 1,
such that Sω+1 proves ϕ. As Franzén already pointed out ([Fra04b, §6]), Turing’s
result does not provide us with a method of recognising, for any true Π0

1 sentence
ϕ, that it is true. Turing’s proof indeed associates with every true Π0

1 sentence ϕ
a consistency reflection sequence of length ω + 1 that ends in a theory Sω+1 that
proves ϕ. However, the axioms of Sω have a non-canonical definition; the trick of
Turing’s proof consists in defining Sω in such a way that its consistency entails that
ϕ is true. Even though Turing’s clever definition of ω and “canonical” definitions
of ω extensionally coincide, no Sn proves that this is so.12

One could try to get around this problem by insisting that only natural ways
of defining Sω are permitted. The question of how to characterise natural ways
of defining Sλ, for λ a limit ordinal, occupied proof theorists for decades since the

11See Section 4.1.5.
12Turing and Feferman were acutely aware of this problem. For more on the philosophical

significance of the use of non-canonical definitions see [Fra04b].
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1960s. No satisfactory answer to this question has been obtained, and today it is
widely seen as intractable.

The intensional aspect of defining Sω is responsible, in Turing’s theorem, for
the complicated branching pattern at the limit stage.

Figure 1

This branching phenomenon raises epistemic interpretation questions of its own.
A natural idea, which we will explore more fully later, is that explicit acceptance
of proof theoretic reflection principles is typically the result of an idealised mental
reflection process. Reflection is thus a process that takes place in time, and time is
linear. Against this, one can adopt a branching time picture of the relation between
time and modality.13 The basic idea here is that at branching points, time could
continue in different ways. The interpretation would then be that for each true Π0

1

sentence ϕ, the ideal epistemic agent could have recognised the truth of ϕ in ω+ 1
reflective acts. Nonetheless, the epistemic problem concerning the limit theories
that we have discussed above still remains.

Feferman realised that in order to strengthen Turing’s completeness result, uni-
form reflection progressions rather than consistency or local reflection progressions
are needed. He proved [Fef62]:

Theorem 6.20. There is a uniform reflection progression based on PA such

that for any true arithmetical sentence ϕ there is an a ∈ O such that |a| ≤ ωω
ω+1

with Sa ` ϕ.14

This is known as Feferman’s completeness theorem. Feferman’s proof generates a

path P within O of length ωω
ω+1

such that the union of all theories associated with

13See [BMP23].
14Feferman’s completeness theorem can be strengthened. Using the notion of smooth pro-

gression developed in [Bek95] it can be shown that the length of this path can be shortened to

ωω2 +1. For the idea of the proof of this improvement see [Fra04b].
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the notations in this path is arithmetically complete. So here we do not have to
entertain branching time scenarios.

As with Turing’s completeness theorem, and for the same reasons, the episte-
mological import of Feferman’s completeness proof is limited. Following Franzén,
we can see that it would be wrong to say that Turing’s and Feferman’s results
show that we will eventually obtain every arithmetical truth by iterating reflection
principles.15

6.2.3. Autonomous progressions. The proof of Turing’s completeness the-
orem (and the proof of Feferman’s completeness theorem) shows that there is a
sense in which progressions as defined in the previous section fail to capture how
systems of a higher ordinal level are warranted “from below”. For this reason,
Kreisel argued that progressions should satisfy an additional autonomy require-
ment: for every Sa that is in a progression, it should be provable in some Sb with
b <O a that a is in O.16 A progression that satisfies this additional criterion is
called an autonomous progression.

Let us start by considering autonomous uniform reflection progressions over
first-order Peano Arithmetic. Recall the hierarchy of systems RAα of ramified
analysis.17 The following is a typical result, which is apparently “folkore”:18

Theorem 6.21. The autonomous uniform reflection progression based on PA
is the first-order fragment of the system of RAω, and the length of this progression
is ϕ2(0).

Hierarchies of systems of ramified analysis themselves also form progressions.
Here, the engine is not made up of of proof theoretic reflection principles, but of
successive “reifications” as sets of numbers of definitions in prior systems. We
will investigate later whether, like proof theoretic reflection hierarchies, ramified
analysis hierarchies can also be seen as obtained by processes of reflection.

Feferman and Schütte investigated autonomous progressions of predicative the-
ories of analysis. They were able to express the length of the autonomous progres-
sion of systems of predicative analysis in terms of the Veblen hierarchy ([Fef64],
[Sch64], [Sch65]):19

Theorem 6.22. The length of the autonomous progression of systems of ram-
ified analysis is Γ0.

The second order system RA<Γ0 is therefore of special significance: Feferman
claimed that it captures what one is implicitly predicatively committed to when
one accepts PA. The Feferman-Schütte ordinal Γ0 marks the limit of predicative
reasoning, and is often referred to as the proof theoretic ordinal of predicativity.

Theorems 6.21 and Theorem 6.22 are from an epistemological point of view
more significant than the earlier completeness theorems of Turing and Feferman
(Theorem 6.19 and Theorem 6.20). In contrast to the non-autonomous progressions,

15It is also known that completeness depends on the choice of the path in O. Feferman and
Spector have shown in [FS62] that there are even paths through O such that the corresponding

uniform reflection progression does not even prove every true Π0
1 sentence.

16This notion of autonomous progression traces back to [Kre60].
17See p. 111.
18Thanks to Kentaro Fujimoto for pointing this out to me.
19See Section 4.1.5.2.
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the autonomy condition assures that we recognise by means of a proof in a previous
stage of the progression that for a limit a, a is an ordinal notation. In this sense,
results such as Theorem 6.21 and Theorem 6.22 show what we can come to know in
reflection progressions. Of course a strong idealisation is involved here: we humans
are only able to go through a (small) finite number of stages of an autonomous
progression before we die.20

6.3. Reflecting on truth

We now leave reflection over purely arithmetical theories behind, and concen-
trate on the iteration of reflection principles over theories of truth (and falsity) that
are formulated in an expansion of the language of PA or EA with a fresh truth
predicate (and perhaps also a falsity predicate).

6.3.1. Reflection, induction and compositionality. In this subsection,
we will see how against the background of a weak disquotational theory of truth,
proof theoretic reflection, mathematical induction, and truth are intimately related
to each other.

6.3.1.1. Typed.
To start with, we assume full classical logic, and work with a typed concept

of truth. After that, we will consider the leading questions in the framework of
typefree truth and in the framework of partial logic.

We have discussed a connection between truth and proof theoretic reflection
already: Theorem 5.14 tells us that adding compositional truth axioms to a back-
ground theory S enables one to prove GRF (S).

In Section 6.2.1 we have also seen that, against the background of weak arith-
metical theories, there is a close connection between proof theoretic reflection and
mathematical induction. This connection also holds against the background of weak
truth theories. One of the weakest disquotational truth theories that one can think
of is TB−[EA], which has EA as its background arithmetical theory,21 where the
truth predicate is not allowed to occur in the bounded induction scheme, and which
contains only the typed Tarski-bicontitionals. Then we have [HL17, Theorem 2]:

Theorem 6.23. RFN [TB−[EA]] ` Ind(LT ),

where Ind(LT ) is the full induction scheme for the language of truth LT . This can
of course be seen as an extension to truth theory of the phenomenon that we have
seen in the context of arithmetic.22

One application of uniform reflection, applied to TB−[EA], gives us even more.
It gives us in addition the uniform typed Tarski-biconditionals [HL17, Theorem
2]:

Lemma 6.24. RFN [TB−[EA]] ` UTB[PA].

This is the first indication that, when applied to a weak truth theory, adding uniform
reflection makes new truth laws provable.

20For a discussion of the role of idealisation in the epistemological discussion of transfinite

progressions of formal theories, see [AMH19].
21The theory EA was introduced on p. 109.
22See Corollary 6.11.
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Against a disquotational background, one round of uniform reflection does not
give us all the compositional truth axioms. Halbach has observed, however, that
applying uniform reflection to UTB gives us CT [Hal01a, section 4]:

Lemma 6.25. RFN [UTB[PA]] ` CT.

From this and Lemma 6.24 we then conclude that iterating uniform reflection
over TB− twice recovers typed compositional truth :

Theorem 6.26. RFN2[TB−[EA]] ` CT.

In fact, we see that slightly more is true: if we start from TB−[EA], and apply
uniform reflection twice, we obtain the full theory CT (over PA).

We have seen that there is a tight correspondence between systems of ramified
analysis on the one hand, and systems of iterated compositional truth on the other
hand (Theorem 5.19). This means that Theorem 6.22 on the implicit commitment
of predicativity also has significance for the implicit commitment of acceptance
as true, when truth is understood in a typed compositional sense.23 The system
CT<Γ0

can then be seen as expressing what one is implicitly committed to when
one accepts PA as true (in a typed sense).

6.3.1.2. Type-free.
Turning to the classical typefree truth framework, we see that this phenomenon

persists [HL17, Theorem 7]:

Theorem 6.27. RFN2[TFB] ` Pos(KF ),

where Pos(KF) (‘positive KF’) is a variant of Feferman’s system KF.24 Even though
Pos(KF) and KF can for many purposes be seen as interchangeable—for instance,
KF and Pos(KF) prove the same class of arithmetical statements—they are not
outright equivalent. In Pos(KF ), the compositional axioms are restricted to the
positive fragment of the language LT , whereas in Feferman’s system KF the com-
positional axioms are completely unrestricted.

Returning to the classical setting, we observe that iterating reflection does
not only recover compositional principles from disquotational ones. Indeed, we
know that iterating the process of reflection also increases the amount of provable
transfinite induction. It follows immediately from Corollary 6.11 and Theorem 6.12
that RFN2[EA] is a proper supertheory of PA.

Predicative analysis can be autonomously reached from KF, using uniform
reflection as an engine:25

Theorem 6.28. The length of the autonomous reflection progression based on
KF or Pos(KF), with uniform reflection as an engine, is Γ0.

Corollary 6.29. The length of the autonomous reflection progression based
on the disquotational theory TFB, with uniform reflection as an engine, is Γ0.

Proof. This follows immediately from the previous theorem and Theorem
6.27. �

23Franzén’s notion of ‘accepting as sound’ (or ‘accepting as true’) was introduced on p. 59.
24For a precise description of the axioms of Pos(KF), see [HL17, p. 225].
25This was proved by Fujimoto in unpublished work.



162 6. REFLECTION PRINCIPLES IN THE MATHEMATICAL SCIENCES

This Theorem and its Corollary is significant for the following reason. Even if one
accepts the Quinean dictum to be is to be the value of a variable and is not prepared
to reify classes of numbers as sui generis objects, one can still reach predicative
analysis in an autonomous way starting from a positive disquotational theory of
typefree truth.

Now suppose again that we start from a disquotational theory that is based
on the weak arithmetical theory EA instead of on full PA. In particular, let
TB0, TFB0 be just like TB, TFB, respectively, except that they have EA instead
of PA as their arithmetical background component. Then we have the following
general theorem [Lei16, theorem 1.4]:

Theorem 6.30. For all κ ∈ O with κ > 0:

(1) CTεκ = RFN1+κ[TB0];
(2) Pos(KF )εκ = RFN1+κ[TFB0].

Moreover, if we look at the consequences of these theories for the restricted language
LPA, then we have the following connection with transfinite induction [Lei16,
theorem 6.24]:26

Theorem 6.31. For all κ ∈ O with κ > 0:

(1) If A is an LPA-formula provable in RFN1+κ[TB0], RFNκ[CT ], or CTεκ ,
then A is a theorem of EA+ TI(< εεκ).

(2) If A is an LPA-formula provable in RFN1+κ[TFB0], RFNκ[Pos(KF )],
or Pos(KF )εκ , then A is a theorem of EA+ TI(< ϕεκ(0)).

More in general, one may wonder what one is implicitly committed to when
one accepts as true a mathematical theory such as PA, where ‘true’ is understood
in a type-free compositional sense. One proposal would be to say that this implicit
commitment is given by the following autonomouos progression of type-free truth
theories, as follows. As a first step, one is then explicitly committed to KF (over
PA). As a second step, one is implicitly committed to accepting KF as sound (or:
as true). The latter involves the introduction of a second truth predicate (T1),
which is also self-applicative, and governed by the KF axioms. The third step is a
repetition of step two, but for a new type-free truth predicate T2, and so on.

The question what the autonomous ordinal of such a progression is, has been
answered by work of Strahm and of Fujimoto ([Str00], [Fuj11, Theorem 16]):

Theorem 6.32. The autonomous ordinal of the above progression is ϕ200, and
the theory that is generated by this autonomous progression is KFϕ200,

where ϕ is the ternary Veblen function. I will not explain the ternary Veblen
function in detail here.27 Let it suffice to say that it is a natural generalisation of
the ordinary (“binary”) Veblen function: it gives us a nice ordinal notation system
for larger countable ordinals than the ordinary Veblen function can deal with. In
particular, the ordinal ϕ200 is much larger than Γ0, the ordinal of predicative
analysis. All this is of relevance to the foundational discussion about predicativism,
as we will now see.

26The arithmetical formalisation of principles of transfinite induction was discussed in Section

4.1.5.4.
27For the precised definition of the ternary Veblen function, see [Str00, Section 2].
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We know that adding a next level in a Ramified Analysis hierarchy means recog-
nising definable sets of natural numbers as objects. Given the tight correspondence
between the Ramified Analysis hierarchy on the one hand, and the hierarchy of
Tarskian compositional truth predicates on the other hand,28 the same can be said
about adding a next level in a Tarskian hierarchy. The system KF, however, is a
stronger engine. Adding a next level in a KF-hierarchy adds more sets of numbers,
since the notion of definability at play is more liberal, since it is “untyped”. So if
we let an autonomous definability hierarchy be powered by type-free truth in the
sense of KF rather then by definability in the sense of Ramified Analysis, then we
can obtain (truth-theoretic equivalents of) stronger subsystems of Analysis than
RA<Γ0

.
From a semantic point of view, KF asserts the existence of a fixed point of a

particular monotone inductive operator.29 Iterating KF along an autonomous path
can then be seen as asserting the existence of iterated fixed points. This is formally
captured by a theorem of Strahm, which says that this autonomous progression
generates an impredicative subsystem of second-order analysis: it corresponds to
the second-order axiom that states that for any set X, if X is a well-ordering, then
the transfinite iteration of fixed points along this well-ordering X exists [Str00,
Theorem 3].30

Fujimoto proposes to liberalise the strictures of predicativism in such a way
that the kind of self-referentiality that is encapsulated in iterations of KF is also
allowed. In his article on these matters ([Fuj19]), he concentrates on theories of
second-order set theory rather than on theories of second-order arithmetic. But
we have seen that the relevant issues in second-order number theory are perfectly
analogous to the relevant issues in second-order set theory. The upshot is then,
that according to liberalised predicativism, a larger fragment of PA2 is justified
than what is captured by RA<Γ0

.
The situation in the non-classical (BDM) setting is structurally similar to that

in the classical setting. Let EAP be “Elementary Arithmetic in partial logic”: it is
formulated in the language with the truth predicate LT , formulated in BDM logic,
containing all arithmetical axioms of EA except that it has an induction rule for
∆0-formulae.31 Clearly in the context of partial logic not only an induction axiom
has to be replaced by the corresponding rule, but also uniform reflection axiom have
to be replaced by the corresponding rule PRFN. In the context of Gentzen-style
formalisation of logic,32 this rule PRFN looks like this:

⇒ Bew∗S(Γ(ẋ)⇒ ∆(ẋ), Φ(ẋ)⇒ Ψ(ẋ)) Γ(x)⇒ ∆(x)

Φ(x)⇒ Ψ(x)
(PRFN)

where the Bew∗S expresses in the object language that the rule from Γ(x) ⇒ ∆(x)
to Φ(x)⇒ Ψ(x) is an admissible rule of S.

In [FNH17a, Section 3.3, Proposition 3] it is shown that two applications of
uniform reflection over EAP proves the principle of transfinite induction for the
language LT for all ordinals up to and including ωω:

28See Theorem 5.19.
29See Theorem 5.25.
30This second-order axiom can be seen as a strengthening of the system ID1, which was

briefly discussed on p. 112.
31See [FNH17a, Section 2.2] for more details.
32For an introduction to Gentzen-style formalisations of logic, see [TS96, Chapter 3].
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Theorem 6.33. PRFN2[EAP ] ` TILT (ωω)

Iterating reflection into the transfinite proves even more transfinite induction, as it
is shown in [FNH17a, Subsection 3.3, Corollary 3]:

Theorem 6.34. PRFNω[EAP ] ` TILT (< ω(ω2))

In other words, transfinitely many iterations of uniform reflection over a non-
classical truth theory still proves much less transfinite induction than just two
iterations of uniform reflection over classical logic. The reason for this is that EAP
is formulated in the non-classical logic BDM .

Moreover, when not EAP but TS0 is taken as a starting point, then we have the
following general connection between reflection and transfinite induction [FNH21,
Proposition 2]:

Theorem 6.35. PRFNωn+1[TS0] ` TILT (ωn).

The recovery of compositionality through reflection also extends to the type-
free non-classical context of partial logic [FNH17b, corollary 1, section 3.2]:

Theorem 6.36. PRFN2[TS0] ` PKF.

In sum, PKF proves less transfinite induction than KF. The situation is prob-
ably different when we consider the schematic version PKF(P) of PKF, which is
defined from PKF in the same way as KF(P) is defined from KF. In unpublished
work, Fischer sketches an argument for the following:33

Theorem 6.37. PKF (P ) ` TI<Γ0
.

Given Theorem 5.31, we then see that the first-order mathematical strength of
PKF(P) coincides with that of KF(P).

6.3.2. Global reflection over a truth theory. ??
We have seen that the pioneers of proof theoretic analysis of proof theoretic

reflection principles concentrated on consistency and uniform reflection statements
rather than on global reflection.34 I speculated that one reason for this was that
making use of a primitive truth predicate was seen as an appeal to a philosophical
notion that mathematical logicians should strive to avoid. But we will now see that
there are other reasons why global reflection poses problems.

From a typed perspective on truth, one mark against global reflection is the
fact that already one iteration of global reflection over a typed truth theory violates
typing, since it makes iterated truth ascriptions provable. But from a type-free
perspective, GRF [S] may be a plausible way of making the commitment that is
implicit in accepting type-free truth theory S explicit.

We have seen earlier in this chapter that KF can coherently be closed under
repeated applications of uniform reflection, and how this has given rise to research
into transfinite iterations of uniform reflection on KF. On the other hand, it follows
immediately from Lemma 5.32 that KF cannot consistently be closed under global
reflection:35

Theorem 6.38. GRF [KF ] ` ⊥.

33As I write this, some details of his argument remain to be verified.
34See Sections 6.2.2 and 6.2.3.
35This is a folklore result. For a proof, see [FNH17a, Footnote 11, p. 2638].
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This has been seen as a damning feature of KF.
We saw earlier that two applications of uniform reflection yield the system

Pos(KF), which is a version of KF (Theorem 6.27). It turns out that there is
an important theoretical difference between Pos(KF) and KF. Zicchetti has shown
that, in contrast to KF, the system Pos(KF) can be coherently closed under (re-
peated applications of) global reflection ([Zic23, Theorem 1]):

Theorem 6.39. GRF [Pos(KF )] is arithmetically sound.

This phenomenon might deserve more attention than it has received thus far.
Perhaps it can be taken as a reason for preferring Pos(KF) over KF. The sys-
tem Pos(KF ) +GRF [Pos(KF )] is formulated in classical logic. Therefore, by an
application of the diagonal lemma, it still proves:

(λ ∧ ¬T (λ)) ∨ (¬λ ∧ T (λ)),

where λ is again the liar sentence. As we have seen earlier, this may still be regarded
as objectionable. But every axiomatic theory of truth that is based on classical logic
proves it, it is more palatable than proving a contradiction!

As opposed to in the classical framework, in the partial framework BDM ev-
erything works smoothly and naturally. Of course, in the partial framework, proof
theoretic reflection has to be expressed as rules rather than as axioms. But if we
do that,36 then over a weak disquotational theory such as TS0, uniform reflection
and global reflection coincide [FNH17b, Proposition 1]:

Theorem 6.40. RFN [TS0] = GRF [TS0].

Since TS0 is arithmetically sound when uniform reflection is added, global reflection
over TS0 is likewise sound. Moreover, this procedure can then consistently be
repeated. In other words, TS0 is fully coherent with its implicit commitment.

In our discussion so far, we have taken the implicit acceptance of or commitment
to a theory S to be made explicit via the addition (and iteration) of reflection
principles. In what follows, we will discuss a different procedure to make the implicit
acceptance of a theory explicit.

6.4. Reflecting on believability

In his book The lightness of truth ([Cie17]), Cieśliński aims at justifying reflec-
tion principles, not by using the concept of truth and principles that govern it, but
by using principles governing the notion of believability, which is an epistemic no-
tion. Intuitively, the expression ‘ϕ is believable’ means that there is a good reason
to accept ϕ [Cie17, p. 251]. After the publication of his book, Cieśliński revised the
basic principles governing believability in a Corrigendum ([Cie20]). Our discussion
will therefore be based on the version of the theory of believability that is found in
the Corrigendum.

Let the background theory be PA. The aim is to find a believability theory
over PA, which we will call Bel(PA).37 The language of believability theory (LB)
is LPA, extended with a new predicate B (for believability). The theory Bel(PA)
then contains the following believability axioms and rules [Cie20, p. 3–4]:

B1 PA, formulated in the extended language LB ;

36For the details, see [FNH17b, Section 2.4].
37In Cieśliński’s terminology of [Cie20], this theory would be called Bel∗(PA).
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B2 ∀ϕ ∈ LB : BewPA(ϕ)→ B(ϕ);
B3 ∀ϕ,ψ ∈ LB : [B(ϕ) ∧B(ϕ→ ψ)]→ B(ψ);
B4

` B(∀xB(ϕ(x)))

` B∀xϕ(x)
.

B5
` ψ
` B(ψ)

.

The idea is that each of these principles should respect a basic aspect of the content
of the notion of believability. For instance, Axiom B2 expresses that all theorems
of Peano Arithmetic are believable, i.e., there are good reasons to believe all of PA.

Believability is intended to be a defeasible notion. It may be the case that there
are not only good reasons to believe ϕ, but also good reasons for believing ¬ϕ. In
such a case, it is not always rational to proceed from a belief in the believability of
ϕ to a belief of ϕ [Cie17, p. 251].

The believability theory over PA model-theoretically behaves as it should [Cie20,
Theorem 5, p. 4]:

Theorem 6.41. There is a standard modelM for LB such that for all sentences
ϕ ∈ LB such that Bel(PA) ` B(ϕ), M |= ϕ.

In analogy with Reinhardt’s truth theory IKF,38 the internal theory of Bel(S)
is defined as follows:

Definition 6.42. IBel(S) ≡ {ϕ | Bel(S) ` B(S)}

The believability theory for PA does not prove any new arithmetical statements:

Theorem 6.43. Bel(PA) is proof theoretically conservative over PA for LPA.

But the internal theory of Bel(PA) proves reflection principles for PA [Cie20, The-
orem 8, p. 5]:

Theorem 6.44. For every n ∈ N : RFNn(PA) ∈ IBel(S).

In words: IBel(PA) proves for every instance of finitely iterated uniform reflection
for PA that it is believable. Maciej G lowacki and Mateusz  Le lyk have recently
shown in unpublished work that this is also the exact mathematical strength of
IBel(PA) ([GL23]):

Theorem 6.45. For any ϕ ∈ LPA :

Bel(PA) ` B(ϕ)⇔ ∃n ∈ N : RFNn(PA) ` ϕ.

In the absence of any good reasons against iterated uniform reflection principles,
then, it is rational to come to believe uniform reflection principles on the basis of
the proof of their believability in Bel(PA).

Believability theory over background theories other than PA also yield inter-
esting results. For instance, believability theory over disquotational truth with re-
stricted induction proves the believability of the full compositional theory of truth
[Cie20, Theorem 10, p. 7]:

Theorem 6.46. Bel(TB−) ` B(CT ).

38IKF was introduced on p. 142.
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Again, in the absence of reasons that speak against CT, this means that from a
proof of B(CT ) in Bel(TB−), the full typed theory of compositional truth may be
inferred. Similarly, one can consider the believability theory over a weak untyped
disquotational theory, such as PUTB.39 Then it is not surprising that one obtains,
in analogy with theorem 6.46, the following phenomenon [Cie17, Theorem 13.4.18,
p. 266]:

Theorem 6.47. Bel(TFB−) ` B(KF ).

This means that the believability of a natural untyped compositional truth theory
is entailed by the belief theory over a natural weak set of untyped disquotational
axioms.

6.5. Set theoretic reflection

Set theoretic reflection is an informal concept: there exists no precise charac-
terisation of the concept of set theoretic reflection and of set theoretic reflection
principle. That being said, a set theoretic reflection states a form of ontological
reflection. It says that the set theoretic universe V as a whole is similar to one or
more small parts P of V . Here the similarity relation is made precise in a semantic
way: in terms of the relation of truth in a structure, where the structure is V ,
or some part of V . The “smallness” of the reflecting structure is made precise as
meaning set-sized, or without loss of generality, as the reflecting structure being
an initial segment Vα of V . Martin expresses the modern concept of reflection as
follows [Mar76, p. 85–86]:

Reflection principles are based on the idea that the class ON of
all ordinal numbers is so large that, for any reasonable property
P of the universe V , ON is not the first stage α such that [Vα]
has P .

This concept of set theoretic reflection seems to be widely accepted. A variant of it
is found in [Ber61, p. 6], and variants of it can also be found in the contemporary
literature.40

The concept of set theoretic reflection principle finds a clear expression in the
principle of Montague-Levy reflection. If we denote the relativisation of the quan-
tifiers of a formula ϕ to Vα as ϕVα , then this schematic principle for sentences of
LZFC can be expressed as follows

(ML) ϕ→ ∃α : ϕVα

Montague and Levy showed that this principle is provable in standard set theory
([Lév60a], [Mon61]):

Theorem 6.48. ZFC ` ϕ→ ∃α : ϕVα .

Nonetheless, Montague-Levy reflection has hidden strength. Over ZCF minus
the axiom of infinity and the axiom of replacement (call this theory ZC−), ML is
equivalent to the remainder of the axioms of ZFC:

Theorem 6.49. ZC− `ML⇔ ( Infinity + Replacement).41

39See section 5.1.3.
40See for instance [Inc16, p. 163] or [BT23, p. 5].
41The Axiom of Choice play no role in the proof of this equivalence.
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The weakest well-known large cardinal principle, the Axiom of Inaccessible
Cardinals (IC),42 can then be rephrased as a set theoretic reflection principle in
this sense, namely as follows:

For every sentence ϕ ∈ ZFC2:
if (V, ε, C) |= ϕ, then there is an ordinal α such that (Vα, ε, Vα+1) |= ϕ.

(The reason for the equivalence with the standard expression of IC is of course that
we know the antecedent of the implication to be true.) We have seen that IC is
independent of ZFC. This shows that set theoretic reflection principles can have
strength even against the background of ZFC.

A natural second-order (i.e., class-theoretic) analogues of (ML) can straightfor-
wardly be formulated. Bernays formulated the following principle (BR, for “Bernays
reflection”) for sentences ϕ of LZFC2 ([Ber61]):

(BR) ϕ(X)→ ∃α : ϕ(X ∩ Vα)Vα,Vα+1 ,

where, X is the only free variable occurring in ϕ, and the superscripts in ϕ(X ∩
Vα)Vα,Vα+1 indicates that not only are the first-order quantifiers of ϕ(X ∩ Vα) are
restricted to Vα, but furthermore the second-order quantifiers of ϕ are restricted to
Vα+1.

The first-order fragment of ZFC2 + BR is significantly stronger even than
ZFC + IC. Since the Axiom of Weakly Compact Cardinals is in effect just Π1

1-
BR,43 it is immediate that Bernays reflection (Axiom BR) entails that there exist
weakly compact cardinals (WCC):

Proposition 6.50. ZFC2 +BR `WCC.

Nonetheless, ZFC2 +BR does not prove the existence of large large cardinals.
Once Axiom BR is formulated as a natural second-order analogue of the first-

order Montague-Levy principle, it is natural to consider the natural third-order
analogue of Axiom BR. We will not state this third-order principle precisely here,
for it has been shown to be inconsistent. Moreover, it has been shown that even
semi-natural consistent higher-order strengthenings of Axiom BR do not prove the
existence of large large cardinal principles.44

Nonetheless, Axiom BR also has significant class theoretic consequences.

Theorem 6.51. NBG+BR `MK

In words: adding Axiom BR to the mild and predicative class theory NBG yields
the impredicative class theory MK.

Moreover, Axiom BR yields a class theoretic strengthening of the Axiom of
Choice, which is known as the principle of Global Choice (GC):

(GC) ∃ class function f : V
onto−−−→
1−1

Ord,

where Ord is the class of ordinal numbers.

Theorem 6.52. NBG+BR ` GC.

42The Axiom of Inaccessible Cardinals was discussed on p. 118.
43The Axiom of Weakly Compact Cardinals was discussed on p. 118.
44For a discussion of higher-order analogues of Axiom BR, see [Tai05] and [Koe09].
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Thus Axiom BR implies that not just every set can be well-ordered, but that even
a well-ordering of the set theoretic universe as a whole exists.

Gödel thought that all large cardinal principles can be derived from set theo-
retic reflection principles ([Wan96, Section 8.7.9]):

All the principles for setting up the axioms of set theory should
be reducible to Ackermann’s principle: The Absolute is unknow-
able. The strength of this principle increases as we get stronger
and stronger systems of set theory. The other principles are only
heuristic principles. Hence, the central principle is the reflection
principle, which presumably will be understood better as our
experience increases.

In a different place, he describes a similar thought later as follows ([Wan96, Section
8.7.16]):

Generally I believe that, in the last analysis, every axiom of infin-
ity should be derivable from the (extremely plausible) principle
that V is indefinable, where definability is to be taken in [a] more
and more generalized and idealized sense.

Most contemporary set theorists find Gödel’s claim fanciful. Koellner, for in-
stance, concludes from the failure of Bernays reflection to extend in a natural way to
much stronger set theoretic reflection principles, that Gödel’s claim cannot be right.
In particular, Koellner claims that there are no set theoretic reflection principles
that entail the existence of large large cardinals ([Koe09]).

Recent work on set theoretic reflection principles shows, however, that Koell-
ner’s claim may be premature. Philip Welch has proposed the following set theoretic
reflection principle, which is in the literature mostly called the Global Reflection
Principle,45 but which we will abbreviate as WR2 (WR stands for ‘Welch Reflec-
tion’):46

Axiom 6.53 (WR2). There is an initial segment of the universe Vκ, and a
nontrivial elementary embedding

j : (Vκ,∈, Vκ+1) −→2 (V,∈, C)
with critical point κ, and where e is an elementary equivalence relation.

Bernays’ reflection principle BR states that the second-order theory of V is
reflected point-wise, sentence by sentence. Welch Reflection, in contrast, postulates
that there is a single initial fragment Vκ of V that reflects the entire second-order
theory of V—hence the qualification “global”. Axiom 6.53 postulates that V , to-
gether with all of its classes, is reflected in a set-sized, and therefore small part
(Vκ) of the universe, together with all of its sub-sets (Vκ+1). Thus WR2 is a set
theoretic reflection principle in the sense that we have been using the expression.

WR2 is as strong as the Axiom of 1-Extendible Cardinals (Axiom 4.27), which
we know to be one of the strong large large cardinal principles—albeit by no means
the strongest. Also, like BR, the principle WR2 proves all the axioms of the im-
predicative class theory MK, and it proves the existence of a global well-ordering
of V .

45The term global reflection unfortunately has a prior use, as we have seen earlier: it is used

to refer to the proof theoretic principle GRF that was introduced on p. 152.
46For a discussion of Welch Reflection, see [WH16].
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It is important to note that j plays an essential role in WR: merely postulating
elementary equivalence between V and some initial fragment Vκ does not yield
significant large cardinal strength. On the basis of this, Koellner might claim that
WR2 is not really a set theoretic reflection principle after all, because the class
function j has no counterpart in our informal notion of set theoretic reflection
principle.

In any case, against this, and without going into details, it can be remarked
that WR2 can be “split” into a principle stating that there is a single rank Vκ that
reflects the whole second-order theory of V (where no mention is made of j), and
a very strong (third-order) choice principle on the other hand. Each of these two
principles is weak in large cardinal strength on its own, but in combination they
yield the strong principle WR2.

One might consider a somewhat weakened version of WR2, in which the notion
of elementarity is first-order (−→1) rather than second-order. Let us call this princi-
ple WR1. Against the background of a predicative theory of classes such as NBG,
the principle WR1 still entails the existence of large large cardinals. But unlike
WR2, over NBG the principle WR1 does not prove the axioms of the impredicative
class theory MK.

Welch regards the impredicative class theory MK with suspicion, and takes
weaker class theories such as NBG to be more plausible. For this reason, he prefers
WR1 over WR2. Against this, however, it can be said that WR1 still entails the
existence of a global wellordering of V ,47 which is widely regarded as impredicative
in nature.

In [Rob17], Sam Roberts seeks to generalise Bernays reflection in a way that
the resulting reflection principle proves large large cardinal principles while not run-
ning into the generalisation problems identified by Reinhardt, Tait, and Koellner.

Roberts starts from an informal general principle, which we may call Roberts
reflection (RR):

For any formula ϕ: if ϕ is true in a (possibly proper class sized)
structure S1 consisting of Φs and Ψs and Θs and. . . , then ϕ is
also true in a small structure S1 consisting of Φs and Ψs and Θs
and. . .

Observe that set theoretic reflection principles concern situations where the
structures involved consist only of sets (the Φ) and of classes (the Ψs), and where
the formulas ϕ range over the language L2

ε . We obtain a first precise Robertsonian
reflection principle RR1 from the general idea RR by focussing on such structures,
such sentences ϕ, by (as usual) taking “small” structures to mean set-sized struc-
tures, by requiring the reflecting set to be a rank Vα, and by requiring the classes
of the reflected structure S1 to be plentiful in the following sense:

Definition 6.54. A collection of classes C is plentiful for a set s if and only if
for every x ∈ s, there is a class C ∈ C such that x = C ∩ s.

With these choices made, we postulate:

Axiom 6.55 (RR1). For any formula ϕ ∈ L2
ε , if ϕ is true in 〈V, C〉, then there

is a rank Vκ and a set of classes C′ that is plentiful for Vκ, such that ϕ is true in
〈Vκ, C′〉.

47Thanks to Sam Roberts for pointing this out to me.
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Roberts then observes:

Proposition 6.56. NBG ` RR1⇔ BR.

So far, so good: nothing spectacular is happening. Now suppose we extend
the language over which ϕ ranges with a satisfaction predicate Sat(x, Y ) (intended
to be interpreted as: “the formula x is satisfied by Y , where the class Y codes an
assignment to first- and second-order variables”) for the language L2

ε , yielding the
language L2

ε,Sat. Then the set theoretic reflection principle RR1 can be straight-
forwardly generalised to the extended language yielding the set theoretic reflection
axiom RR2:

Axiom 6.57 (RR2). For any formula ϕ ∈ L2
ε,Sat, if ϕ is true in 〈V, C〉, then

there is a rank Vκ and a set of classes C′ that is plentiful for Vκ, such that ϕ is true
in 〈Vκ, C′〉.
Now let CTSat be the usual compositional satisfaction axioms for the language L2

ε ,
i.e., the natural analogues for Sat of the typed compositional axioms for the truth
predicate T . Then against the background of the modest class and truth theory
NBG + CTSat, which is a very modest extension of NBG, the principle RR2 is
surprisingly strong:

Theorem 6.58. NBG+ CTSat +RR2 `WR2.

We even have:

Theorem 6.59. NBG + CTSat + RR2 proves that there is a proper class of
1-extendible cardinals.

The latter theorem shows that RR2 is even a bit stronger than WR2.48 It is
not, however, much stronger than GRP, since from the existence of a 2-extendible
cardinal, the consistency of RR2 can be proved.

In one important respect, the idea behind RR2 differs from the idea behind
WR2. Firstly, according to WR2, formulas are reflected to a structure 〈Vκ, Vκ+1〉 of
sets. According to RR2, formulas are reflected to structures 〈Vκ, C′〉, where C′ can
easily contain proper classes.49 In another, equally important respect, RR2 is very
closely related to WR2. The plentifulness requirement on C′ entails that 〈Vκ, C′〉
is a “full” second-order structure, in the same sense as the requirement in WR2
that all subsets of Vκ are sent by j to classes over V . This fullness or plentifulness
requirement plays a crucial role in the strength of WR2 and RR2.

One advantage of RR2 over WR2 is the absence of an embedding function j:
in RR2, parameters are not reinterpreted at all. A second advantage of RR2 over
WR2 is its generality. It is intended to work not just in our setting, where the Ψs
are classes, but also in settings where WR2 would falter, for instance where the Ψs
are intensional entities such as properties.50

The absence of an embedding function in RR2 makes it conceptually less close
than WR2 is to the ontological reflection idea that goes back to Philo of Alexan-
dria,51 and dissociates it from the thought that the Absolute is unknowable. Ac-
cording to Philo’s form of ontological reflection, the mathematical Absolute (i.e.,

48Perhaps this has to be taken with a grain of salt, for we are not comparing the two principles

over the same background theory.
49After all, V , for instance, is allowed as a parameter in ϕ.
50It is easy to see that WR2 would “extensionalise” such entities.
51See Section 3.3.
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proper class sized entities) are transcendent in themselves and are reflected in im-
manent entities (i.e.,, in pure sets).

Thus set theoretic reflection reaches the realm of 1-extendible cardinals. Can
stronger principles of infinity be reached by set theoretic reflection principles?

Victoria Marshall has investigated a class of very higher-order (i.e., of higher
order than second-order) set theoretic reflection axioms,52 and Rupert McCallum
has recently investigated related principles.53 Certain versions of their reflection
principles prove the existence of supercompact cardinals, and even go beyond su-
percompactness. I will not go into the details of these reflection principles here,
even though their work certainly deserves more attention that it has received so
far.

One philosophical question that immediately arises when one considers the re-
flection principles of Marshall and of McCallum, is: How we can make philosophical
sense of the these higher-order principles? First, one must climb the type theoretic
hierarchy above the sets to some degree, and rationally come to accept classes of
αth order, for relatively small ordinals α. This is by no means an easy task.54 Once
one has achieved this,55 it is perhaps natural to come to accept classes of αth order
for any ordinal α. If one then also accepts the principle that the mathematical
realm abhors the potential,56 then it is natural to accept the existence of V with its
classes of arbitrarily high orders as an actual infinity, whereby quantification over
classes of every order is admissible. Furthermore, if the embedding formulation of
supercompactness discussed earlier57 serves as a guide for understanding the reflec-
tion principles of Marshall and of McCall that entail the existence of supercompact
cardinals,58 then it is clear that all this is necessary and sufficient for their princi-
ples to have a determinate meaning. Having a determinate meaning is one thing,
truth is another. In order for their principles to be warranted, the precise reflection
conditions that these reflections impose on V with its classes of all ordinal orders
have to be made plausible. That again seems to me a highly non-trivial task, which
has hitherto not been delivered upon (in my opinion).

It is not necessary to countenance higher-order classes of sets in order to formu-
late very strong principles that have been argued to qualify as plausible set theoretic
reflection principles. The next principle that we encounter in our discussion of ever
stronger set theoretic reflection concerns a form of reflection between structures.

Definition 6.60. A relational set structure is a set A belonging to V , equipped
with a number of relations Ri for i belonging to some index set I.

Bagaria has proposed what he calls the structural reflection principle (SR) for
classes of structures of the same type ([Bag23]):

Axiom 6.61 (SR). For every LZFC-definable, possibly with parameters, class
C of relational structures of the same type, there exists an ordinal α that reflects
C, i.e., for every A ∈ C there exists a B ∈ C ∩ Vα and an elementary embedding
j : B 7→1 A.

52See [Mar89].
53See [McC21].
54We will discuss this later in some detail: see Section 9.8.2.
55I have not.
56As I do: see p. 3.
57See p. 120.
58As it does, in fact.
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Earlier we have defined Vopenka’s Principle (VP) as a second-order axiom.59

Just as the full impredicative induction axiom of second-order arithmetic is approx-
imated by the first-order induction scheme of PA, the second-order axiom VP is
approximated by the first-order axiom scheme V P ∗, which restricts VP to definable
classes of relational set structures. The definable version V P ∗ of Vopenka’s Prin-
ciple still has much more large cardinal strength than the Axiom of 1-extendible
cardinals (Axiom 4.27).

Bagaria has shown that:

Theorem 6.62. The structural reflection principle SR is equivalent to V P ∗.

Again we can ask the question whether SR is a set theoretic reflection principle
in our sense of the word. And again the answer to this question is no, but for a
different reason. Recall that on the conception of set theoretic reflection principles
with which we are operating, the similarity between V and the reflecting structure
is cashed out in semantic terms: if V makes a sentence (belonging to some class
Φ) true, then the reflecting structure does so, too. The principle SR interprets the
similarity relation in ontological terms: the existence of any given class of relational
set structures in V is reflected in the existence of a similar class of structures in
some Vα. Bagaria is aware of all this: he argues for exactly this reason that the
standard notion of set theoretic reflection principle should be somewhat liberalised
[Bag23, Section 2].

At this point, one may start to wonder which principles count as set theoretic
reflection principles. In order to assess this, it is important to keep the difference
between reflection within the universe and reflection of the universe in mind. Also,
we should not forget that it is part of our conception of set theoretic reflection
principles that they express reflection in small parts of the universe.

Are perhaps all natural elementary embedding axioms (such as Axiom 4.22) are
set theoretic reflection principles? According to the fairly widely accepted concept
of set theoretic reflection principles that we have been working with so far, the an-
swer is no. The reason is that in elementary embedding principles, the “reflecting
structure” (the inner model M), is proper class sized, and therefore not “small”.
This difference between elementary embedding principles and genuine set theoretic
reflection principles has mathematical consequences. Elementary embedding princi-
ples do not entail that there exists a global wellordering of V , for instance, whereas
even mildly strong set theoretic reflection principles do.

In the corridors of set theory, one sometimes hears people expressing the view
that the standard embedding formulations of strong principles of infinity all deserve
to be called natural set theoretic reflection principles. I believe that these set
theorists may well be right. There is something to be said for extending our concept
of set theoretic reflection principle so as to include standard embedding axioms. So I
will now briefly make a plea for dropping the “smallness” condition on the reflecting
object from the concept of set theoretic reflection principle.

First of all, embedding principles express forms of self-reflection of the universe
V : they express that V is reflected in a part of itself. Secondly, we know from our
discussion of embedding principles that smallness (or immanence) of the reflecting
object is not a necessary condition for mathematical strength. Thirdly, it has not
been made clear, I believe, in which sense proper classes are less epistemically

59See p. 121.
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accessible than (complicated) sets. We seem to have some grasp on the laws that
govern proper classes, just as we have a grasp of the laws that govern sets. For
this reason, the thought that set theoretic reflection principles express a reflection
of the unknowable in the knowable does not fully convince.

I will not insist in what follows on this proposed extension of the “official”
concept of set theoretic reflection principle in what follows. But there may be
something to be said for it. At least the hope is that ontological reflection in set
theory is something akin to a natural kind and that set theoretic reflection principles
intend to capture this property. If so, then set theoretic embedding principles ought
to be seen as reflection principles.

In the set theoretic literature, elementary embedding axioms are often “cut
down to size” and thereby “firstorderized”. Instead of postulating class embedding
functions from V into some inner model M , these miniaturisations postulate the
existence of a set-sized embedding function from a rank initial segment of V to
a taller but thinner set-sized part of V . From a mathematical point of view, the
miniaturisations do as well as their big sisters. It is clear, however, that these
miniaturisations do not count as set theoretic reflection principles in the usual
sense of the word. They describe reflection in the universe rather than reflection
of the universe. Again we may ask: might such first-order miniaturisations not in
the eyes of some who are sceptical of proper classes be candidates for being basic
set theoretic principles? And should we not include such principles among the set
theoretic reflection principles?60

6.6. From epistemic to ontological reflection

In our discussion of aspects of the evolution of the concept of reflection in the
history of philosophy (chapter 3), we traced two philosophically important notions
of reflection: epistemic reflection and ontological reflection.

What was called epistemic reflection gave rise, in the twentieth century, to
the concept of proof theoretic reflection. In section 3.8 we saw how a provability
predicate captures introspective powers of a mathematician.

But proof theoretic reflection principles go beyond merely capturing the result
of an introspective process. They relate what a mathematician can prove to what is
true. This means that our epistemic warrant for proof theoretic reflection principles
will have to go beyond our warrant for introspection. To the vast majority of
mathematicians and philosophers they seem to be a very safe bet. And yet I
maintain that until recently the question of our warrant for epistemic reflection
principles has not received the philosophical attention that it deserves. We will
be much exercised by the question of warrant for proof theoretic reflection in the
chapters that follow.

Set theoretic reflection principles are ontological reflection principles. Like
proof theoretic reflection principles, they are in excellent mathematical standing.
We have philosophical arguments that purport to justify them. These philosoph-
ical arguments have their root in theological principles going back to Antiquity,
and that is also what is the problem with them. Many set theorists sympathise
with the view that the set theoretic universe is far too complicated to pin down

60Something similar can be said about principles that postulate downward and upward
Löwenheim-Skolem-Tarski numbers for strong logics, which are discussed below (p. 176). They,

too, express forms of reflection within V .
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in human mathematical language. Yet most philosophers and mathematicians no
longer share the philosophico-theological background assumptions that underpin
detailed philosophical accounts of why this is so. At any rate, as we have seen in
section 1.8, the mathematicians’ warrant for basic mathematical principles is not of
a philosophical nature. Their warrant for such principles is a form of entitlement.
Adoption of set theoretic reflection principles is a sound mathematical response to
the phenomenon of deep set theoretic incompleteness. Reflection principles are a
powerful and flexible instrument for reducing set theoretic incompleteness. More-
over, they reduce this incompleteness in an elegant way, and they contribute greatly
to the economical organisation of our set theoretic knowledge.61

I have argued that one fundamental difference between set theoretic and proof
theoretic reflection is that the latter contains an epistemic component, whereas the
former does not. Is there more we can say about the question how do set theoretic
reflection and proof theoretic reflection relate to each other? This question was
raised in the very early days, when the same mathematical logicians (Montague,
Levy, Kreisel,. . . ) worked both on proof theoretic and on set theoretic reflection
[KL68, p. 101]:

The authors [i.e., Kreisel and Levy] cannot agree on whether
[Montague’s designation of set theoretic reflection principles as
reflection principles] is merely a pun.

But this question was not pursued further: it seems that most people thought that
there is no close relation between the two.

The only exception to the silence in the mathematical community that I am
aware of was Reinhardt, who wrote 25 years later [Rei74, p. 193, footnote 3]:

The connection between [proof theoretic reflection principles]
and set theoretic reflection principles does not seem to me to
be merely verbal. Here one considers what is true, and this is
mirrored by what is provable. There is also an element of os-
tensive reflexivity: one’s considerations are turned back upon
themselves (e.g., one tries to be conscious of the formal system
one is using). It seems, however, that they always fall back on
something less than themselves [my emphasis]. This element also
occurs in set theoretic reflection, but the ostensive reflexivity is
more ontological: we reflect on the (mathematical) existence of
that which we consider, as we consider mathematical existence.

That ontological reflection principles involve a ‘dropping down to something
that is smaller’ seems plausible, in the light of what we have seen so far. That
this is also true for epistemic reflection principles, is not entirely obvious. However,
there is a sense in which this applies to epistemic reflection principles, also. Given
the completeness theorem for first-order logic, the local reflection principle Rfn(S)
for a first-order theory S, for instance, is equivalent to the scheme

ϕ→ ∃M :M |= S and M |= ϕ.

Moreover, given the Löwenheim-Skolem theorem, we may take this model M to
be countable. Thus, if S is some set theoretic theory, then Rfn(S) can (somewhat
loosely) be interpreted as saying that for every true ϕ, there is a small set in
which S can also be taken to hold, possibly by reinterpreting logical vocabulary.

61Already Theorem 6.49 bears witness to this.
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So we can interpret many standard epistemic reflection principles as ontological
reflection principles. This should not blind us to the fact that, viewed as epistemic
reflection principles, they have very different motivations from when they are viewed
as ontological reflection principles.

This raises the question whether there are reflection principles that are somehow
“intermediate” between standard proof theoretic reflection principles, viewed as
ontological reflection principles, and standard set theoretic principles. And there
are. By requiring the structure M to be more like small sub-structures of the
intended structure, we obtain more strength. Pakhomov and Walsh consider the
ω-reflection principle for a given theory S (ω-Rfn(S)):62

Axiom 6.63.

ϕ→ ∃ ω-model M :M |= S and M |= ϕ,

where an ω-model is a model in which the natural numbers are interpreted stan-
dardly, i.e., as an ω-sequence. They show that ω-Rfn(S) is equivalent to the claim
that arbitrary iterations of uniform Π1

1 reflection along countable ordinals are Π1
1-

sound [PW21].
ω-model reflection is a natural strengthening of the proof theoretic reflection

principles that we have considered earlier. But since we cannot avail ourselves to a
completeness theorem to give ω-Rfn(S) a straightforward epistemic interpretation,
we have to interpret it as an ontological rather than as an epistemic reflection
principle.

In line with our discussion at the end of Section 6.5, we may regard the state-
ment of the Löwenheim-Skolem Theorem as a reflection principle. It expresses a
form of reflection not of the universe but in the universe. Just as in the case of
‘classical’ reflection principles such as Bernays Reflection, and in the case of set
theoretic embedding principles, it is natural to ask if the Löwenheim-Skolem might
plausibly and naturally be strengthened. This question was addressed already by
Magidor in some of his early work, and is the subject of some recent work in large
cardinal theory.

Definition 6.64. Let τ be a fixed vocabulary. A logic L consists of:

(1) A set, also denoted by L, of “formulas” of L. If ϕ ∈ L, then there is a
natural number nϕ, called the length of the sequence of free variables in
ϕ;

(2) A modelling relation

M |= ϕ(a0, . . . , an−1)

between models of vocabulary τ , sequences (a0, . . . an−1) of elements of
the domain of M and formulas ϕ ∈ L. It is assumed that this modelling
relation satisfies the isomorphism axiom, that is, if π : M ∼= M′, then
M |= ϕ(a0, . . . , an−1) if and only if M′ |= ϕ(π(a0), . . . , π(an−1)).

τ is called the vocabulary of the logic L.

Definition 6.65 (downward Löwenheim-Skolem-Tarski number). Let L be any
logic. Then the Löwenheim-Skolem-Tarski number of L is the smallest cardinal

62In an analogous way, one could define β-model reflection, which should give us even more
strength.
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κ such that if M is any L-structure, then there is a substructure M0 of M of
cardinality strictly lower than κ such that M0 −→L M.

Then the following is a reflection principle, which we may call Magidor Reflec-
tion (MR):

Axiom 6.66 (MR). Full second-order logic has a downward Löwenheim-Skolem-
Tarski number.

It is clear that Axiom 6.66 is related to Bagaria’s Structural Reflection Principle
(Axiom 6.61). (This is attested further by the Theorem of Stavi that Vopenka’s
Principle holds if every logic has a Löwenheim-Skolem-Tarski number ([MV11,
Theorem 6]).)

Magidor has shown that the reflection principle MR has considerable large
cardinal strength indeed [Mag71]:

Theorem 6.67. MR is true if and only if there exists a supercompact cardinal,
in which case the downward Löwenheim-Skolem-Tarski number of second-order logic
is the least supercompact cardinal.

We can also define the notion of an upward Löwenheim-Skolem-Tarski number:

Definition 6.68 (upward Löwenheim-Skolem-Tarski number). Let L be any
logic. Then the upward Löwenheim-Skolem-Tarski number of L is the smallest
cardinal κ such that if M is any L-structure of at least size κ such that M |= ϕ for
some sentence ϕ, then there are arbitrarily large L-structures M′ such that M′ |= ϕ
and M is a substructure of M′.

The following has recently been established [GO24]:

Theorem 6.69. Second-order logic has an upward Löwenheim-Skolem-Tarski
number if and only if there is an extendible cardinal, in which case it is the least
extendible cardinal.

6.7. Probabilistic reflection

In this section, we are concerned with the question whether there are plausible
probabilistic reflection principles for typefree rational subjective probability.

Formal epistemologists have been interested in this question. Nevertheless, it
is still largely an uncharted comain: few genuinely formal investigations have been
carried out in this area so far. Nonetheless, I believe that this area holds promise.
What follows can therefore be considered as n invitation to look deeper into these
matters.

6.7.1. Expert principles and van Fraassen’s reflection principle. Ex-
pert principles express constraints on rational subjective probability functions.
They state that a subject’s probability function should defer to “better” proba-
bility functions (expert functions) in certain specific ways.63

If Pr1 be a subjective probability function, and Pr2 is some other probability
function, then expert principles are generally of the following form:

For all r ∈ R, and for all φ such that Pr1(Pr2(φ) = r)) 6= 0,

Pr1(φ | Pr2(φ) = r) = r.

63For a good short introduction to expert principles in formal epistemology, see, [Spo12,
Chapter 9].
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The antecedent of this principle is of course required to ensure that the relevant
conditional probability is defined. Pr2 is the probability function that is supplied
by an expert. This expert can be one’s own subjective probability function at
some specific future time, but can also be the probability function of someone
much more qualified (a human ‘expert’), or a probability function that expresses
objective chance (i.e., ‘nature’).64

David Lewis advocated the expert principle that results from taking Pr2 to
express objective chance: this is Lewis’ principal principle ([Lew80]). Gaifman
investigated the expert principle that results from taking Pr2 to be the degrees
of belief of an expert in a subject matter ([Gai86]). Van Fraassen advocated the
expert principle that results from taking Pr2 to be the subject’s own subjective
probability function at some specific future time: this is van Fraassen’s reflection
principle ([vF84]). Variants of the latter are the subject matter of this section.

Since subjective probability is a concept of graded belief, it seems that Fraassen’s
reflection principle should express the result of a form of epistemic reflection. But
given Theorem 4.33, we have to distinguish sharply between conditional probabil-
ity and probability of a conditional. So van Fraassen’s reflection principle should
certainly not be seen as a converse positive introspection principle. Thus it is not
immediately clear as what kind of epistemic reflection principle van Fraassen’s re-
flection principle should be classified. Van Fraassen’s reflection principle looks like
a kind of coherence or consistency principle, which is also how it is often presented:
the principle says that it should never be the case that coming to believe with prob-
ability 1 your future credence in φ forces you (by Bayesian updating) to change your
current credence in φ.

All expert principles, including van Fraassen’s reflection principle, are contro-
versial. Indeed, van Fraassen himself argues that Ulysses, having good reasons to
believe that his cognitive state will be adversely affected by the sirens soon, should
not believe all instances of

Pr1(φ | Pr2(φ) = r) = r,

where Pr1 represents his current credences, and Pr2 represents his credences when
he will be tied to the mast a few hours in the future [vF95].

The expert principles that we have discussed so far are typed, in the sense that
the possibility that Pr1 6= Pr2 is left open. Van Fraassen and his successors also
discussed the type-free variant of van Fraassen’s reflection principle, which we will
call VFR:

Definition 6.70 (VFR).

For all r ∈ R, and for all φ such that Pr(Pr(φ) = r)) 6= 0,

Pr(φ | Pr(φ) = r) = r.

VFR is called the synchronic version of van Fraassen’s reflection principle.
The principle VFR differs from the diachronic reflection principle in important

ways. Firstly, VFR expresses an internal coherence constraint. Thus it is more sim-
ilar to proof theoretic consistency, which we have recognised as bona fide reflection
principle, than van Fraassen’s diachronic reflection principle is. Secondly, VFR
is widely regarded as less controversial than van Fraassen’s diachronic reflection
principle. Roush describes why [Rou, Section 2.1]:

64Hence Pr2 does not necessarily a subjective concept of probability.
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While I can sensibly imagine my future self to be epistemically
compromised, unworthy of my deference, violating [VFR] would
require regarding my current self as epistemically compromised,
as having a degree of belief that should be other than it is. This
appears to be something that doubt of my own judgment would
call for [. . . ]

Another reason why many find VFR appealing is that it has been shown to follow
from introspection principles. This, however, seems not to be a convincing argu-
ment, since we have seen earlier that many introspection principles are incompatible
with a basic theory of finitely additive typefree probability.65

The principle VFR expresses that for every sentence ϕ, there is a part o of the
sample space Ω, where ϕ behaves as it does on the entire sample space Ω, i.e., such
that ϕ is “reflected” in o. This can be seen as follows. Suppose that Pr(ϕ) = r.
Suppose also that Pr(Pr(ϕ) = r) = s 6= 1. Then there will be a proper part o ⊂ Ω
of some size s ∈ R such that Pr(ϕ) = r holds everywhere in o. Then by VFR, as
evaluated in the restriction of the sample space Ω to its part o, we will likewise
have Pr(ϕ) = r.

Figure 2

Thus, as far as ϕ is concerned, its behaviour is mirrored (reflected) in o. This
looks like a probabilistic version of the Montague-Levy phenomenon, except for the
requirement that o is “small” as compared to Ω.

6.7.2. An impossibility result. In contrast to van Fraassen’s diachronic
reflection principle, the principle VFR violates type restrictions: it is essentially
type-free. In a type-free context, as we have witnessed on several occasions, one has
to be mindful of liar-like arguments. Indeed, a straightforward diagonal argument
shows ([CHL22, Proposition 6]):

Theorem 6.71. The principle VFR cannot consistently be added to the basic
theory of typefree subjective probability K−u .

65See Proposition 4.39.
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So if we are prepared to accept K−u as a background theory for type-free sub-
jective probability, then VFR is false.

Question 6.72. Are there natural weakenings of VFR that can be consistently
added to K−u ?



Part III





CHAPTER 7

Epistemic Warrant for Proof-Theoretic Reflection

In this Part, the epistemic views developed in Part I are connected to the
logical theories of proof theoretic reflection and truth that were discussed in Part
II. We investigate the connections between justification, epistemic entitlement, and
philosophical reflection on the one hand, and truth principles and proof theoretic
reflection principles on the other hand. Our main question is: What is our epistemic
warrant for principles of truth and proof-theoretic reflection?

Since mathematical proof is the workhorse of justification in mathematics,1 it
will not be a surprise that there is a connection between proof theoretic reflection
and justification. That there should be a connection between proof theoretic reflec-
tion and the more touchy-feely notions (such as ‘trusting that’) that were discussed
at the end of Chapter 2, sounds unlikely. Nonetheless, I will make a case for this
also.

In the next two Chapters, the concept of truth is set aside. We will not be
concerned with principles of truth or with the global reflection principle. Instead,
we focus on questions concerning our epistemic warrant for purely mathematical
proof theoretic reflection principles in which the concept of truth is not involved.
The present chapter is concerned with statements expressing the consistency of
a theory, local reflection, and especially uniform reflection on a theory, and with
how such statements can be justified. In the next chapter, the connection between
consistency and epistemic entitlement is explored. We will see that philosophical
thought about these matters is currently still in its infancy.

7.1. Implicit commitment

Gödel’s incompleteness theorems show that every consistent mathematical the-
ory S that interprets a modest amount of first-order arithmetic is incomplete. There
is a specific sense in which Gödel’s proof of the incompleteness theorems is construc-
tive. Gödel’s proof gives a procedure for finding sentences that are independent of
S: the Gödel sentence G(S) for S, and an arithmetical sentence Con(S) canonically
expressing, relative to some convenient numerical coding scheme, the consistency
of S. Moreover, under fairly general conditions, these sentences do not express ab-
solutely unsolvable problems, but only problems that are unsolvable in S.2 Suppose
we start with a mathematical theory S that we justifiedly believe. Then there are

1See Chapter 1.
2By proving that the Continuum Hypothesis is consistent with ZFC and by conjecturing

that it is in fact independent of ZFC, Gödel also contributed to the question whether there
are absolutely undecidable mathematical problems. According to quite a few set theorists, the
Continuum Hypothesis is an absolutely undecidable mathematical problem.
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ways of extending S that can be seen to be correct, such that the extended system
decides G(S) and Con(S).3

The extended system will in fact prove Con(S) [Göd51, p. 309]:4

It is [the second incompleteness theorem] which makes the in-
completability of mathematics particularly evident. For it makes
it impossible that someone should set up a certain well-defined
system of axioms and rules and consistently make the follow-
ing assertion about it: All of these axioms and rules I perceive
(with mathematical certitude) to be correct, and moreover I be-
lieve that they contain all of mathematics. If someone makes
such a statement he contradicts himself. For if he perceives the
axioms under consideration to be correct, he also perceives (with
the same certainty) that they are consistent. Hence he has an
insight not derivable from the axioms.

So the theory S + Con is then a correct system that is less incomplete than S is.
Gödel moreover remarked that the resources for reducing the incompleteness of a
given believed mathematical system S are in some sense already contained in S
[G4̈6, p. 151]:

It is well known that, in whichever way you make [the concept of
demonstrability] precise by means of a formalism, the contem-
plation of this very formalism gives rise to new axioms which are
exactly as evident and justified as those with which you started,
and this process of extension can be iterated into the transfinite.

In this way, at the same time as proving that every sufficiently strong mathematical
system is incomplete, Gödel found a practical way of reducing the incompleteness
of every theory that is justifiedly believed.

Turing suggests that reflection principles that are added to a justified mathe-
matical theory are intuitively seen to be correct [Tur39, p. 198]:

We were able, however, from a given system to obtain a more
complete one by the adjunction as axioms of formulae, seen in-
tuitively to be correct, but which the Gödel theorem shows are
unprovable in the original system; from this we obtained a yet
more complete system by a repetition of the process, and so on.

However, the further history of the epistemology of proof theoretic reflection has—
rightly, in my view—downplayed the role of intuition here.

Myhill may have been the first one to pick up on Gödel’s thought that in-
completeness can be reduced by making explicit what is in some sense implicitly
contained in a theory that one already accepts [Myh60, p. 462]:

[I]f a person who has been using certain methods for proving
arithmetical theorems succeeds in making these methods ex-
plicit, he is ipso facto committed to the perfectly definite propo-
sition that the use of those methods cannot lead to a false arith-
metical statement, for example the statement that 0 is equal to 1.
By Gödel’s technique of arithmetization, which translates every

3“It can be shown that the undecidable propositions constructed here become decidable

whenever appropriate higher types are added [to the system P]” [Göd31, p. 181, note 48a].
4It will also prove G(S).
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statement of formal deducibility into a statement of arithmetic,
any such person is compelled to admit a new arithmetical state-
ment, namely the arithmetized version of the statement that his
methods cannot lead to a proof of the statement that 0 is equal
to 1. By Gödel’s theorem, he could not have established this
statement by his previous methods. Hence, as soon as a person
makes explicit the tools which he has been using in the con-
struction of arithmetical proofs, he is ipso facto in a position to
obtain new arithmetical proofs which he could not have obtained
by using those tools alone.

The procedure of adding the consistency of S to an already accepted mathe-
matical theory S can obviously be iterated, as Gödel realised. We have seen in the
previous chapter5 how Turing took first steps in the mathematical investigation of
transfinite processes of iterating consistency assertions [Tur39].

Taking consistency extensions provides one way of systematically reducing in-
completeness; there are others. Kreisel saw the importance of concentrating on
uniform reflection [Kre60, p. 289]:

[N]ow consider finitist proof: if P (φ) has been recognized by fini-
tist means to be the provability predicate of a (partial) formal-
ization, say Sα, of finitist mathematics, and P (φ(n)) has been
established by finitist means then, on the intended meaning of
free variables, φ(n) is finitistically established. In other words,
Sα is incomplete and can be extended to Sβ , in which φ(n) is
provable.

Already at this stage, Kreisel seems to have had at least an inkling that increasing
the strength of the engine (uniform reflection versus forms of local reflection) may
not be ‘swamped’ by the length of the iteration process.

In his landmark paper about transfinite progressions of reflection principles
[Fef62], Feferman took Kreisel’s recommendation from 1958 to heart, by making
uniform reflection, instead of consistency, the engine of his transfinite progressions.
In the wake of these developments, Kreisel then posed the underlying question in
full generality [Kre70, p. 489]:

What principles of proof do we recognize as valid once we have
understood (or, as one sometimes says, ‘accepted’) certain given
concepts?

Feferman seems to have seen his work on transfinite progressions as answering
Kreisel’s question in the situation where the starting theory is Peano Arithmetic.
Importantly, he states that our acceptance of a reflection principle for our base
theory (and iterating this procedure) rests on our pre-theoretic attitude [Fef62,
p. 261]:

In contrast to an arbitrary procedure for moving from AK to
AK+1, a reflection principle provides that the axioms of AK+1

shall express a certain trust [our emphasis] in the system of ax-
ioms AK .

This emphasis on the dimension of trust in theory acceptance harmonises with the
more philosophical views of acceptance and belief that we discussed in Section 2.7.

5See Section 6.2.2.
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In the above quotes by Feferman, we observe also the absence of any appeal
to mathematical intuition, which, as we saw, is present in Turing’s remarks on our
epistemic warrant for proof theoretic reflection principles. At the same time, it is
clear that Feferman is deeply interested in questions concerning our epistemic war-
rant for reflection principles. Also in later work, Feferman continues to emphasise
this epistemic dimension [Fef91, p. 2]:

Gödel’s theorems show the inadequacy of single formal systems
[for the purpose of formal analysis of mathematical thought].
However at the same time they point to the possibility of system-
atically generating larger and larger systems whose acceptability
is implicit in acceptance of the starting theory. [our emphasis]

Feferman here sketches an epistemological route from knowledge of the axioms
of a weaker system to knowledge of the axioms of a stronger system. One starts
by believing the axioms of a system S. If one’s reasons for doing so are good,
then these beliefs amount to knowledge of the axioms of S. When one is in such a
situation, one is implicitly committed to reflection principles for S, such as ConS .
By explicitly endorsing such implicit commitments, one can come to accept, and
perhaps even to know the axioms of a stronger system S′.

At this point, one expects the attention to shift to the question of the justifica-
tion of RFN(S) given that one has justification for S. But Feferman seems to say
that, beyond the justification of S, no further justification is needed for RFN(S).
In one place, he writes [Fef88, p. 131, my emphasis]:

The idea of an autonomous progression more nearly approxi-
mates the process of finding out what is implicit in accepting a
basic system L1, i.e., of what one ought to accept, on the same
fundamental grounds, when one accepts L1.

And along the same lines, in a later article he writes [Fef96, Section 2]:

That idea, in the case of formal systems S in the language of
arithmetic comes down [. . . ] to one form or another of (proof-
theoretic) reflection principle, that is a formal scheme to the
effect that whatever is provable in S is correct. [...] The axioms
RfnS , and more generally, RFNS [local and uniform reflection,
respectively] may indeed be considered ‘exactly as evident and
justified’ as those with which one started.

In sum, Feferman is proposing what is labeled the Implicit Commitment Thesis
(ICT):6

When you are justified in believing a mathematical theory S, then
you ought to accept, on the same fundamental grounds, proof
theoretic reflection principles for S.

Here ‘ought to accept’ should be interpreted as is rationally required to accept, and
‘on the same fundamental grounds’ means without giving more reasons, i.e., without
doing extra justificatory work.

Now this is odd. By the incompleteness theorems, S+RFN(S) is stronger than
S. So it seems that, beyond the justification of S, extra justfication is needed to
be justified in also believing RFN(S). In other words, ICT is a bold claim because

6This terminology is due to Dean: see [Dea15, p. 32].
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if S is sufficiently strong (and consistent), then by the incompleteness theorems,
proof theoretic reflection principles for S are logically independent of S. Later in
this book, we will come back to the important question what exactly is going on
here.

The boldness of Feferman’s claim is often overlooked in the literature. Re-
flection principles for a theory S can of course also be proved in theories that are
stronger than S. The way in which reflection principles can be proved in truth the-
ories in particular, has been the subject of some of Feferman’s influential research
in this area [Fef91, p. 2]:

[. . . ] which statements in the base language L of S [. . . ] ought
to be accepted if one has accepted the basic axioms and rules of
S? The answer is given in an ordinary theory Ref(S) formulated
in a language L(T, F ) [. . . ] where T and F are partial truth
and falsity predicates which are self-applicable in the sense that
they apply to (codes of) statements of L(T, F ) [. . . ] Thus, for
example, we may reason in Ref(PA) by induction on the truth of
statements which contain the notion of truth, and thus arrive at
statements of the form: ∀x[ProvPA(x)→ T (x)], and by iterating
this kind of argument derive iterated reflection principles for
arithmetic.

Ketland takes Feferman to argue in this passage that reflection principles need to be
justified, and that one particular natural way to justify them is to derive them from
truth axioms [Ket05, p. 79–80]. But this interpretation does not explain the earlier
quoted passages, where Feferman argues that no new principles are necessary to
be epistemically warranted in believing reflection principles (“essentially the same
grounds”). Moreover, it is clear from Feferman’s own comments on the passage just
quoted that he does not take it to have fundamental epistemological significance.
He merely believes that KF (S) gives a particularly elegant way of expressing the
implicit commitment of a theory S [Fef91, p. 3]:

[. . . ] the schematic notion of reflective closure meets among
other things the aim to give a more perspicacious generation
procedure for predicativity without the use of progressions of
theories or prima facie impredicative notions such as ordinals or
well-orderings.

Later in the book, we will come back to the important question to what extent
Feferman’s epistemological remarks can be taken at face value.

In what follows, we will suppose that your justification for S need not justify
more than S. In particular, suppose that it does not justify the statement expressing
a reflection principle for S.7 That you can be in such a situation can be argued as
follows. Suppose we had a solid argument for the thesis that for every recursively
axiomatised theory S in the language of arithmetic, for you fully and justifiedly
to believe S, you would in addition have to have a justified belief in a reflection
principle for S. Then it would follow that for no recursively axiomatised theory S
in the language of arithmetic, you could be justified in believing S and no more
than that. I.e., then as far as arithmetic is concerned, your powers would outstrip

7That such a situation is possible (for a theory such as PRA, for instance), is argued for
instance in [Dea15].



188 7. EPISTEMIC WARRANT FOR PROOF-THEORETIC REFLECTION

those of any Turing machine. But—pace Lucas and Penrose8—it is widely accepted
that currently no such argument exists that carries conviction. On the contrary,
the position that humans are at bottom equivalent to Turing machines as far as
justified mathematical beliefs are concerned seems widely accepted.

Feferman, in the tradition of Kronecker, Poincaré, and Hermann Weyl, takes
Peano Arithmetic to be a mathematically justified starting point. He thus takes
every mathematician who thinks likewise, to be implicitly committed to successive
strengthenings by uniform reflection of this evident starting point [Fef91, p. 2, my
emphasis]:

Gödel’s theorems show the inadequacy of single formal systems
[for the purpose of formal analysis of mathematical thought.]
However at the same time they point to the possibility of system-
atically generating larger and larger systems whose acceptability
is implicit in the acceptance of the starting theory.

In the previous Chapter, we have seen how Feferman then argued that the
implicit commitment of PA stretches as far as the autonomous progression gener-
ated from PA reaches, and how he calculated the length of this iteration (Theorem
6.21). Thus, in Feferman’s view, the autonomous closure of PA under uniform
reflection is what the mathematician who justifiedly believes PA is committed to.
This autonomous closure is much stronger than the starting theory.

The proof of the theorem that reveals that the scope and limitations of the
autonomous progression of PA can only be carried out in a mathematical theory
that is essentially stronger than the autonomous progression of PA. Thus the limits
of what one is implicitly committed to when one is committed to PA, cannot even
implicitly be recognised from PA. This is a familiar refrain from the foundations of
mathematics: the limits of finitism cannot finitistically be recognised, the limits of
predicativism cannot predicatively be discerned, and so on.

Whether ICT is correct is a significant question not only as a general epistemo-
logical question, but also from the point of view of the foundations of mathematics.
So one would expect especially philosophers of mathematics to be interested in it.
Until recently, however, this question was almost universally ignored in the phi-
losophy of mathematics.9 I consider this a collective dereliction of epistemological
duty. Since about 2015, however, this situation has changed, as we will see in the
remainder of this book.

It is tempting to take Feferman’s epistemological claims to be at best no more
than loose talk, and at worse philosophical nonsense. Indeed, I believe that pri-
vately, some philosophers of mathematics contrast Feferman the brilliant logician
and mathematician with Feferman the epistemological simpleton. I do not accept
this picture. On the contrary: I believe that Feferman’s philosophical remarks are
carefully thought through—albeit also very terse. In the next Chapter, I will ar-
gue that Feferman is basically right when he claims that reflection principles can
be warranted without being justified. I will argue for this thesis by appealing to
Burge’s and Wright’s work on epistemological entitlement. Roughly, I will attempt
to show that epistemic warrant for reflection principles can be more a matter of

8See [Luc61], [Pen89], and [Pen94].
9From the early 1970s onwards until recently, mathematical epistemology was dominated by

questions related to the epistemological access that we as spatiotemporal beings have to the world

of abstract mathematical objects. The seminal paper here is [Ben73].
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entitlement than of justification—although the details of the account and the issues
involved are complicated.

In this context, it seems to me significant that very early on, there was a
recognition of the connection between reflection extensions on the one hand, and
concepts lying on the border between epistemology, pragmatics, and philosophy of
mind on the other hand. As we have seen earlier, Feferman writes early on [Fef62,
p. 261, my emphasis]:10

In contrast to an arbitrary procedure for moving from Ak to
Ak+1, a reflection principle provides that the axioms of Ak+1

shall express a certain trust in the system of axioms Ak.

Being primarily interested in the mathematical problems to which this gives rise,11

Feferman did not pursue this particular connection further. However, it seems to
me that this admittedly cryptic passage points to a connection between epistemic
warrant for reflection principles and fiducial trust, which was discussed at the end
of Chapter 3. In particular, it seems to me that warranted belief in reflection
principles can result from exercising our entitlement to reflect on fiducial trust.

7.2. Reflection as basic?

The contemporary debate about our epistemic warrant for reflection principles
begins around the year 2000 in truth theory. As we have seen, according to Hor-
wich’s minimalist truth theory, correct theories of truth are neutral in substantive
debates inside and outside philosophy [Hor90]. As a consequence of this, truth
theories should then also be mathematically neutral, in the sense that truth theory
should be proof-theoretically conservative over mathematical background theories
[Hor95]. Shapiro and Ketland then argued that this consequence of Horwich’s min-
imalism is incompatible with what they regard as a desideratum of a good truth
theory A (over a background theory S), namely, that S+A proves certain sentences
that are indepdentent of S, such as G(S) and Con(S) [Sha98], [Ket99]. Moreover,
they point out that there are natural truth theoretic arguments for proving G(S)
and Con(S), but these arguments exceed the power of natural disquotational truth
theories. Thus, they conclude, disquotationalist truth theories, and in particular
Horwich’s minimalist truth theory, are unsatisfactory.

In reaction to Shapiro’s and Ketland’s arguments, Tennant argued that, if we
are “living” in a theory S, truth laws are not needed for acquiring a warranted
belief in G(S) or Con(S) [Ten02]. Instead, he argues, they can be proved from
modest reflection principles, such as uniform reflection for S restricted to primitive
recursive predicates [Ten02, p. 573]. This then shifts the problem to the question
how such reflection principles are themselves warranted [Ket05, p. 85].

Tennant at one place seems to suggest that no warrant beyond the warrant
for S is needed: an agent can “express (in [S + uniform reflection for S restricted
to primitive recursive predicates]) his willingness, via the soundness principle, to
assert any theorem of S” [Ten02, p. 574].

Ketland rightly points out that this last statement is not correct [Ket10,
p. 430]:

10Some will view this as just more loose talk; I don’t.
11In particular, Feferman was interested in the question: how far can we get by iterating

reflection principles? [Fra04a, p. 228].
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It should be noted that this is a non-standard claim. Usually, a
reflection scheme like [RfnPA] is said to express the soundness
of [PA]: that whatever [PA] proves is true. And being true is not
the same as being accepted.

In other words, a person’s acceptance of a system S is expressed rather by the
inference rule

` BewS(ϕ)

` ϕ
.

This rule is easily seen to be conservative over S [Fra04a, p. 216],12 and therefore
not equivalent to any of the standard reflection principles for S, which are amplia-
tive. In particular, when this rule of inference is added to S, G(S) and Con(S) do
not become provable.

In a later article, Tennant repeats his view that reflection principles need no
further justification, but he also says that reflection principles are somehow the
outcome of a process of reflection [Ten05, p. 92]:

No further justification is needed for the new commitment made
by expressing one’s earlier commitments. As soon as one appre-
ciates the process of reflection, and how its outcome is expressed
by the reflection principle, one already has an explanation of why
someone who accepts S should also accept all instances of the
reflection principle.

This sounds intriguing, but of course then one wants to know what this process
of reflection looks like, and how it leads to the acceptance of a reflection principle.
The philosophical story is missing here.

7.3. A sceptical position

In section 7.1, we saw how Feferman claims that if one accepts a basic theory
S, then one ought to accept reflection principles for S on the same fundamental
grounds [Fef88, p. 131]. Let us put the puzzling “on the same grounds” aside for
a moment, and concentrate on the “rational ought” in this claim. Dean is sceptical
about this aspect of Feferman’s views on implicit commitment [Dea15, p. 35]. He
gives two arguments for the thesis that one can be perfectly rational, and still refuse
to accept reflection principles for a theory S that one unreservedly accepts.

In his first argument, he recalls proof-theoretic results that show that, under
fairly general circumstances, a reflection principle for an arithmetical theory S is
equivalent to a principle of transfinite induction [Dea15, section 3].13 Not only
does a proof-theoretic equivalence hold between a typical reflection principle and
some principle of transfinite induction, but the two are also justificatorily equivalent
[Dea15, p. 47], presumably in the sense that one is also not epistemically prior to
the other. If one has justification for S and no more, then warrant for accepting
extra transfinite induction requires extra reasons. Why should we believe that, for
any theory S, there are always compelling extra reasons for accepting this degree
of transfinite induction?

12See also Theorem 6.5.
13See Theorem 6.10.
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Note that, because of the claimed justificatory equivalence between reflection
and transfinite induction, proof of transfinite induction from the reflection princi-
ple is not an acceptable answer for Dean. However, the claim that justificatory
equivalence follows from proof theoretic equivalence at least in the case of reflec-
tion and transfinite induction, needs an argument. None is given in [Dea15]. That
in general justificatory equivalence follows from proof theoretic equivalence, seems
doubtful. The literature on reverse mathematics is full of examples of pairs of state-
ments that are proof-theoretically equivalent [Sim11], where one of them appears
to be epistemically more basic than the other.

Dean’s second argument turns on the concept of epistemically stable theories.
A mathematical theory S is epistemically stable if there appears to be nothing
blameworthy about someone who accepts S and nothing more [Dea15, p. 53].
Dean takes PRA and PA to be epistemically stable theories. The reason is that
there seem to be coherent rationales for accepting the theory PRA (the theory PA,
respectively) and nothing more. In the case of PRA, this rationale is given by
Hilbertian finitism ([Hil26], [Tai81]). In the case of PA, Isaacson has attempted
to provide such a rationale [Isa87].14 One might add Ramified Analysis up to level
Γ0 as another such epistemically stable theory: its coherent rationale is given by
Feferman’s flavour of predicativism [Fef05]. Note, incidentally, Dean’s argument
from epistemic stability requires him to adopt, as I do, a liberal conception in the
sense of van Fraassen.15 After all, on his view, it is rational to be a Hilbertian
finitist, but it is also rational to be a Fefermanian predicativist.

In order to evaluate Dean’s second argument, we have to distinguish cases.
Let us start with Ramified Analysis up to level Γ0. For every α < Γ0, the

theory RAα is autonomously, i.e., predicatively, justifiable. But that this is so,
requires an induction up to Γ0, which is just beyond the reach of predicativism, at
least as understood by Feferman. For each α < Γ0, the typical reflection principles
for RAα are provable in RAα+1, which itself is predicatively justified. In this
sense,

⋃
{RAα | α < Γ0} is closed under reflection principles: the predicativist can

justify reflection principles for every theory that she justifiedly believes. So Dean’s
objection does not apply.

Next, consider PRA. As with predicativism, the Hilbertian finitist accepts all
finite fragments of PRA. But she cannot justify PRA as a whole. That task goes
beyond what the Hilbertian finitist is capable of. But in this case, there is also a
prior difficulty. As we have seen in Chapter 6, PRA is formulated in a quantifier-free
language (where variables are permitted as free parameters) [Sko23]. The standard
provability predicate for PRA is essentially Σ1, and therefore cannot be expressed
in the language of PRA. From a foundational point of view, this is an expression of
the fact that the Hilbertian finitist does not recognise such formulas as meaningful.
Therefore the Hilbertian finitist does not recognise a typical reflection principle as
meaningful. This points to what might be a reasonable restriction on the “rational
ought” in Feferman’s contention that we should accept reflection principles for the
mathematical theories that we justifiedly believe. It might be said that someone
who does not recognise that all concepts involved in a reflection principle are in

14It is more controversial whether Isaacson succeeded in giving a coherent rationale for ac-

cepting PA and no more than whether Hilbert succeeded in providing a coherent rationale for

accepting PRA and no more. But be that as it may.
15See p. 67.
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good standing, is under no rational obligation to accept reflection principles. Note,
in this context, that such conceptual doubts might not only be targeted to the
notion of provability in a formal system, but also to the concept of truth, which
figures prominently in global reflection principles. Some might reply to this that it
is just unreasonable not to accept at least provability in a theory as a legitimate
concept. But, then again, perhaps such doubters are just really cautious thinkers:
why would that be rationally unacceptable?

To conclude, let us look at PA. Concerning the determination of the intended
model of arithmetic, Isaacson is a second-orderist. He believes that we fix the in-
tended structure of arithmetic (up to isomorphism) by asserting Dedekind’s second-
order formalisation of Peano arithmetic (PA2), where the second-order quantifiers
range over all subsets of the domain of discourse. But when it comes to the question
which arithmetical sentences can be recognised to be true merely on the basis of
our intuition of the natural numbers (and elementary relations on them), Isaacson
holds that this collection is captured exactly by first-order Peano arithmetic [Isa87,
p. 166], [Isa92, p. 95]. In this sense, Dean argues, accepting PA and no more is an
epistemically stable position [Dea15, section 4.2].

Of course Isaacson does not think that PA contains all true sentences of the
language of first-order arithmetic. He recognises, for example, as most of us do,
that all first-order arithmetical sentences that follow from PA2, are true, and that
proof-theoretic reflection principles for PA are true. However, he believes that
what exceeds PA cannot be known only on the basis of our intuition of the natural
numbers (and elementary relations on them): first-order arithmetical statements
exceeding PA can only be seen to be true on the basis of higher-order concepts.
For instance, we can recognise the truth of many sentences that are independent
of PA by deriving them from PA2. But the latter is recognised to be true on the
basis not only of our intuition of the natural numbers, but also on the basis of our
concept of set of natural numbers, which is a higher-order concept in Isaacson’s
sense. Concerning the particular case of proof-theoretic reflection principles, he
writes [Isa92, p. 96]:

In the case of the Gödel sentence for Peano arithmetic, the hid-
den concepts are provability in the formal system of Peano arith-
metic and, most crucially, consistency of Peano arithmetic. That
is, to perceive the truth of the Gödel sentence (presented purely
in the first-order language of arithmetic) we must understand
that it expresses the condition that this sentence is not provable
in this given formal system and see that this formal system is
consistent.

This indeed points to a question that we have not addressed until now. Isaacson
is right that provability (in a formal system) is strictly speaking not an arithmetical
concept. BewPA is merely a complex arithmetical Σ1 formula, and as such expresses
a complex property of natural numbers. We “interpret” it as a provability predicate,
which is a predicate of arithmetical sentences, on the basis of some convenient Gödel
coding scheme. This reading of BewPA as a provability predicate is presupposed
in all accounts of why we ought to believe reflection principles for theories that
we are justified in believing. Thus our epistemic warrant for believing such proof-
theoretic reflection principles presupposes an epistemic warrant for reading BewPA

in this “syntactic” way. It is then incumbent upon us to get clear about how this
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warrant is acquired and on what it is based. This problem will occupy us in the
next chapter.16

Summing up, our verdict on Dean’s objections against Feferman’s “ought” is,
at least so far, mixed. His objections may be inconclusive, but they do throw
up questions. The most important of these have to do with our understanding of
certain arithmetical predicates as standard provability predicates. Moreover, there
is a deeper problem. Until now we have not seen a positive argument for Feferman’s
“ought”.

7.4. Justifying reflection

Most philosophers of mathematics believe that we can acquire warrant for proof
theoretic reflection principles for theories that we are already warranted to believe.
Let us now look at how such warrant can be acquired.

7.4.1. Higher-order concepts. There are ways of justifying proof theoretic
reflection principles. Suppose, for instance, that you are a Hilbertian finitist who
accepts PRA and nothing more. At some point, you come to adopt mathemati-
cal induction principles for good reasons. Then you can, for instance, prove the
consistency of PRA.

Isaacson has argued that Peano Arithmetic is somehow “arithmetically com-
plete” [Isa87]. Of course he does not mean to deny that Gödel’s incompleteness
theorems hold for PA. Rather, by this statement he means that all ways of proving
arithmetical statements that exceed PA, require the use of higher-order concepts,
i.e., concepts that go beyond the first-order logical concepts and the concept of
being a natural number. In particular, someone who has a mathematically justified
belief in PA and wants to prove proof-theoretic reflection principles for PA, needs
to appeal to principles regarding concepts that exceed the language of (first-order)
PA.17 For instance, she may acquire the concept of set of natural numbers, and
good reasons for accepting principles governing this new concept (principles of in-
duction, principles of comprehension). Then she can prove proof theoretic reflection
principles for PA. Alternatively, she may use principles of truth, and prove proof
theoretic reflection principles in CT.18 In such situations, the question of course
arises how the new axioms involving the new concepts are warranted.

Whether Isaacson is right, is a moot question. Moreover, a further question
is whether, if Isaacson is right concerning PA, a similar phenomenon might occur
for ZFC.19 Of course Con(ZFC) can be derived from large cardinal axioms. But
large cardinal axioms are not generally taken by the mathematical community to
be mathematically warranted. Moreover, as we have seen,20 some large cardinal
axioms that are expressible as a single axiom do not entail even the schematic
principle Rfn(ZFC).

Adopting a proof theoretic reflection principle as a new fundamental axiom is
not really an option. They do not satisfy the conditions for being a fundamental
axiom. They do not sufficiently organise and unify mathematical knowledge. They
do not “shed new light” on the natural number structure. Moreover, and just as

16See Section 8.3.3.
17Isaacson argues for this thesis in [Isa92].
18These strategies will be discussed in detail in Chapter 9.
19This question is discussed in [Hor01a].
20See Theorem 6.7.
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importantly, they do not have the generality that is mostly expected of fundamental
axioms, for they refer, via coding, to particular formal systems.

Even if proof theoretic reflection principles can never be fundamental axioms,
perhaps epistemic warrant for them can still be obtained in a direct way, i.e., with-
out using new concepts. The strategy is to argue, based on a fine-grained epistemic
analysis, that the epistemic distance between the background theory (PRA, PA,
ZFC,...) and reflection principles for them is somehow “very small”. Two such
attempts have recently been made: one by Martin Fischer [Fis23], and one by
Mateusz  Le lyk and Carlo Nicolai [LN22]. We will see that these proposals, while
certainly not identical, are nonetheless deeply related to each other; we discuss each
of them in turn.

7.4.2. The uniform reflection rule and informal arithmetic. Fischer’s
aim in [Fis23] is to show that we are warranted to believe URF (S) for a mathe-
matical theory S that we believe.

Let us restrict ourselves to arithmetic. Fischer distinguishes between the formal
theories of arithmetic that we endorse on the one hand, and informal arithmetic
on the other hand [Fis23, Section 4]. For definiteness, on the formal side, we will
suppose that PA is endorsed. On the other hand, it is much more difficult to give a
clear and informative account of informal mathematical—in our case arithmetical—
knowledge.21 Fischer writes [Fis23, Section 1.3]:

We will call [implicit] mathematical knowledge [. . . ] implicit, in-
formal and intuitive. Implicit in the sense that we do not require
awareness of this knowledge. Informal, because we think of it as
not necessarily recursive in the relevant sense, but rather semi-
formal. Intuitive only in so far as we think that the knowledge
stems from a concept of natural number. . .

Fischer takes the implicit commitments of arithmetic to be captured by informal
arithmetic; he wants to show that implicit (or informal) arithmetic is closed under
uniform reflection.

There is something puzzling in talking about implicit knowledge in the way
that Fischer does. On the one hand, knowledge entails belief. On the other hand,
on most conceptions of belief, having a belief that p (and therefore also knowing
that p) requires at least being close to being aware that p. Some say, for instance,
that a good test of whether you believe that p is whether you would, when asked
whether p, answer ‘yes’ after carefully considering the question (assuming that you
are sincere and willing to answer the question on the occasion). On some views,22

you may believe that p while not even be close to being aware of your believing
that p (“I am not in love with X!”). However this may be, more detail about
the conception of belief that is at play here, would not be amiss. However, I will
sidestep this question here.

Fischer first considers the local reflection rule RfR(PA):23

` BewPA(ϕ)

` ϕ
.

21See Section 1.5.
22See for instance [Rad66].
23See p. 154.
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We have seen that RfR(PA) is an admissible inference rule of PA: adding it does
not result in new theorems.24 However, this rule is not derivable in PA. It can
(trivially) be derived if, in addition to PA, we assume that PA is Σ1-sound, i.e., the
scheme

(BewPA(ϕ) ∧ “ϕ is Σ1”)→ ϕ.

Now Fischer contends that it is reasonable to assume that the Σ1-soundness
of PA is part of our informal arithmetical knowledge [Fis23, Section 3.2]. So,
“informally”, the rule RfR(PA) is derivable. Something like this cannot, at this
stage, for the axiom scheme RFN(PA), for we have as yet no argument that it, too,
belongs to informal arithmetic.

In the next stage of his argument, Fischer makes use of the informal derivability
of RfR(PA). Moreover, he takes the outcome of the first stage of his investigations
to suggest having a close look at the rule-form RFR(PA) of the axiom scheme of
uniform reflection:25

PA ` ProofPA(ϕ(x), f(x)) ( f a primitive recursive function )

` ∀xϕ(x)
.

We have seen that, over PA, the rule RFR(PA) is equivalent to RFN(PA).26

This means that the rule form of RFN(PA) behaves very different from the rule
form of Rfn(PA): the former proves new theorems, when added to PA; the latter
does not.

Fischer then sets out to argue that informal arithmetic is closed under the rule
RFR(PA). The rough argument, which Fischer admits is not completely convincing
as it stands, goes as follows [Fis23, Section 3.1]:

If we look at the premise of the uniform reflection rule, we see
that from ` BewPA(A(x)) we can derive all the ‘standard’ in-
stances ` BewPA(A(n)) for numerals n. Applying the local re-
flection rule would give us ` A(n) for all n ∈ N. Assuming an
understanding that the numerals exhaust all the natural num-
bers we could argue that ∀xA(x) has to be correct.

Somewhat less sketchily, the argument goes as follows [Fis23, section 4.2]:

[We assume that the premise of RFR(PA) holds, and] would like
to have an inductive argument for the correctness of ∀x(N(x)→
A(x)). Let us try to argue informally in a metatheory and as-
sume that f(z) [where z is intended to denote the number 0] and
f(Sc(x)) by h(f(x)) [where Sc stands for the successor function]:

1. ` ProofPA(A(x), f(x))
2. ` ProofPA(A(z), g(z))
3. ` A(z)
4. ` ProofPA(A(Scz), h(g(z)))
5. ` A(Sc(z))

. . .
6. ` ProofPA(A(ScSc...z), h(f(Sc...z)))
7. ` A(ScSc...z)

24See Lemma 6.5.
25See p. 154.
26See Theorem 6.6.
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By ‘reflecting’ on the argument it appears that we can turn it
into an informal inductive argument. The primitive recursive
function allows us to argue inductively that A(n) → A(Sn). In
contrast to a metatheoretic argument that establishes A(n) for
all n ∈ N, we do not have to assume a specific understanding of
N, but the inductive structure allows us to argue for all structures
of natural numbers that agree on the inductive build-up.

This argument is infinitary, and it is not immediately clear how the conclusion
∀xA(x) is derived from 1.–7. Certainly an appeal to the ω-rule is not what is in-
tended at this point. So the question arises: what does ‘reflecting on this argument’
mean?

In this context, Fischer takes the reflection to be a (finitary) argument in
informal arithmetic, involving the following laws of truth [Fis23, section 5]:

(1) T-In B(x)→ T (B(x)), for B a ∆0 arithmetical formula;

(2) U-Inf ∀xTA(x)→ T∀xA(x), for A an arithmetical formula;

(3) Conec

` T (A)

` A
,

for A an arithmetical sentence.

(In these principles T is a primitive truth predicate.) In other words, the ultimate
warrant for RFR(PA) in informal arithmetic can be formalised as a derivation in a
truth theory over PA.

At this stage, one may ask whether, since truth is a philosophical notion, this
would not make the resulting warrant for URR(PA), and thus also for URF(PA),
partly philosophical in nature. Indeed, the question arises how Fischer’s account
is at bottom different from views such as that of Shapiro and Ketland, who take
reflection principles such as URF(PA) to be justified by deriving them in CT.27

Fischer anticipates this worry and replies that the truth principles that he uses
are much weaker than CT. In contrast to the full compositional notion of truth that
is captured by CT, his truth predicate plays a purely ‘instrumental’ or ‘expressive’
role [Fis23, section 5.1].

It is not completely clear what is meant by ‘purely instrumental’ or ‘purely
expressive’ here. Moreover, vagueness aside, it is not clear to me that this can
also be said for the principle U-Inf.28 Somehow, like URR(PA), the principle U-Inf
appears to be a weakening of the ω-rule, which itself is of course of formidable
strength. Moreover, all known non-conservative truth theories contain some form
of U-Inf. At any rate, at this point the question arises what our warrant for the
truth principles that Fischer uses consists in.

7.4.3. Axiomatising implicit commitment. We have seen how Fischer’s
aim was to show how from a warrant for believing a mathematical theory T, a
warrant for believing T +RFN(T ) can be obtained. In their article [LN22],  Le lyk
and Nicolai embark on a different project. Their aim is also to describe the implicit

27Such positions will be discussed in more detail later: see Chapter 7.
28Fischer himself admits that this is the hardest case.
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commitment of arbitrary mathematical theories T. And on their view, it will also
turn out to be the case that RFN(T ) is part of the implicit commitment of T.
But they do not explain exactly what one’s warrant for RFN(T ) consists in, when
one has warranted belief in T. Rather, they aim to give a (partial) characterisation
of the implicit commitment of T by isolating operations under which the implicit
commitment of T is closed. They consider the operator I, that for a given math-
ematical theory T, yields the implicit commitment I(T ) of that theory. That is,
when one is warranted to believe T, the sentences in I(T ) constitute what one is
thereby implicitly committed also to believe.

A mathematical theory is taken to be given by a decidable predicate that isolates
the axioms of the theory [LN22, section 3.1]. (So also the theory PA will be taken
to be given by a ∆0 predicate.)

 Le lyk and Nicolai contend that for every mathematical theory T, its implicit
commitment I(T ) is closed under at least two operations [LN22, section 3.2]:

(1) Invariance For every mathematical theory T’, if it can be simply and uni-
formly recognised that for every ϕ, a proof of ϕ in T ′ can be transformed
into a proof of ϕ in T , then I(T ′) ⊆ I(T ).

(2) Reflection If it can be simply and uniformly recognised that for all n,
the formula ϕ(n) is an axiom of T,29 then ∀xϕ(x) ∈ I(T ).

Here a ‘simple and uniform recognition’ is identified with a proof in EA, where we
recall that Elementary Arithmetic is one of the weakest subsystems of PA.30

Invariance is so-called because it expresses that fine details about how a theory
is axiomatised do not matter for implicit commitment. Reflection expresses the
idea that you are implicitly committed to believing the universal generalisation of
a predicate each instance of which you uniformly recognise to be one of your axioms.

By means of a variation on Feferman’s clever proof that the uniform reflection
rule is equivalent to the uniform reflection principle,31  Le lyk and Nicolai show
[LN22, Section 3.3, Proposition 1]:

Theorem 7.1. For every theory T extending EA:

RFN(T ) ⊆ I(T ).

Proof. Take an arbitrary theory T, represented by a decidable predicate τ .
Given an arbitrary ϕ(v), we first show that EA ` ∀xBewτ (θ(x)), where θ(x) (the
so-called “small reflection principle” for τ and ϕ) is defined as

θ(x) =: ∀y1,∀y2(y1 = (x)1 ∧ y2 = (x)2 ∧ Proofτ (y1, ϕ(y2)→ ϕ(y2)),

where we assume a simple pairing function, and (x)1 denotes the first element of
the ordered pair coded by x (similarly for (x)2).

Working in EA, we fix an arbitrary x and let y1 = (x)1 and y2 = (x)2. If
Proofτ (y1, ϕ(y2), thenBewτ (ϕ(y2)) and the claim follows by logical reasoning inside
the provability predicate for τ . Similarly, if ¬Proofτ (y1, ϕ(y2), then provable Σ1-
completeness entails that

Bewτ (∃y1, y2(y1 = (x)1 ∧ y2 = (x)2 ∧ ¬Proofτ (y1, ϕ(y2))).

Therefore, in either case the claim follows.

29So if T is given by the ∆0 predicate τ , this means: “τ(ϕ(n)) holds”.
30See Section 4.1.1.
31See Theorem 6.6.
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Now, for θ as above, we define

τ ′(x) =: EA(x) ∨ ∃y ≤ x(x = θ(y)).

Then the previous argument shows that τ ′ is elementarily reducible to τ . So by In-
variance, I(τ ′) ⊆ I(τ). However, by the definition of τ ′, we obtain EA ` ∀xτ ′(θ(x)).
Then, by Reflection, we have ∀xθ(x) ∈ I(τ ′). Hence, by the definition of θ and the
fact that EA ⊆ τ ′ ⊆ I(τ ′), we can conclude that

I(τ ′) ` ∀x∀y(Proofτ (x, ϕ(y)→ ϕ(y)),

which entails the uniform reflection axiom for ϕ. Therefore we obtain by our earlier
observation that I(τ ′) ⊆ I(τ), that RFN(T ) ⊆ I(T ).

�

 Le lyk and Nicolai emphasise that on their view, implicit commitment is a one-
shot affair. Unlike Feferman’s notion of implicit commitment, it does not involve
an iteration. This is because implicit commitment is an ‘operation’ on an explicitly
believed theory T, the axioms of which are given by a decidable predicate: the
collection I(T ) is not given in this way [LN22, section 4].

Individually, Invariance and Reflection are in some sense conservative. That
Invariance on its own is conservative, is trivial. But also Reflection over T is
conservative in some sense: it can be conservatively interpreted in T [LN22, section
4]. So it is the interplay of Invariance and Reflection that results in ‘real’ non-
conservativeness.

So, in this way,  Le lyk and Nicolai split Uniform Reflection into two compo-
nents: Invariance and Reflection. They then argue that “Invariance and Reflection
preserve justified belief” [LN22, section 4]. If this is indeed so, then the proof of
theorem 7.1 gives a “deductive route to the justification of Uniform Reflection that
is based on more fundamental principles” [LN22, section 4].

The structure of this deductive justification is then as follows [LN22, section
4]:

[. . . ] in our reflection principle we start with the justified be-
lief in T and in ∀xτ(ϕ(x)) [where τ is a ∆0 predicate defining
T]. Specifically, the justification of ∀xτ(ϕ(x)) is given by one’s
justified belief in our formal syntax theory EA, and it is a basic
assumption of our framework that such justification is compat-
ible with any of the particular justifications one might have for
different choices of τ . The deductive lightness of Reflection [. . . ]
enables us to justifiedly believe ∀xϕ.

Consequently, given one’s justification for τ , all reasoning
steps in [the proof of theorem 7.1] can be seen to preserve such a
justification. Closure of justified belief under logical context in
our abstract and mathematical context then entails that Uniform
Reflection is also justified on the basis of τ .

That Invariance preserves justified belief is trivial. That Reflection also pre-
serves justified belief is less clear, as  Le lyk and Nicolai realise. So what exactly is
meant by the “deductive lightness” of Reflection?

The reflection operation on T can be seen as a weak version of a uniform
reflection rule for T, as a uniform reflection rule for T for decidable predicates. The
result of extending T with this reflection rule, is interpretable in T. But this does
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not mean that this reflection rule is an admissible rule of T. Indeed, if it were, then
the proof of Theorem 7.1 would yield a proof of RFN(T ) in T.

So the warrant for the Reflection step in the proof of theorem 7.1 is not un-
derwritten by a derivation in T. I contend that  Le lyk and Nicolai have not made it
completely clear wherein this warrant consists. Moreover, since it is an instance of
a (weak) uniform reflection rule, the inference is not self-evident. Thus I conclude
that  Le lyk and Nicolai have not succeeded in making the apparent epistemological
gap between T and RFN(T ) disappear.

7.5. The leaching problem reconsidered

In a way, things could not be otherwise. RFN(T ) does not logically follow from
T. So if we deductively want to extend a minimal warrant for T to a warrant for
RFN(T ), as both Fischer and  Le lyk and Nicolai aim to do, then non-self-evident
extra principles are needed. The warrants for these extra principles will go beyond
the minimal warrant for belief in the original theory T. One may attempt to spell
out these new warrants in the form of a further argument, as Fischer does. But
then the premises of this further argument will not all be self-evident, and require
further justification. Alternatively, one may refrain from spelling out these new
warrants in detail, as  Le lyk and Nicolai do. But then the justificatory obligations
have not been fully discharged.

In sum, a regress problem threatens, and we seem to be back to the leaching
problem that was described in Section 1.8. It was argued in that Section that math-
ematicians are warranted in their belief in their basic principles (Axioms) by their
practical responsiveness to the epistemic virtues of these principles (unifying power,
deductive strength, . . . ). In other words, on the view that I suggest, mathemati-
cal axioms are warranted by entitlements rather than by justifications. I suggest
that they are entitlements of cognitive project in something like Wright’s sense of
the word.32 Indeed, inquiry into the mathematical world is just as fundamental
a cognitive project as inquiry into the external material world, and any attempt
to justify basic mathematical axioms would involve premises that are of no better
prior standing.

This seems to me an attractive view. For one thing, it makes our warrant for
basic mathematical principles fully mathematical, whereas justificatory accounts of
our warrant for basic mathematical principles make our warrant for basic mathe-
matical axioms at least in part a philosophical affair. For another, the view that I
suggest avoids talk about mathematical intuition (such as the iterative conception
of sets, for instance), which is perhaps ultimately hopelessly vague and irreducibly
metaphorical.

Now this may (or may not) be all right as far as mathematical axioms go. But
the epistemological status of proof theoretic reflection principles is unlike that of
mathematical axioms. Proof theoretical reflection principles are not axioms in the
true sense of the word. They are metatheoretic in nature: they are about provability
in particular theories. They therefore even do not express basic properties even of
the class of natural numbers. More importantly, despite their independence, they
do not play a fundamental role in the organisation of our mathematical knowledge.
We are therefore not warranted in our belief in them by our practical responsiveness
to their epistemic virtues.

32See Section 2.5.
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Direct non-justificatory warrant for proof theoretic reflection principles is there-
fore not on the cards. This seems to drive us back to the view that proof theoretic
reflection principles must be derived from more basic principles, which must them-
selves be mathematically warranted in a different way. If that is true, then it is hard
to see how we can be warranted in believing proof theoretic reflection principles
for our most encompassing mathematical theory. In other words, at least for our
most encompassing mathematical theories, it is then hard to see what remains of
Feferman’s idea of implicit commitment.

I do not have a general solution to this problem. But I will in the next Chapter
suggest a way out at least for the weakest of the proof theoretic reflection principles:
consistency and local reflection. In particular, I will attempt to show how we can
be warranted to believe in the consistency of our most encompassing mathematical
theory without deriving the consistency statement from more fundamental princi-
ples. So, at least, for the warrant of our belief in consistency, the leaching problem
can be avoided. Or so I will presently argue.



CHAPTER 8

Reflecting on Consistency

Much justified mathematical belief is underwritten by
non-demonstrative reasoning [. . . ] Our belief in the
consistency of arithmetic seems thoroughly warranted; in
fact I think it constitutes knowledge. But no proof of it
adds significantly to the ground for our belief.

[Bur98a, p. 315]

In this Chapter, an account is given of our warrant for the simplest kind of
proof theoretic reflection principles, namely consistency. On the proposed view,
our warrant for believing in the consistency of a mathematical theory S that we are
already warranted to believe, need not be acquired by deriving the consistency of
S from a stronger mathematical theory. Instead, the warrant can be obtained by a
process of type 6 reflection that involves both entitlement and justificatory elements.
The main aim of the present Chapter is to describe this reflection process in some
detail. I will also explain how the proposed account can perhaps be generalised
to certain stronger proof theoretic reflection principles, such as the local reflection
principle.

8.1. The phenomenology of mathematical reflection

As mentioned earlier,1 the idea of implicit commitment seems to trace back to
Kreisel’s article [Kre60]. In later articles, Kreisel was more specific about what
he had in mind than in his earlier work. He argued that our warrant for proof
theoretic reflection principles derives from a process of reflection [Kre70, p. 489]:

The particular kinds of reasoning considered in the present lec-
ture can be roughly described as follows:
What principles of proof do we recognize as valid once we have
understood (or, as one sometimes says, ‘accepted’) certain given
concepts?
The process of recognizing the validity of such principles [. . . ] is
here conceived as a process of reflection; reflecting on the given
concepts, reflecting on this process of reflection, and so forth.
It is not assumed that every significant area of mathematics is
properly analyzed in this manner; not even all those areas which
may be described as: what is implicit in given concepts. For
instance, if the basic concepts involve a very high degree of self
reflection.

1See Section 7.1.
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He emphasised that in order to make progress on the kind of epistemological
questions with which we are concerned, a phenomenological description of the re-
flection process is needed [Kre68, p. 362], even though, like Feferman, he himself
did not provide one.2 In this Chapter, I will give a detailed phenomenological
description of the reflection process that can provide a warrant for belief in the
consistency of a theory that one already is warranted to believe. But it will be
a phenomenological description in a looser sense than the technical way in which
Husserl and his followers use the term. This process can yield a warrant for belief
in consistency, and somewhat stronger principles such as local reflection—or so I
will argue.

Reflecting on consistency is a process in time, consisting of three stages. The
reflective process contains two reflective acts, but it also contains argumentative
(i.e., justificatory) components.

In the process of reflection on consistency, to which we will turn shortly, the
reflective mathematician will not make use of non-mathematical concepts (such as
the concept of truth, for instance). Moreover, in the reflection process, the math-
ematician will not derive the consistency of the target theory from some stronger
mathematical theory that she comes to believe. For this reason, there will be no
leaching problem for the account that will be presented.

8.2. Innocence

I will presently tell a fictional tale about how you can acquire warrant for belief
in the consistency of a mathematical theory that you already warrantedly believe
without deriving the consistency statement. In my story, I draw upon concepts and
distinctions that have been explicated in previous chapters.

In this section, the starting point of the reflective process is described. In the
next section, we will see how the reflective process takes you from the starting point
to warranted belief in the consistency of the mathematical theory you started out
believing.

8.2.1. A cognitive project. I will be talking about you all the time in the
fictional tale that I am about to tell. But nothing hinges on this. You might as
well be a whole mathematical community for the purposes of the argument that
follows.

Suppose you are a mathematician. As a mathematician, you accept and believe
the axioms of Peano Arithmetic (PA). You do not accept them instrumentally or
provisionally; you accept them unconditionally, without any reservations. More-
over, you unreservedly rely on the inference rules of classical logic when you con-
struct proofs in your mathematical theory. You fully believe the theorems that you
prove in PA.3 This, as far as your mathematical work goes, is all that you uncon-
ditionally believe and accept. In this situation, you are disposed unconditionally to
believe all of (the classical closure of) PA and nothing more.

In particular, the consistency of PA is not something you currently believe or
are currently disposed to believing. Suppose that this disposition to believe, as far
as mathematics is concerned, all of PA and nothing more, has somehow come to

2At least, I do not think that [Kre68, p. 362] can be regarded as a phenomenological de-

scription of the relevant reflection process(es).
3So I will from now on often identify PA with the closure of its axioms under classical logic.
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be hard-wired in you. You are guided by an algorithm that produces all and only
PA-provable statements.

As a mathematician, you have an even deeper commitment to classical logic
than to PA. If you were to derive a contradiction in PA, then you would reject
some mathematical principles of PA rather than principles of classical logic.

Suppose that PA is in fact true. Moreover, assume in addition that you as
a matter of fact have epistemic justification for your belief in the axioms of PA.4

You may or may not know that you have, but you have. And suppose that your
justification for PA does not justify more than PA. In particular, suppose that it
does not justify the statement expressing the consistency of PA. (Otherwise our
task would be too easy.)

That such a situation is possible (for a theory such as as Primitive Recursive
Arithmetic, for instance) is argued for instance in [Dea15]. Indeed, we have earlier
seen an argument for this.5 Suppose we had a solid argument for the thesis that
for every recursively axiomatised theory T in the language of arithmetic, for you
fully and justifiedly to believe T, you would in addition have to have a justified
belief in the formalised consistency statement for T. Then it would follow that
for no recursively axiomatised theory T in the language of arithmetic, you could
be justified in believing T and no more than that. I.e., then as far as arithmetic
is concerned, your powers would outstrip those of any Turing machine. But it is
widely accepted that currently no such argument exists that carries conviction.

Insisting on restrictions on the kind of justification for the mathematical axioms
of PA would limit the scope of the philosophical account of reflection that I am
developing here, for there is no agreement about what justifies mathematical axioms
that we think we know. So I impose no restrictions on the kind of justification that
you have for the axioms of PA. Nonetheless, here is one example of a scenario
that has been entertained (and criticised!) in the philosophical literature. The
natural number structure is somehow given to you in intuition. You have justified
the axioms of PA, and only them, by verifying that they hold in this “standard
model”; you believe the axioms of PA on this basis.

The mathematical theory PA is then a fairly large scale cognitive project in
Wright’s sense of the word.6 It can be seen as an ordered pair:

〈questions expressible in the language of PA,proofs and refutations in PA〉.

Nothing hinges on the maximal mathematical theory that you unreservedly
accept and believe being PA; focussing on PA is mainly done for definiteness. The
analysis of the process of reflection on consistency that I am about to propose is in-
tended to have some generality: it is intended to apply to a variety of mathematical
theories.

8.2.2. The state of innocence. The consistency of PA is a cornerstone of
your cognitive project. Wright would say that your cognitive project presupposes
the consistency of PA.7

4Alternatively, we might suppose that you have some form of non-justificatory epistemic
warrant for your belief in PA.

5See p. 187.
6See Section 2.5.
7Earlier I have expressed uneasiness with Wright’s use of the term ‘presupposition’ in contexts

such as these: see Section 2.6.
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You trust PA, in the sense that was discussed in Section 2.7. This implies
that you rely on PA’s consistency even if you have never posed the question of
the consistency of PA to yourself. So the formalised consistency statement for PA
captures an aspect of your trust in PA [Fef62, p. 261].

Perhaps you deeply distrust philosophy, all distinctively philosophical concepts
and philosophical theories about them. In particular, you may not believe that there
is a concept of truth that you may legitimately use in your reasoning. Nevertheless,
if you were to discover that PA is inconsistent, then as a mathematician you would
(rightly) feel compelled to revise your mathematical commitments.

According to Davidson’s theory of meaning, such a state of innocence is im-
possible. In his view, the meaning of an object language sentence s is given (under
certain circumstances that we need not go into) by the Tarski-biconditional for
s in a metalanguage.8 This means that you know the meaning of s if you know
the Tarski-biconditional for s. But that means that in order for you to know the
meaning of any sentence, you must have a truth predicate in your language, as well
as a biconditional. In particular, then, in order for you to know the meaning of a
sentence of LPA, you must have a predicate expressing arithmetical truth, which is
not a purely arithmetical notion. But this just shows that Davidson’s view is im-
plausible, for a very young child understands very simple sentences (“Ball gone!”)
without having a truth predicate or a biconditional in her language. Indeed, I see
no cogent reason for rejecting your state of innocence, as I have described it, as
fundamentally incoherent.

The situation you are in satisfies Wright’s conditions for entitlement of cognitive
project:9 you have no reason to think that PA is inconsistent, and an attempt to
justify the consistency of PA would involve presuppositions in turn of no more
secure prior standing. So you are epistemically entitled to rely on the consistency
of PA. In other words, I am granting that your reliance on the consistency of
PA is warranted by an entitlement of cognitive project in Wright’s sense. Call the
situation that you are in at this point, i.e., before you start to reflect on your belief
of PA, the state of innocence.

The next question is: how can you come to be entitled to believe in the con-
sistency of PA? I will presently argue that you can come to be in this position by
reflecting on what you are relying on in your cognitive project. Indeed, there are
circumstances in which you can, by reflection, come to know the consistency of PA
without justifying a statement that expresses the consistency of PA.

8.3. From PA to the consistency of PA

In response to Kreisel’s challenge to provide a phenomenological description of
mathematical reflection, I now give a depiction of one specific three-stage mathe-
matical reflection process. This is done in the form of a fictional story, but I claim
that this is one way in which you can come to be warranted in believing in the
consistency of PA.

8.3.1. Belief de se. We have seen that in your pursuit of your cognitive
project, you are guided by an algorithm e that produces all and only PA-provable

8See [Dav67].
9See p. 55.
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statements. Against this background, stage 1 of the reflective process goes as
follows.

We may assume that presently you do not know, or even believe, that you are
guided by this algorithm e. But by reflection on your cognitive situation, you can
obtain beliefs about your cognitive predicament. You can come to believe that in
your mathematical work, you are disposed to believing what is provable in PA.
This reflective moment constitutes the first stage of the reflective process.

How does this happen? You consider all Peano axioms except the mathematical
induction scheme, and realise that you believe them (introspection). Concerning
the scheme of mathematical induction, you realise that your acceptance of instances
of mathematical induction does not depend on the particular formula for which it
is instantiated, but that you are disposed to accept all arithmetical statements that
have the form of a mathematical induction axiom. Similarly for the logical axiom
schemes, and the logical schematic rules. Then, by mathematical induction (in
a language that extends the language of arithmetic), you conclude that you are
disposed to believing all proofs in PA.

Observe that this does not mean that you have thus come to believe that you are
the algorithm e that was mentioned at the beginning of this subsection. You have
come to believe that what you are disposed to believe is a subset of the arithmetical
statements that are produced by e. I leave the question whether, and, if so, how,
you can come to believe that you are, as far as your mathematical work goes, the
Turing machine e and no more, for later.10

Note also that something fundamentally new has happened in stage 1 of the
reflective process. Up until just now, self-awareness was not involved in the tale.
You were as a matter of fact explicitly accepting all of PA, but you did not know
this.11 Now, however, you do, and this involves acts of self-consciousness. This
shows that the kind of reflection involved is somewhat similar to the examples of
reflection that the early modern philosophers—in particular the rationalists—were
occupied with, namely type 6 reflection.12

8.3.2. Expressing your trust. In the next phase, stage 2 of the process,
you come to see that you have been, and are, relying on the consistency of your
cognitive project. You make your implicit trust explicit. How? Not by ‘rational
intuition’, presumably, but rather by counterfactual reasoning.

You have recognised that, as far as mathematics is concerned, you are disposed
to believing what is provable in PA (stage 1 of the reflective process). You now
realise that if you were to derive a contradiction in PA, your commitment to your
cognitive project would collapse.

This counterfactual belief is acquired through a philosophical what if -considera-
tion, i.e., through a thought experiment argument. We saw earlier that Burge, like
Kant, regards such arguments as reflective arguments.13 We have resisted the
proposal to classify such argumentation forms as targeting the same concept of

10See Section 8.4 below.
11A structurally similar characterisation of the ‘state of innocence’ of the finitist when she is

working inside Primitive Recursive Arithmetic, is given in [Dea15, p. 53].
12See Chapter 3.
13See Sections 3.10 and 3.12.
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reflection that the rationalists had in mind.14 However, we now see that thought
experiment arguments can be key components in type 6 reflection arguments.

At this juncture, there are two courses rationally open to you. Either you revise
your commitment to your cognitive project, or you form a belief in the consistency
of PA.

Suppose, for a moment, that at this juncture you do not form a belief in the
consistency of PA, but instead remain agnostic about it. Then you can adopt an
instrumentalist form of belief of PA that is difficult to distinguish from what I
have called the state of innocence. You can resolve simply to continue with your
mathematical practice unless and until you find a contradiction in PA. In other
words, your acceptance of PA can be an acceptance as if PA holds rather than an
unqualified belief in PA.15

The reason why this kind of instrumental acceptance is hard to distinguish from
the state of innocence in which you unqualifiedly believe PA, is that you never will
find a contradiction in PA, and even if you do, you will revise your practice in pretty
much the same way as you would do if you had found the contradiction while in
the state of innocence.

Nonetheless, your instrumental acceptance of PA is not the same as your full
belief of PA in the state of innocence. Your instrumental acceptance is coloured by
what you now take to be an epistemic possibility and which would undermine your
cognitive project if it came to pass.

Concerning the doxastic aspect of your belief, it is admittedly logically possible
for you not to change your unconditional belief in each of the axioms of PA while
even at the end of the reflection process remaining agnostic about the consistency
of PA. But it would be irrational to do so. It would be irrational even on a ‘liberal’
conception of rationality. Recognising as an epistemic possibility a situation of
which you know that it would undermine your belief in the conjunction of the
axioms of PA, rationally compels you to have less than full belief in some of the
axioms of PA. For those who are sympathetic to theories of degrees of belief, the
problem can also be phrased in quantitative terms. When coaxed to describe your
mode of belief in quantitative terms, you give maximal credence to each axiom of
PA. Yet you recognise as an epistemic possibility a scenario in which PA would not
hold. This is irrational.

There are situations in which it is perfectly rational not to form a consistency
belief as a result of the reflection process, and to withdraw to less-than-full ac-
ceptance, such as the instrumental form of acceptance that was sketched earlier.
Suppose that your starting theory is not PA but standard set theory (ZFC), and
you come to realise by means of the reflective process that you are relying on the
consistency of ZFC, whereas you had not entertained the question of the consistency
of ZFC before. You may, in that situation, not be sanguine that finding a contra-
diction in ZFC will never happen, even though you do not at present have even the
vaguest inkling about how or where in set theory it might arise. (I know mathemati-
cians who find themselves in this state.) In this situation, you may simply revise
your unconditional belief of ZFC to a somewhat lower degree of acceptance. Your
acceptance of ZFC becomes more cautious (or guarded, or provisional) than full

14See Section 3.13.
15For a discussion of the relation between acceptance and ‘acceptance as if’ in the context of

empirical knowledge, see [vF80, Chapter 2, Section 3].
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belief, even though this change does not leave a visible trace in your mathematical
practice.

Suppose, however, that you maintain your unreserved commitment to your
cognitive project through to the end of the reflective process. Then, if you are
rational, you form an unqualified new belief: a full belief in the consistency of PA.
This concludes stage two of the reflective process. This belief formation process is
underwritten by an epistemic entitlement. As was argued earlier,16 in the light of
a liberal conception of rationality,17 we have an entitlement to reflection on what
we implicitly rely on or trust in.

Observe that this does not mean that you voluntarily decide to believe that PA
is consistent! If you come to believe in the consistency of PA in this way, then it
is not because you decide to do so: forming a belief is not a voluntary act.18

8.3.3. Arithmetisation. When you have arrived at this point, you have come
to believe that PA is consistent. This is a new belief. But you have not yet acquired
a new arithmetical belief. Nevertheless, a belief in an arithmetised consistency
statement for PA can be obtained by continuing your reflection process along the
following lines.

Presently you come to realise that, given a simple coding scheme, provability in
PA is expressed straightforwardly by an arithmetical predicate BewPA. This is also
not a straightforward process—it took the mind of Gödel to think this through.
Your reasoning goes roughly as follows.

You define some convenient computable coding p. . .q of terms and formulas
of the language of PA (LPA). You also construct a standard provability predicate
BewPA for PA.

You want to convince yourself that:

Thesis 8.1. For all ϕ ∈ LPA : PA ` ϕ⇔ BewPA(pϕq).

You do this by proving this statement by mathematical induction (on the com-
plexity of proofs). This statement relates syntax (symbols, terms, formulas) with
numbers via your coding scheme. So, formally, this is an argument by mathemat-
ical induction in a language that does not only contain the familiar arithmetical
vocabulary but also contains syntactic predicates and allows quantification over
syntactic entities. This process of arithmetisation of PA constitutes stage 3 of the
reflective process.

It is of course possible that you reject meta-syntactic reasoning: if so, then you
cannot carry out the proof of the statement. In this case, your reflective process will
have ended at stage two. But I will assume that you accept the basic meta-syntactic
reasoning required to prove the statement.

The point of spelling out what is involved in this argument in some detail is
seeing that philosophical or semantic notions (such as rational belief, or truth)
play no role in this reasoning. Moreover, and equally importantly, the theory in
which this argument is carried out, is proof theoretically conservative over PA:
for a proof of this fact, see [Nic13, Section 4.3]. So, in particular, the inductive
argument above does not result in circularity : in constructing this argument, you

16See Section 2.9.
17See p. 67.
18See p. 60.
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are not implicitly assuming a theory that is already strong enough to prove the
consistency of PA.

As a particular instance of the new belief that you have acquired, you find that
the consistency of PA is equivalent to the arithmetical statement ¬BewPA(p⊥q).19

You combine this belief with the outcome of stage two of the reflective process, i.e.,
with your belief that PA is consistent. Thus you come to believe a new arithmetical
sentence, i.e., ¬BewPA(p⊥q).

The assumption made at the beginning of this subsection, that you are using
a standard provability predicate, is crucial. For instance, suppose that you were to
formalise provability in PA instead as

BewPA(x) ∧ Con(ZFC),

where Con(ZFC) is a standard way of formalising the consistency of ZFC in arith-
metic. This new predicate would be co-extensive with the standard provability
predicate BewPA. But that this nonstandard arithmetical provability predicate
captures provability in PA can only be proved on the assumption Con(ZFC). How-
ever, if your process of reflecting on the consistency of PA required the consistency
of set theory as an assumption, then it would of course not give you, at the end of
stage three of the reflective process, a new entitled arithmetical belief. Similarly,
there are nonstandard provability predicates Bew∗PA such that already PA proves
¬Bew∗PA(⊥).20 Such provability predicates will not satisfy the Hilbert-Bernays
derivability conditions. As we have seen earlier,21 these requirements are seen as
adequacy copnditions that any bona fide provability must satisfy. In other words,
such non-standard provability predicates fall short of really expressing provability
in PA.

This concludes the description of stage three of the reflective process, which is
also the end of the reflective process as a whole. If it is at least roughly accurate,
then which epistemological lessons can we draw from it?

8.4. Cognitive work

If you rely on a presupposition of your cognitive project, and are entitled to do
so, then you are entitled to articulate what you are relying on in engaging uncon-
ditionally in your cognitive project. In this situation you are entitled to believe the
presupposition of your cognitive project. You have ‘warrant for nothing’ in Wright’s
sense, but—pace Wright—not just warrant for trust, but warrant for belief. In fact,
it is not completely accurate to describe the upshot as ‘warrant for nothing ’. You
have earned your epistemic warrant for believing in the consistency of PA by doing
cognitive work that carries cognitive risk. Nonetheless, the reflection process that
you have gone through is not a philosophical proof, nor an argument, nor a justifi-
cation for the consistency of PA. That you have not given independent justification
for the statement that expresses the consistency of PA is not an epistemic problem
for you: you did not need to.

The assumption, in the fictional tale, that you are justified in your belief in
the axioms of your starting theory PA to begin with (regardless of whether or not
you are aware that you are so justified), is essential: your epistemic entitlement

19‘⊥’ stands for your favourite contradiction.
20For a discussion, see [Fra04a, Section 12.2].
21See Section 3.8.
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to believe in the consistency of PA, and therefore also your entitlement to believe
¬BewPA(p⊥q), depends on your justification for believing the basic axioms of PA.
Suppose for a moment instead that your starting theory is not the mathematical
theory PA at all, but the teachings of a guru whom you have started to consult and
base your beliefs on, simply because you assume that he is holy.22 At some point
you become aware of the fact that you are relying on the guru, while you continue
to rely the guru in the same way as before. Then you form a belief in the reliability
of the guru, but you are not epistemically entitled to this belief.

We have seen that we do not have, in epistemology, anything like a clean
definition of Gettier cases. But we know that Gettier can strike in the domain of
mathematical beliefs as it can in other cognitive domains.23 You may derive, for
instance, a true statement from a false mathematical axiom that you are justified
in believing; then you are justified in believing the true statement, but you do not
know it. So having true justified belief in PA does not entail that you know PA,
and your true epistemic entitlement to believe ¬BewPA(p⊥q) does not entail that
you know this proposition.

But if you are not in a Gettier situation, then you have more than justified
true belief in the axioms of PA (and in theorems of PA): you know them. And
then, after your process of reflection, you have acquired more than an epistemically
entitled true belief in ¬BewPA(p⊥q): you know this proposition. You have acquired
knowledge of a cornerstone proposition of your cognitive project.

If your justification for the axioms of PA was a priori to start with, then the
epistemic entitlement of your belief in the consistency of PA will likewise be a priori.
The counterfactual reasoning that led you to believe that, in your cognitive project,
you presuppose the consistency of your practice, is a priori. In the first reflective
stage, you used an argument by mathematical induction. But if your justification
for the arithmetical instances of mathematical induction was a priori, then so will,
presumably, be your justification for applying mathematical induction to a formula
involving the predicate ‘I am disposed to believing x’ (where x is an arithmetical
sentence). Something similar can be said about the third reflective step. If your
justification for the arithmetical instance of mathematical induction was a priori,
then so will be, presumably, your justification for applying mathematical induction
for a formula involving syntactic predicates.

In the course of your reflective process, you have done justificatory work. You
might wonder if the theories in which these justificatory arguments are implicitly
carried out, do not already entail the consistency of PA. If so, then your reflective
process were circular.

But these worries are unfounded. The inductive argument in stage one is clearly
carried out in a theory that is conservative over PA.24 For the inductive argument
in stage three this is slightly less straightforward, but we have seen that it is also
carried out in conservative extension of PA.25

You can, of course, object to the mathematical induction argument in stage
three, perhaps because you are loath to use predicates that are not fully arithmetical

22This example was suggested to me by Cezary Cieśliński.
23See Section 1.1.
24More precisely, it is carried out in PA formulated in an extended language, with the induc-

tion axiom applying to the extended language.
25See Section 8.3.3.
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in the induction axiom. If this is your view, then your reflective process ends at
the end of stage two at the latest, and you do not acquire a fundamentally new
arithmetical belief. Nonetheless, if your reflective process carried you to the end of
stage two, you have still acquired a fundamentally new entitled belief: the belief
that PA is consistent. You can also object to the mathematical induction argument
in stage one. In that case, you do not bring yourself to a belief in the consistency
of PA by an reflective argument along the lines that I have sketched.

At the end of your reflective process, you have not derived ¬BewPA(p⊥q) from
more fundamental mathematical and/or philosophical principles. An essential mo-
ment of entitled belief formation occurs at the moment in stage two where you
form a belief in the consistency of PA while maintaining your unreserved accep-
tance of PA. This is a cognitive act for which you provide no justification. But, in
the circumstances you are in, you are epistemically entitled to proceed in this way
(entitlement to reflection).

I take all this to be a vindication of the implicit commitment thesis. But my
epistemological analysis does not constitute evidence for Feferman’s strong inter-
pretation of the implicit commitment thesis, according to which one ought to accept
proof theoretic reflection principles for any mathematical theory that one uncondi-
tionally accepts. Throughout the reflection process, I have assumed van Fraassen’s
‘liberal’ conception of rationality. In accordance with this view of rationality, I
maintain that it would not be irrational for you to refrain from following the re-
flective process of Section 8.3 through to the glorious end. I am not claiming that
objecting to the inductive argument in stage three, or even to the more elementary
inductive argument in stage one, would be irrational. At the point when you re-
alise that you have been relying on the consistency of PA, you are also rationally
permitted to choose not unconditionally to rely on PA in the future and to revise
your initial beliefs instead.

Moreover, going through the reflection process described in Section 8.3 is of
course not the only way of coming to know ¬BewPA(⊥). To illustrate this, let
us briefly go back to the (admittedly somewhat naive) scenario that was briefly
sketched in Section 8.2.1, where you have verified that the axioms of PA hold in
the ‘standard model’. Instead of going through the reflection process described
above, you might go on to argue by mathematical induction, using a Tarskian
compositional notion of truth, that all theorems of PA are true, and that therefore,
since ⊥ is not true, PA must be consistent.26 In this way, you might obtain justified
(and not merely entitled) belief in ¬BewPA(⊥). Or you might verify that the
axioms of second-order number theory hold in the ‘intended model’, and derive
¬BewPA(⊥) from them. Indeed, it is well-known that in this way the scope of
mathematical knowledge can be extended in much more dramatic ways than by
iterated consistency extensions.

It is also not part of the thesis defended in this Chapter that the implicit
commitment of PA is exhausted by the reflection process discussed in Section 8.3.
All I claim is that going through this reflection process is one way of coming to
know ¬BewPA(⊥).

The interest of this particular reflection process is epistemological. It consti-
tutes a hitherto unexplored way of acquiring epistemic warrant for mathematical
statements that are independent of your beliefs. It is fundamentally different in

26Cfr infra: Section 9.3.
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nature, for instance, from your epistemic warrant for adopting a new mathematical
axiom.

When you reach the end of your reflective process, you have come to know a
fundamentally new arithmetical statement: ¬BewPA(⊥). But you have not come
to know that it is fundamentally new, i.e., that it was not accessible to you in your
state of innocence. This is because, in the first stage of the reflective process, you
come to believe that what you are disposed to believe (as far as your mathematical
work goes), includes PA, not that it coincides with PA.

In the state of innocence, you essentially “are” a Turing machine e that enu-
merates PA. You can acquire the first person knowledge that you are, insofar as
mathematics is concerned, the machine e.27 How can you come to know that as
far as arithmetic is concerned, you are e? It does not happen by intuition or di-
rect introspection (unless the meaning of those terms is stretched). All you have
to go on is a finite set of examples of mathematical axioms that you believe, and
theorems that you have come to believe by deriving them from the axioms using
classical logic. Extrapolating from this finite collection of examples, you form the
hypothesis that you are guided by e, and you come to believe this hypothesis. You
are using some form of ampliative reasoning: we may call it abduction.

Your abductive argument is clearly fallible. We may suppose, however, that
in this instance, you not only arrive at a true conclusion, but that in addition
you are justified in believing this conclusion on the basis of your abductive con-
siderations. That abductive arguments sometimes lead to justified beliefs is fairly
widely accepted. But there is no consensus among epistemologists on how abduc-
tive arguments can generate justified beliefs. I have nothing to contribute to this
large epistemological debate except to say that some reliabilist account is probably
called for. This should not, however, be taken to imply that this reliabilist story
must then account for all forms of knowledge. Indeed, it is perhaps doubtful that
the very same epistemological story that accounts for abductive reasoning will also
account for your knowledge of the axioms of PA.28

You might worry that it might not be possible for you to know that, as far
as your mathematical work goes, you are a Turing machine. Lucas and Penrose
have famously argued that it is not even possible for you to be, as far as your
mathematical work goes, a Turing machine. But, as mentioned earlier, it is widely
held that their arguments are unpersuasive. Reinhardt has argued that, as far
as your mathematical work and your knowledge of your own work goes, for every
Turing machine e, you cannot know that e enumerates what you know [Rei85,
Theorem 5].29 Reinhardt’s purported counterexample is a sentence that is produced
by a simple diagonal argument; it contains the predicate ‘knowledge’ (or, to be more
precise: ‘absolute provability’), which expresses a non-mathematical concept. But
here we are concerned only with your (true and justified) arithmetical beliefs. In
this context, therefore, Reinhardt’s considerations do not apply.

Despite all this, you may nonetheless be sceptical about the abductive argument
given above. This would (again) not make you irrational; it would just mean
that you have not come to know that the new consistency beliefs that you have

27A brief discussion of this reflective can be found in [Fra04a, p. 216].
28See Section 1.1.
29Carlson later showed that the Benacerrafian hypothesis ([Ben67] that you are a Turing

machine but you don’t know which one, is consistent [Car00].
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acquired in the reflective process described in section 8.3 are fundamentally new.
The abductive argument that I have described in this section is empirical in nature.
For this reason, it is not clear if along the lines that I have sketched you can come to
have a priori knowledge that you have acquired a fundamentally new arithmetical
belief.

8.5. Ramifications

In Section 8.2, I took PA as the starting point of the reflection process described
in the Section thereafter. But the account that I have given in the previous Sections
aims at being fairly generally applicable. Since inductive arguments play a role in
the reflection process, the starting theory must contain a modicum of mathematical
induction. So my account of reflection on consistency does not apply to very weak
starting points, such as Robinson’s Q, or Primitive Recursive Arithmetic. But it
does apply to situations where certain other fragments of PA are started from, and
it applies to all supertheories of PA, such as second-order PA or ZFC. In particular,
the account given in the previous sections applies to the situation where the starting
theory is our most encompassing mathematical theory. The account of reflection
intends to show that even for that theory, we can come to know its consistency
without deriving it from stronger principles.

In Section 7.3, I did not object to Dean’s claim that finitism is an epistemically
stable position in the foundations of mathematics. Moreover, as we have seen, it
has been argued that accepting all of PA and no mathematics that goes beyond it
is likewise a stable position [Isa87], and so is Fefermanian predicativism. How are
such claims compatible with the argument that was developed in Section 8.3? After
all, in that Section a reflection process is described by means of which someone who
accepts all and only the principles of PA can come to know that PA is consistent.
In addressing this question, I will now concentrate on finitism because this position
has received a fair amount of attention in recent literature.30

Tait has argued—convincingly, in many scholars’ view— that the extension of
finitistically acceptable mathematics is captured by the system of Primitive Recur-
sive Arithmetic [Tai81]. He also pointed out that the outer limits of finitism can
only be seen from a vantage point that is external to finitism proper [Tai81, Sec-
tion IV].31 This does not make finitism internally unstable. Locally, the finitist can
see of every proof principle of Primitive Recursive Arithmetic that it is justified.
But she has no way of verifying that only the proof principles that are included
in Primitive Recursive Arithmetic are legitimate. Indeed, such a claim involves a
general concept of function, which the finitist does not have [Dea15, p. 53].

This means that the finitist does not accept all the steps of the reflection process
that are described in Section 8.3. For instance, she will not accept the inductive
argument in the first stage of the reflective process. After all, such an inductive
argument is not a finitist proof!32 (The same holds, of course, for the inductive
argument in stage three of the process.) In accordance with the ‘British’ conception

30See for example [Par07, Chapter 7], [Dea15].
31See also [Dea15, Section 4.1]. Something similar can be said about Feferman-style

predicativism.
32She could, however, come to believe that she is a “Primitive Recursive Arithmetic-machine”

by abductive means. In that case, she could come to have an entitled belief in the consistency of
Primitive Recursive Arithmetic. But, again, refusing to engage in the relevant abductive reasoning
would not make her irrational.
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of rationality,33 I maintain that thus refraining to accept some of the steps in the
reflective process of Section 8.3 does not make the finitist irrational. It is in this
sense that I wholeheartedly concur with Dean’s thesis that, at least for all that
what is said in this Chapter, finitism is an epistemologically stable position.

Nonetheless, excessive caution is a sin against reason. Perhaps the Hilbertian
finitist is guilty of exactly this. After all, one will be hard pressed to find more
than a handful of respected mathematicians or philosophers of mathematics living
today who are finitists in Hilbert’s sense of the word. But to argue for this thesis
would take us too far afield, so I will not pursue this further here.

In the light of the foregoing, what becomes of Feferman’s view of implicit
commitment that was discussed in Section 7.1?

Recall that Feferman describes what one is implicitly committed to when one
believes a mathematical theory T1 as “what one ought to accept, on the same
fundamental grounds, when one accepts L1” [Fef88, p. 131]. Moreover, he holds
that uniform reflection for T1, and hence a fortiori also the consistency of T1,
belongs to the implicit commitment of T1.

First of all, it should by now be clear that in my view, the phrase “ought to
accept” is too strong in this context; it should be replaced by “can rationally come to
believe”.34 Secondly, the expression “on the same fundamental grounds” is, strictly
speaking, an overstatement. A mathematical reflection process of the kind that
we have discussed is complicated, and it constitutes an intellectual achievement.
It is true that in the course of your reflective process, you have not deduced the
consistency of PA from more fundamental principles: the crucial moment of belief
formation is one of epistemic entitlement rather than of justification. Yet we have
seen in Section 8.4 that grounds are involved in the process that exceed what is given
by PA: mathematical induction in an extended language, and a thought experiment
(“what if I were to derive a contradiction in PA?”). So the implicit commitment of
a mathematical theory T1 should in my view rather be described as what one can
rationally come to believe when one reflects on one’s belief in T1.

8.6. Strengthenings?

Let us turn to the question whether something like the reflection process in
section 8.3 can result in warranted belief in proof theoretic reflection principles
stronger than consistency. Clearly, the crucial question here is whether our de-
scription of the relevant counterfactual reasoning process35 in stage 2 would then,
mutatis mutandis, go through.

We have seen that the consistency statement, which is our weakest reflection
principle, takes the form:

If 0 = 1 is provable in my practice (PA), then 0=1.

Local reflection, which is the next strongest reflection principle that we have con-
sidered, is the scheme that is obtained when in this consistency statement, we allow
0 = 1 to be replaced by any arbitrary closed arithmetical formula ϕ.

Let us first consider the case where ϕ is some concrete ∆0 arithmetical sentence,
so that either ϕ or ¬ϕ is provable in your mathematical practice. I will argue that

33See p. 67.
34The “liberal” interpretation of implicit commitment that I am adopting here is also sug-

gested in [Fuj11, p. 915].
35See Section 8.3.2.
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in this situation, the process of reflection goes through pretty much as in Section
8.3.

Consider first the case where ϕ is true. Then ϕ is provable in your mathematical
practice, from which you derive by logic:

If ϕ is provable in PA, then ϕ.

So this case is unproblematic. (Observe that since ϕ is a concrete arithmetical
statement, you do not need, in your reasoning process, to use the concept of truth.)

Now consider the case where ϕ is not true. Then in your arithmetical practice,
you prove ¬ϕ. In this situation, you ask yourself:

What if also ϕ is provable in your practice?

Then, again, as a mathematician, you find yourself at the epistemic crossroads
that we are by now familiar with. There are only two rational ways to proceed:
either you revise your acceptance of PA, or you accept the statement that ϕ is not
provable in your practice. In the latter case, you have accepted the instance for ϕ
of Rfn(PA). (Again, you do not use the concept of truth in your reflection process.)
Since the above argument goes through for any concrete ∆0 arithmetical sentence,
we may conclude that the reflection process can result in explicit acceptance of any
instance of ∆0-Rfn(PA). In this sense, ∆0-Rfn(PA) is “implicit” in PA.

Next, let us look at more complicated instances of Rfn(PA). Suppose in par-
ticular that ϕ is independent of your pre-reflection mathematical practice. For
definiteness, but without loss of generality, take ϕ to be the Paris-Harrington sen-
tence.36 In this case, I will argue, the situation is more complicated.37

Of course we again focus on the relevant bit of counterfactual reasoning. In
the case of consistency, you asked yourself a straightforward, simple counterfactual
question. But now, in the case of local reflection, you have to ask yourself the
following slightly more complicated, conjunctive question:

Might I be able to prove ϕ in my mathematical practice,
while at the same time ¬ϕ?

The second conjunct is now really needed in this question. Unlike in the case of
consistency or ∆0-Rfn(PA), since ¬ϕ is independent, it cannot be proved in your
pre-reflection theory. Thus be taken for granted, but must be explicitly mentioned
in the counterfactual question.

We observe that, as before, the concept of truth is not used in this what if -
question. Nonetheless, arguably the counterfactual question at issue here can only
be properly understood by a mathematician who has at least the beginnings of a
concept of truth. It can only properly be understood by you if you are at least
open to the possibility that an arithmetical sentence—the sentence ¬ϕ, in the
question at hand—is not always equivalent to its provability in your practice. If not,
then your question collapses into the counterfactual question that is at the heart
in reflecting on consistency. This stands in contrast to the earlier counterfactual
question concerning the provability of contradictions. That question is properly
understandable by any mathematician, for you cannot be a mathematician without
having a passable concept of mathematical proof.

36See [PH77].
37I am indebted to Hannes Leitgeb for insightful suggestions concerning this matter.
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This being said, if you are able to pose the relevant counterfactual question to
yourself, then it seems to me that you find yourself, as before, at a rational cross-
roads: answering the counterfactual question in the affirmative whilst maintaining
your full acceptance of PA, would be irrational. In this situation, it seems to me
that the reflection process of Section 8.3 can lead to rational belief in any instance
of Rfn(PA).

The situation for uniform reflection is still more complicated. It seems hard
to see how someone who does not even have a proto-concept of truth can even
ask himself the relevant counterfactual question, which is (for ϕ an arithmetical
predicate):

Might there be a natural number n such that I can prove ϕ(n),
while at the same time ¬ϕ(n)?

But in the counterfactual question, the concept of truth does not explicitly ap-
pear. And if the question makes proper sense to you, then it seems pragmatically
incoherent to answer it in the affirmative whilst leaving the acceptance of your
pre-reflection theory unchanged.

The case of global reflection is completely different. In stage 2 of the relevant
reflection process, the pertinent counterfactual question is:

Might there be an arithmetical sentence that I am able to prove (in PA),
but that is at the same time not true?

Here you need to quantify over an infinite collection of sentences in a way that
requires a concept of truth. So to go through this reflection process, you must have
a truth predicate in your vocabulary. And having a concept of truth goes beyond
your purely mathematical commitments.

Now it could be that the required truth concept can somehow be obtained
by reflecting on your mathematical practice. Indeed, it might be that also new
concepts can be implicit in theories that a mathematician already accepts.38 For
instance, even though the general concept of well-ordering is Π1

1-complete, small
transfinite wellorderings can be defined in arithmetic. Hence perhaps it can be
argued that at least a fairly weak concept of transfinite ordinal is “implicit” in
arithmetic. Similarly, perhaps, even though the concept of arithmetical truth is
arithmetically undefinable, nonetheless a form of arithmetical truth is “implicit” in
arithmetic.

This line of reasoning seems to be at least hinted at by Halbach in his textbook
on axiomatic truth [Hal11, p. 324–235]:

[T]he explicit endorsement of Peano arithmetic seems to bring
an implicit commitment to principles (such as consistency) that
cannot be proved in Peano arithmetic, but it also brings com-
mitment to further conceptual resources, namely soundness and
truth, that cannot be formulated in the language of arithmetic.
At least, this will be the case if one agrees with the usual moti-
vation of proof-theoretic reflection principles, according to which
commitment to the soundness of Peano arithmetic is implicit in
the acceptance of this theory. For the global reflection principle
is the source of all the reflection principles that can be formulated
in the language of arithmetic.

38Cfr infra, Section 9.2.
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This line of thought is intriguing. But it needs to be developed in more philosophical
detail, and this is a non-trivial task. In particular, we presently lack a compelling
philosophical argument for the thesis that it is irrational to accept Peano arith-
metic while remaining sceptical or agnostic about the acceptability of a concept
of truth and basic principles (such as typed disquotational axioms) that govern its
behaviour.

One main question here is how strong the concept of truth is that the reflector
carries into the reflection process. If she accepts the compositional truth axioms,
and if, as required by the reflection process, her acceptance of mathematical induc-
tion is open-ended, then she can already justify global reflection for PA.39 If that
is so, then there is no need for her to reflect on her acceptance of PA. In order
to avoid this form of circularity, it is preferable that the reflecting mathematician
starts out not with a compositional, but with a disquotational conception of truth.
This suggests that we look into the philosophical ramifications of the connections
between reflection principles and disquotational truth. This theme will be explored
in the next Chapter.

Summing up, we may conclude that the processes of reflecting on consistency
and reflecting on stronger proof theoretic reflection principles are, from an epistemic
point of view, significantly different. Any mathematician is capable to go through
the former reflection process. But as the reflection principles get stronger, more
conceptual resources are needed to carry out the relevant reflection process.

8.7. Burge revisited

In Section 3.12, we saw how Tyler Burge argues that the rationalist philoso-
phers from the early modern period attribute three cardinal properties to reflection
[Bur13d, p. 535–537]:

(1) In reflection an individual brings to articulated consciousness steps or
conclusions that are implicitly present, subliminally or unconsciously, in
the individual’s mind before reflection.

(2) Reflection can yield a priori knowledge of objective subject matters, be-
yond thoughts that the reflector is engaging in.

(3) Successful reflection requires skilful reasoning and is difficult: it is not a
matter of one-off introspection or intuition.

We also saw that Burge agrees with Theses 2 and 3, but disagrees with Thesis 1.
Burge was, however, not only concerned with what we have called type 6 reflec-

tion, which is the type of reflection that early modern philosophers were primarily
concerned with. As we saw in Section 3.13, Burge’s conception of philosophical
reflection also includes certain kinds of conceptual analysis, as well as philosophical
thought experiment arguments. Although Burge’s arguments also provide confir-
mation for Thesis 3 and disconfirmation for Thesis 1 if only type 6 reflection is
at issue, his arguments for Thesis 2 rest on examples that we do not recognise as
type 6 reflection. For this reason, Burge’s arguments for Thesis 2 do not carry
conviction.

The reflection process that was discussed in the present chapter is a clear case
of type 6 reflection. After all, in stage 1 of this process40 you obtain beliefs about

39See [Hor11, Theorem 30, p. 76].
40See Section 8.3.1.
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your own cognitive state by considering your own doxastic commitments. Moreover,
it is not a case of simple introspection,41 since discursive elements play a crucial
role in all three stages of the process.

In the present Chapter, then, Theses 1, 2, and 3 can be taken to have been
subjected to a test by applying them to a concrete example of type 6 reflection in
the foundations of mathematics, viz., reflection on implicit commitments associated
with the acceptance of mathematical theories. I claim that the process involved in
proof theoretic reflection is in accordance with what Burge regarded as the cardinal
properties of philosophical reflection.

First, the reflective movements do not consist in drawing to the level of your
consciousness representations that were already vaguely and subconsciously present.
The beliefs that you form in reflection were not indistinctly, subliminally, or sub-
consciously, present in your mind in any way before the acts of reflection. This
constitutes additional evidence against Thesis 1 for type 6 reflection.

Secondly, reflection is a complicated process indeed. I have concentrated on
the simplest form of reflection, and the story already has a significant degree of
epistemological complexity. It is even more complicated when we focus on stronger
reflection principles. This constitutes additional evidence for Thesis 3 for type 6
reflection.

Thirdly, reflection on what you explicitly accept can yield not only be new
justified beliefs, but even new knowledge. Moreover, this new knowledge can be a
priori.

Lastly, and most importantly, in the reflection process that we have described,
you have acquired knowledge not just about your mind or your commitment. You
have acquired new knowledge about the world outside your mind, viz., the world of
numbers. The statement ¬BewPA(⊥) is, after all, a purely arithmetical proposition.
Of course this assumes that the reflection process includes stage 3.42

The considerations of the present Chapter, which go somewhat beyond the
arguments that Burge has given for his stance, therefore indicate that Burge’s
stance concerning the three cardinal Theses on philosophical reflection are correct
even if only type 6 reflection is intended.

We have seen that beside type 6 reflection, counterfactual reasoning plays a cen-
tral role in the reflection process that we have considered. Such instances of coun-
terfactual reasoning are closer to the Putnamian thought experiments that Burge
lists as instances of reflection. We have earlier labeled such reasoning processes as
“type 8 reflection”,43 even though it has to be recognised that most philosophers
do not see such reasoning processes as instances of reflection in a technical philo-
sophical sense at all. At any rate, this shows that type 6 reflection mostly shows its
strength only when it operates in combination with other distinctly philosophical
ways of reasoning. It makes little sense to speak of the force of type 6 reflection on
its own.

41See Section 3.8.
42See Section 8.3.3.
43See p. 95.





CHAPTER 9

Truth, Justification, Reflection

The previous Chapter discussed the force of reflection in purely mathematical
contexts. In this Chapter, we investigate how reflection principles can be justified on
the basis of non-mathematical concepts and arguments. We consider philosophical
arguments for reflection principles that use the concept of truth; to a lesser extent,
we consider how reflection principles can be argued for by using epistemic notions.
Attempts to justify proof theoretic reflection principles using the concept of truth
arose naturally in this context, because Global Reflection, which is the Ur-reflection
principle (in the proof theoretic sense), contains the concept of truth. Towards the
end of this Chapter, we also discuss strategies for justifying set theoretic reflection
principles.

9.1. Types and principles of infinity

In the previous Chapter, we explored a particular form of epistemic reflection
as one possible way of reaching warranted belief in a stronger mathematical theory
from a starting point of warranted belief in a weaker mathematical theory. The
“engine” in this reflection process is implicit commitment, and we have seen that
this reflective process is iterable. Nonetheless, we have also seen that the strength
of such a reflection process is probably relatively modest: it consists at best in
iterating local reflection on a starting theory S a number of times. But there are
stronger systematic engines for boosting the strength of the mathematical theories
that one has warranted belief in, as we will now see.

Suppose that our starting theory is a standard arithmetical theory, such as PA.
This theory is formulated in the framework of classical first-order logic, where the
quantifiers range over the domain of discourse (the natural numbers). In second-
order logic, we also have quantifiers ranging over properties of natural numbers.
These properties are interpreted extensionally, so in effect these new quantifiers
range over sets of natural numbers. The new quantifiers are governed by natural
analogues of the logical rules for the first-order quantifiers, plus a comprehension
scheme for properties of numbers. When we move from first-order logic to second-
order logic as our framework for arithmetic, we also replace the first-order mathe-
matical induction scheme by the second-order mathematical induction axiom, and
reach the theory PA2, which is a strong and natural second-order arithmetical
theory.1 We can extend our logical framework further, by adding quantifiers that
range over properties of properties (or: sets of sets) of natural numbers, and reach
the standard theory of third-order arithmetic PA3. Then we can go on, iterating
this process further, possibly into the transfinite—but we will restrict ourselves to
finite levels of the type hierarchy in what follows.

1See Section 4.1.4.
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Expanding the framework from n-th order logic to n + 1-th order logic is a
larger step than extending the theory by proof theoretic reflection principles or by
strengthening induction. Indeed, we have seen that PA2 proves long iterations of
uniform reflection applied to PA.2 In a similar way, the higher-order theory PAn+1

will prove long iterations of uniform reflection applied to PAn. In the early 1930s,
Gödel describes this process of climbing up Russell’s type theoretic hierarchy as
follows [Göd33b, p. 48]:3

For any formal system you can construct a proposition—in fact
a proposition of arithmetic integers—which is certainly true if
the system is free from contradiction but cannot be proved in
the given system. Now if the system under consideration (call
it S) is based on the theory of types, it turns out that exactly
the next higher type not contained in S is needed in order to
prove this arithmetic proposition, i.e., this proposition becomes
a provable theorem if you add to the system S the next higher
type and the axioms concerning it.

The question whether proceeding from PAn to PAn+1 might be warrant-
preserving has received much attention in the twentieth century. For definiteness,
let us concentrate on the transition from PA to PA2. Then the questions to consider
are:

(1) Is the second-order induction axiom warranted?
(2) Is the second-order comprehension scheme warranted?

Kreisel has argued that the first question should be answered in the affirmative.
He proposed the general principle that our warrant for being disposed to believe
in each instance of an axiom scheme derives from our warrant for believing the
next-order single-sentence uniformisation of the scheme. In particular, concerning
the relation between the first order mathematical induction scheme and the second
order mathematical induction axiom, Kreisel writes [Kre67, p. 148]:

A moment’s reflection shows that the evidence of the first order
axiom schema derives from the second order axiom [. . . ]

This idea is implemented in subsystems of second-order arithmetic.4 It will play a
role in discussions later in this chapter.5

The second question asks which formulas define properties of natural num-
bers. It has been discussed extensively in the twentieth century, and we will
not go deeply into this discussion here. Some have argued that because the full
second-order comprehension principle6 allows second-order quantifiers in the for-
mula ϕ(x), it is somehow viciously circular. These foundational thinkers—Weyl,
for instance—argue that only predicative second-order theories, such as ACA, are
warranted. Others—Gödel, for instance—have argued that every formula of the
extended language determines a property of the natural numbers. Indeed, the full

2See Section 6.2.
3Gödel clearly saw this scenario already when he proved his incompleteness theorems: see

[Göd31, footnote 48a].
4See Section 4.1.4.
5See Section 9.4.
6See p. 110.
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second-order comprehension scheme has, at least so far, not led to seemingly unto-
ward consequences—certainly not to contradictions!—and predicative restrictions
on properties of sets are not respected in mathematical practice.

How far does the type hierarchy continue? In the 1920s, closure principles for
the levels of the hierarchy came to be seen as mathematical questions that should
follow from mathematical axioms. Such closure principles are contained in the first-
order axiomatisation of set theory that we are all familiar with. ZFC contains an
internalisation of the process of going to ever higher types. It postulates very large
infinite ranks that correspond to levels of the type hierarchy.

We started the type theoretic hierarchy from the first-order theory PA. But now
we we have reached a much stronger first-order theory, ZFC, which can be taken as
a new starting point. As in the case of PA, we can now move to second-order ZFC
(ZFC2), third-order ZFC, and so on. Formally, it is completely unproblematic to
generate a new type theory in this way. In particular, as before, ZFCn+1 will be
proof-theoretically stronger than ZFCn. Indeed, ZFCn+1 will prove long iterations
of uniform reflection over ZFCn.

But from an interpretational point of view, matters are much less straightfor-
ward. Earlier, we took the second-order quantifiers to range over sets of elements
of the first-order domain. But the domain of discourse of ZFC is expected to con-
tain all the sets there are. So how should the second-order quantifiers of ZFC2

be interpreted? This is again a question that has received much attention, and we
cannot do justice to the discussion here. We will return to it later in this Chapter.7

Assume, then, at least for the sake of argument, that we are warranted in be-
lieving the axioms of ZFC (and perhaps even of ZFC2). Then, using the reflection
process that was discussed in the previous chapter, we might furthermore come
to have warranted belief even in modest iterations of local reflection applied to
ZFC. Might warranted belief in even stronger mathematical theories somehow be
obtained?

There are indeed other ways of mathematically strengthening mathematical
theories. Peano Arithmetic is obtained from Robinson’s system Q by adding the
mathematical induction scheme. Zermelo’s set theory was massively strengthened
in the 1920s by adding the replacement scheme. Ways of strengthening ZFC have
also been proposed.

Gödel suggested very early on that set theory can be strengthened by adding
strong axioms of infinity, also known as large cardinal axioms. In set theory ,adopt-
ing axioms of infinity takes the place of movings to higher types [Göd32, p. 237]:

In case we adopt a type-free construction of mathematics, as is
done in the axiom system of set theory, axioms of cardinality
(that is, axiom postulating the existence of sets of ever higher
cardinality) take the place of type extensions, and it follows that
certain arithmetic propositions that are undecidable in Z become
decidable by axioms of cardinality [. . . ]

For most (first-order) large cardinal axioms I, the theory ZFC+I proves (first-
order) statements that ZFC2 cannot prove. On the other hand, ZFC2 proves
statements that ZFC + I cannot prove for the simple reason that ZFC + I does
not prove any second-order statements. So, strictly speaking ZFC + I and ZFC2

7See Section 9.8.
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are incomparable in strength. But in a weaker sense, ZFC + I is the stronger one,
for it will usually prove the consistency of ZFC2.

We have seen that the hierarchy of large cardinal principles is linear. But it
is less systematic than the type hierarchy. On the one hand, most of the large
cardinal principles have a characterisation in terms of elementary embeddings. On
the other hand, the motivation behind different large cardinal axioms differs. And
there is never a guarantee that significantly stronger consistent and warranted large
cardinal principles can always be dreamt up. Forcing axioms are a very different
way of strengthening our set theoretic axioms. But here, too, we have at the
moment no hierarchy of warranted forcing axioms of ever-increasing strength.

From the axiom that all sets are constructible (V = L), most interesting set
theoretic questions can be decided. Unfortunately, the axiom V = L is incompati-
ble with the existence of a measurable cardinal. For this reason, most set theorists
believe that it is false. Woodin’s Ultimate-L programme8 is an attempt to iden-
tify V with an L-like structure (“Ultimate-L”) containing all large cardinals that
are thought to be consistent with ZFC, and which is such that a natural theory
describing it still decides most interesting set theoretic problems. Unfortunately,
Woodin’s programme has been stuck for some time: “no L-like” models for super-
compact cardinals have yet been found.

Wang reports that Gödel believed that all large cardinal axioms can be derived
from reflection principles [Wan96, p. 285]:

Generally I believe that, in the last analysis, every axiom of infin-
ity should be derivable from the (extremely plausible) principle
that V is indefinable, where definability is to be taken in [a] more
and more generalized and idealized sense.

Moreover, Gödel held out the hope that also the most recalcitrant problems lower
down in the hierarchy can be decided using large cardinal axioms.9

Both of these beliefs are debatablel, however. Firstly, we know since the 1960s
that large cardinal axioms do not check the ability of the forcing technique to change
the cardinality of power sets almost at will.10 So it seems that not all interesting
questions concerning lower ranks can be decided by extending the rank hierarchy
ever further. Secondly, we have seen earlier that the theoretic reflection principles
that currently are most widely supported at most reach to the realm of 1-extendible
cardinals.

In addition, we must face the question: what reasons do we have that ontological
reflection principles are true? This is a question which set aside for now: we will
occupy ourselves with it later in this Chapter.

In sum, at present the possibility cannot be excluded that our attempts to
reduce set theoretic incompleteness by new set theoretic axioms reaches an end
point S. Using the proof-theoretic reflection processes described in the previous
Chapter we may then get “an epsilon” further and reach a warranted theory S + ε
“in the limit”.

8See [Woo17].
9See [Göd47].
10See [LS67].
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9.2. Implicit commitment of concepts

In the philosophical literature on implicit commitment, authors often speak
about implicit commitment of theories. But we have seen earlier that authors
sometimes also speak of implicit commitment of concepts.11 Thus the question arises
whether theoretic implicit commitment should be distinguished from conceptual
implicit commitment. It is notable that the pioneers of proof theory do not seem
to distinguish clearly between the two.

Roughly, the notion of implicit commitment of concept has its roots in the
work of Gödel, who, I suspect, influenced Kreisel’s views about these matters.
The notion of theoretical implicit commitment is more prominent in the work of
Feferman, except perhaps in his later work on implicit commitment, which seems
to be more connected to a form of conceptual implicit commitment.

At first blush, commitment to proof theoretic reflection principles appears to
be a form of theoretical implicit commitment, for it springs from accepting what
is proved by a formal theory. Commitment to predicative fragments of arithmetic,
and to truth theories appear to be instances of conceptual implicit commitment,
for they spring from the acceptance of concepts (definability, truth).

Moreover, there is an important difference between commitment to fragments
of second-order arithmetic on the one hand, and commitment to truth principles on
the other hand. The former is ontologically non-conservative, whereas the latter is
only ideologically non-conservative. Observe, incidentally, that the transition from
accepting certain predicates to accepting certain collections can be resisted. Quine,
for instance, always objected to reification of meaningful predicates to abstract
denotata (classes, properties) that are allowed in the range of quantifiers and thus
acquire ontological rights. Indeed, there is probably no uniform attitude that one
should have towards questions of reification or hypostasis. Agreeing with Weyl
that the denotations of definable predicates can freely be quantified over does not
commit one to allowing fictional objects in one’s ontology, for instance, or to taking
possible worlds to exist in the same way that the actual world exists.12

I have argued in chapter 8 that at least some forms of theoretical commitment
are connected to a product of reflection. But also the champions of conceptual com-
mitment stress the relation with a process of reflection. Lorenzen calls commitment
to fragments of predicative analysis the product of what he calls logical reflection,
which he explains as follows ([Lor58, p. 244]):

[. . . ] functions and relations are not the objects of arithmetic.
They are the concepts used in speaking about numbers as the
proper objects. Now the transition from arithmetic to analysis
is achieved by taking as the objects of a new theory just these
concepts of the old theory. Psychologically expressed, the focus
of attention has to pass from the old objects, the numbers, to the
functions and relations as new objects. Let me call this transition
a “logical reflection”, because the reflection to be performed is
on the concepts occurring in the theorems of the old theory. Or
more briefly, the object of the reflection is the language used so

11See for instance the title of [Kre70].
12The philosophical question what we do when we extend our ontology is, in my view, under-

explored.
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far. In view of this one may be justified in calling it a “logical”
reflection.

Kreisel agrees with him in the beginning of an article that we have briefly discussed
earlier,13 but of which we quote a slightly larger passage here [Kre70, p. 489]:

What principles of proof do we recognise as valid once we have
understood (or, as one sometimes says, ‘accepted’) certain con-
cepts?
The process of recognising the validity of such principles (in-
cluding principles for defining new concepts, that is, formally,
of extending a given language) is here conceived as a process
of reflection, reflecting on the given concept; reflecting on this
process of reflection, and soforth.

One might try to reduce commitment to proof theoretic reflection principles to
conceptual commitment. The basic claim would then be that commitment to proof
theoretical reflection principles springs from reflection on the concept of absolute
provability.14 The starting point would then be that a mathematician accepts a
formal theory S as proving absolute proofs, i.e., that the derivations that S pro-
duces count as proofs in the informal, absolute sense of the word.15 Moreover,
reflection on the concept of (informal) proof reveals that it follows from the content
of the concept—i.e., it is analytic of the concept—that proof entails truth. Thus
provability in S entails truth, i.e., GRF (S) holds.

This line of reasoning assumes that our mathematician starts by accepting
S as provable. The account in chapter 8 of implicit commitments to reflection
principles, however, is supposed to be compatible with scepticism, on the part of our
mathematician, about extra-mathematical concepts such as informal provability.
Thus it is not clear to me that all forms of reflection on theory acceptance can be
reduced to reflection on concepts.

However this may be, the idea of implicit commitment of concept probably has
considerable unrealised philosophical and proof theoretic potential. We find pro-
grammatic thoughts about conceptual commitment in Gödel’s Philosophical Note-
books from roughly 1939 until 1941.

Gödel takes elements of Kant’s epistemology as a point of departure.16 Fa-
mously, Kant argues that objects can only ever be cognitively given to us as sub-
sumed under categories of the understanding. Our knowledge of concepts and ideas,
on the other hand, is in his view obtained not by subsuming an entity under cat-
egories but in a fundamentally different way. We will not go into the details of
Kant’s complicated account of knowledge of concepts here. But I want to draw the
reader’s attention to the fact that, in Kant’s philosophy, the three transcendental
ideas (the subject, the world as a whole, God) occupy a very special place among
the concepts. There is a sense in which the transcendental ideas, like objects in
themselves, cannot adequately be grasped. The antinomies of reason show that
when we reason with them, we inevitably become entangled in contradictions.

13See p. 185.
14Some such claim appears to be implicit in [Myh60].
15The informal, absolute sense of mathematical proof was discussed in Section 1.5.2.
16Strangely, Gödel rarely discusses Kant’s views explicitly, or mentions Kant by name, in his

Philosophical Notebooks.
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According to Gödel there is a fairly tight analogy between knowledge of objects
on the one hand, and knowledge of ideas on the one hand [Göd19, p. 212]:

Remark: The Kantian view that cognition consists of concep-
tualizing under the sensory data according to a scheme of ideas
that is given a priori should probably be extended to all ideas
[. . . ]

Gödel believes that just as objects in themselves are unknowable, not only
Kant’s transcendental ideas, but all fundamental ideas (including the idea of truth,
the idea of collection, and the idea of existence) lead us to contradictions when
we reason with them. To this, Gödel added the remarkably prescient thought that
these unknowable ideas give rise to schematic ways of generating hierarchies of
perfectly coherent concepts that approximate the unknowable ideas, without ever
being able fully to capture them [Göd21, p. 234]:

Remark {Foundations}: What we grasp immediately are not
concepts but “concept schemes” (set, ∃, etc.), which we can
use to define a non-surveyable number of concepts (by “self-
application”).

Let us try to make the ideas behind this Remark more concrete by focussing
on typefree truth. Then a first thought is that a full and coherent grasp of the
idea of typefree truth cannot be had. The reason is that reasoning with it in
straightforward ways leads us to incoherence. The reasoning of the liar paradox
is of course a stark example of this. But more subtle support of this thought
is constituted by the way in which the natural system KF is self-undermining.
Nonetheless, the incoherent typefree idea of truth can be “unwound” in hierarchy
of perfectly coherent and ever stronger typed (Tarskian) truth concepts. This is
shown by the way in which every extension E of the typefree truth predicate at the
α-th stage (for α < ωCK1 ) can be systematically translated into a collection S of
sentences of a typed Tarskian language Lα containing a sequence of length α of ever
stronger typed truth predicates such that every sentence of S is true on its intended
interpretation.17 This is in line with the following remark that Gödel made in the
context of a discussion of the paradoxes: “type theory (or the true type-free logic)
would [. . . ] have to be regarded as a successive approximation of ‘truth’ ” [Göd21,
p. 281].

We have seen earlier how Feferman defined, beside the theory KF, the schematic
theory KF(P), which includes the schematic substitution rule Sub.18 We also saw
that the mathematical strength of KF(P) is greater than the mathematical strength
of KF (Theorem 5.28, Theorem 5.31). We will now informally sketch how the addi-
tion of the rule Sub boosts the mathematical strength of KF, and how this relates
to Gödel’s views on the unfolding of fundamental ideas through self-application, as
applied to truth.

We have seen how typically, for a theory containing a truth predicate T , the
amount of transfinite induction that it can prove for the underlying language LPA
is greater than the amount of transfinite induction that it can prove for the whole
language LT .19 This phenomenon then of course also holds if the background

17For the details, see [Hal97, Section 5].
18See p. 141.
19See Theorem 5.20 and Theorem 5.29.
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language is taken to be LP . Recall the schematic version KF(P) of the Kripke-
Feferman theory KF.20 Now suppose we have the truth theory KF (P )−, which is
just like KF, except that its background language is LP . So KF (P )− does not
contain the new rule Sub. Then KF (P )− can prove a certain amount of transfinite
induction TI(P) for the underlying language LP and no more, which is more than
the amount of transfinite induction TI− that it can prove for the entire language
LP,T . But now suppose we add the rule Sub to KF (P )−, yielding the schematic
theory KF(P). The substitution rule allows us in KF(P) to derive from TI(P) the
formula TI(B) for any B ∈ LP,T . In other words, we have boosted the amount
of provable transfinite induction for the whole language LP,T from TI− to TI
through self-application. From TI for the whole language LP,T , a larger amount of
transfinite induction TI∗ can then be proved for the underlying language LP . By
the substitution rule, this amount of transfinite induction can then again be lifted
to the whole language, and so on, until a closure point is reached at the ordinal
Γ0.21

This can be seen as a way in which stronger theories can be reached by
“schematically unwinding” a typefree truth concept. Clearly, the above barely
scratches the surface of an important development in the mathematics and phi-
losophy of implicit commitment, which has led to the work on the ‘unfolding’ of
mathematical concepts,22 which I regrettably cannot pursue further here.

9.3. From truth to reflection

Kreisel speculated about another way of reducing set theoretic incompleteness.
We might add to the principles of set theory axioms concerning a new primitive
concept [Kre69, p. 100]:

Let us try to expand the language of set theory, that is add sym-
bols for new primitive notions, and look for axioms in the wider
language which are evident (for the notions given). They may
imply set theoretic popositions, i.e., assertions in the language
[. . . ] of set theory, which are not.

In particular, Kreisel thought that randomness might be a concept that one might
try this with.

Kreisel’s suggestion has not (yet) led to axiomatic extensions of the standard ax-
ioms of set theory that are as strong as or stronger than extensions by powerful new
axioms that only contain set-theoretic concepts. Nonetheless, it was clear already
to (again) Gödel that reasonable theories of truth generate non-conservativeness
for the language of set theory, when they are added to the standard axioms of set
theory.

The concept of truth for a given domain of discourse—arithmetical truth, for
instance—can be seen as a limited use of a higher type, since it can be used to
simulate, in a restricted sense, quantification over sets of natural numbers.23 For
instance, we can express the proposition that every definable set of numbers has

20See p. 141.
21See Theorem 5.31.
22For a good introduction into this topic, see [Str18].
23See [Hor11, Section 10.3.1].
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some given property Φ in a first order manner, as follows:

∀x(x is a formula of LPA with one free variable→ T (Φ(x)).

Moreover, an evidential claim could be suggested that is analogous to Kreisel’s
evidential claim for higher types.24 For instance, starting from standard first-order
Peano arithmetic, one might claim that our warrant for each instance of an ax-
iom scheme derives from our evidence for the proposition that all instances of the
scheme are true. So, in particular, our warrant for any instance of mathematical
induction derives from our warrant for believing the statement that all instances of
mathematical induction are true.25

In particular, this would mean that if you believe a mathematical theory S, your
evidence for Con(S), Rfn(S) and RFN(S), derives from your evidence for GRF(S).
For Con(PA), this would amount to the following [Myh60, p. 462]:

The proof [of the consistency of PA which is not formalisable in
PA] is as follows: The axioms of elementary arithmetic are true,
and the rules of inference are truth-preserving. Therefore every
theorem of elementary arithmetic is true. Therefore ‘0 = 1’ is
not a theorem of elementary arithmetic. Therefore a certain
statement p (the arithmetization of the statement that ‘0 = 1’
is not a theorem) is true.

In an article from around the same time, Dummett sketches the argument in slightly
more detail [Dum63, p. 195]:

By hypothesis the axioms of [PA] are intuitively recognized as
being true, and the rules of inference of [PA] as being correct
in the sense of leading from true premisses to true conclusions.
Hence we may establish by an inductive argument on the lengths
of formal proofs that each proof in [PA] has a true conclusion,
and by another inductive argument on the number of logical
constants in a statement that no statement is both true and
false; concluding from this that [PA] is consistent.

This argument, and variations on it, are known as the semantic argument for re-
flection principles.

The strategy of the semantic argument is generally applicable: it works not
only for arithmetical theories of finite order, but also for our most encompassing
mathematical theories. The strategy presupposes, of course, that you accept the
restricted Tarski-biconditionals for your concept of mathematical truth. But this is
reasonable, since proving restricted Tarski-biconditionals is an adequacy condition
for theories of truth. In other words, the idea is that the derivation of Con(S),
Rfn(S) and RFN(S) from GRF(S) tracks the epistemic grounds of your belief in
Con(S), Rfn(S) and RFN(S).

Some philosophers of mathematics of the post-Myhill-Kreisel-Dummett gen-
eration are sympathetic to the idea that proof theoretic reflection principles can
be systematically and generally proved using the concept of truth. Shapiro, for
instance, argues that the concept of truth plays an important role in a good expla-
nations of why the Gödel sentence for PA is true [Sha98, p. 505]:

24See p. 220.
25This claim will be discussed below in section 9.4.
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Go back to our theory of arithmetic S and its Gödel sentence
GS . Suppose that a logic teacher asserts that GS is true, and a
puzzled student asks for an explanation. The student accepts the
teacher’s word that GS is true, but she wants to be shown why
it is true. The student wants something like a convincing proof
or an explanatory proof. The natural reply is to point out that
all of the axioms of S are true and the rules of inference preserve
truth. Thus every theorem of S is true. It follows that 0 = 1
is not a theorem, and so S is consistent. The Gödel sentence
is equivalent to the consistency of S. It seems to me that this
informal version of the derivation of Con(S) and GS is as good
an explanation as there is.

Again, this explanation works not only for the Gödel sentence for arithmetical
theories such as PA, but also, for instance, for the Gödel sentence for ZFC. Observe
also that this strategy requires taking truth to be a primitive notion. If arithmetical
truth would be defined using second-order quantification, for instance, then the
strategy would collapse into Gödel’s appeal to higher types, which was discussed
in section 9.1, and would therefore be faced with the same limitation as the higher
types approach.

Gödel believed that extensions of ZFC based on strong principles of infinity are
stronger than the result of extending ZFC by truth axioms [G4̈6, p. 151]:

Any proof of a set-theoretic theorem in the next higher system
above set theory (i.e. any proof involving the concept of truth
[. . . ]) is replaceable by a proof from [. . . ] an axiom of infinity.

At first sight, this passage is a bit puzzling. Earlier we took “moving to a
higher type” to consist in adding the natural proof principles for the next higher
level of quantification. But here Gödel seems to identify moving to a higher type
with adding natural axioms for the notion of truth.

However, the two conceptions of “higher type” are compatible: an extension
of a first-order theory S with axioms governing a truth predicate can be seen as
an extension of S with a somewhat restricted form of second-order quantification.
We have seen in the beginning of this section how the truth predicate can be
used to quantify over definable classes. For arithmetic, this means that, against
the background PA, the typed compositional truth theory CT is intertranslatable
with the predicative fragment ACA of second-order arithmetic. And against the
background of ZFC, the compositional truth theory CT corresponds to ECA.26

The latter theory is first-order non-conservative over ZFC, and therefore strictly
stronger than NBG; but it is much weaker than full ZFC2.

Tarski took proving typed disquotational principles to be an adequacy condition
for theories of truth. Some authors go further and claim that proving proof theoretic
reflection principles is an adequacy condition for truth theories [Ket99, p. 90]:

Parts of the basic (not necessarily deflationist) idea about truth
is that a particular statement ϕ and its “truth” Tr(< ϕ >) are
somehow “equivalent”. I think this is correct (indexicals aside),
and if a truth theory satisfies Convention T then it proves the
equivalence. But we must go further. Any adequate theory of

26See p. 135.
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truth should be able to prove the “equivalence” of a (possibly
infinitely axiomatised) theory T and its “truth” True(T ) (that
is, the metalinguistic formula ∀x(Prov(x)→ True(x))).

We have seen that natural typed disquotational truth theories are conserva-
tive.27 So they fail to prove global reflection principles for their background theories,
and hence fail to meet Ketland’s adequacy condition. The most natural axiomatic
truth theories that do prove reflection principles for their background theory are
compositional truth theories such as CT or KF.28

Given Theorem 5.17,29 this presupposes that mathematical induction is treated
in an open-ended way, so that the truth predicate is allowed to occur in the induc-
tion scheme. Indeed, some philosophers argue that when we learn the principle of
mathematical induction, we directly acquire it as an open-ended principle. McGee,
for instance, writes [McG97, p. 58]:

Our understanding of the language of arithmetic is such that
we anticipate that the Induction Axiom Schema, like the laws
of logic, will persist through [changes in language]. There is
no single set of first-order axioms that fully express what we
learn about the meaning of arithmetical notation when we learn
the Induction Axiom Schema, since we are always capable of
generating new Induction Axioms by expanding the language.

This does not imply that if you treat mathematical induction in an open-ended way,
you must accept every predicate in the induction scheme. For instance, you might
still refuse to allow the predicate “large natural number” in the induction scheme,
for fear that then a sorites argument will allow you to prove that all natural numbers
are small. But if you encounter a predicate that is not in any way semantically
deficient—let us call such predicates determinate—then you will allow reasoning
by mathematical induction for formulas that contain that predicate.

If one accepts Ketland’s adequacy condition, then one can conclude that Hor-
wich’s minimal (and disquotational) truth theory is inadequate. Moreover, it has
been argued that truth theoretic deflationism in general is committed to proof
theoretic conservativity.30 If that is right, then the vaguer thesis that truth is an
“insubstantial” concept is also flawed. However, truth theoretic deflationism is a
somewhat nebulous doctrine, and it is not at all immediately obvious that it should
be wedded to the thesis that truth theories should be conservative over their back-
ground theory. Indeed, attempts have been made to argue for conceptions of truth
according to which truth is an “insubstantial” notion, but that they are nonetheless
well captured by non-conservative axiomatic truth theories.31

9.4. Scepticism again

Myhill, Shapiro, and Ketland are aiming for a general way of proving proof
theoretic principles for accepted mathematical theories. Ketland, for instance, ex-
plicitly writes [Ket05, p. 85]:

27See Section 5.1.2, Theorem 5.2.
28See Section 5.2.
29See p. 135.
30This line of argument was developed in [Hor95].
31See for instance [Hor09].
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Part of the point of the articles by Feferman, Shapiro and myself
was to show how to prove reflection principles [. . . ]

As an answer to this challenge, they settle on the proof of theorem 5.14.32 Let
us call this the semantic argument (for S).33 According to Myhill, Shapiro, and
Ketland, the semantic argument for PA constitutes a perfectly good justification
for a belief in, for instance, the consistency of PA.

Dummett, Wright, Girard, and Dean, in contrast, deem the semantic argument
unfit for justifying belief in the consistency of PA.34 Let us take a brief look at their
arguments.

Dummett starts by considering a statement that is conceptually and historically
closely connected to the consistency statement for PA, namely, the Gödel sentence
GPA for PA.35 The argument goes along the following lines:

If, for a contradiction, ¬GPA, then there would be a PA-proof
that GPA, and therefore also that GPA is PA-provable. On the
other hand, if there is a PA-proof that GPA, then there is also
a PA-proof that GPA is not provable, for GPA says of itself that
it is not PA-provable. So PA would be inconsistent, which of
course it isn’t. Therefore we must reject the assumption.

But then, Dummett continues, in order for this argument to have justifying force,
we need warrant for the assertion Con(PA) [Dum63, p. 193–194]. Here Myhill and
consorts would appeal to the semantic argument for Consis(PA), which, as we have
seen on p. 227, Dummett indeed also cites at this juncture. But, in contrast with
Myhill and friends, Dummett expresses a vague epistemic dissatisfaction with the
semantic argument: [Dum63, p. 194]:

Such a general form of consistency proof cannot, of course, be
expected to be genuinely informative; it can only be the trivial
kind of proof by induction on the length of formal proofs with
respect to the property of having a true conclusion.

It is facile to be blasé about theorems that are old and well-known and relatively
simple. I dispute that the semantic argument is trivial. Already the reasonably
detailed version of the proof that CT entails GRF(PA) takes up almost four pages
in Halbach’s standard textbook of axiomatic truth theory [Hal11, p. 102–106].
Suppose you were to teach Gödel’s first incompleteness proof in detail in a graduate
logic course, without talking about arithmetical truth. Then, on the exam, you give
the students the typed compositional truth axioms, and you ask them to prove in
reasonable detail that when these truth axioms are added to PA and the induction
scheme is extended to allow for predicates that contain the notion of arithmetical
truth, the consistency of PA logically follows. Then there is a chance that the
head of your department calls you into her office the next day and rebukes you for
setting an exam that is too difficult. Indeed, I submit that, were someone to have
submitted a detailed proof of the fact that CT implies the consistency of PA for
publication to the Journal of Symbolic Logic in 1937, the article might have been
accepted for publication.

32See Section 5.2.1.
33It is called the inductive argument by Dean: see [Dea15, p. 54].
34See [Dum63], [Wri94], [Gir87], and [Dea15, Section 5].
35Indeed, it is not hard to see that, provably in PA, the statements GPA and Con(PA) are

equivalent with each other.
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More important, however, is the question whether the semantic argument has
any epistemic merit. Dummett does not elaborate on his dim view of the epistemic
merits of the semantic argument. Wright aims to do better by elaborating on
Dummett’s cryptic sceptical remark. He agrees with it, and provides an account of
why the semantic argument is uninformative. In his account, Wright makes use of
the notion of suasiveness [Wri94, p. 177–178]:

[. . . ] an intellectual routine counts as a demonstration of P just
in case an agnostic about P could nevertheless perfectly reason-
ably place confidence in the methods and principles deployed in
the routine, and could arrive, on the basis of following it through,
at considerations which would rationally oblige him a priori to
assent to P. Say that a proof is suasive if it meets those condi-
tions.

Using this notion, Wright then claims that it is obvious that the semantic argument
fails to be suasive [Wri94, p. 178]:

[. . . ] since it takes the truth of the axioms and the soundness
of the underlying logic as a premise, the sort of consistency
proof Dummett has in mind can hardly be suasive — (except
perhaps for a rather dim thinker to whom it has not occurred
that you cannot get contradictions in a system with true axioms
and truth-preserving rules.) So it furnishes no demonstration of
[GPA] [. . . ]

I do not think that it is obvious at all that the semantic argument cannot be
suasive. Consider the following scenario. Emma is a mathematician who (disposi-
tionally) believes every axiom of PA. She has considered the question whether PA is
consistent, and is agnostic about it. On the one hand, she feels that she cannot rule
out the possibility that there exists a derivation in PA of an inconsistency. On the
other hand, she is convinced that there is no such “feasible” proof, i.e., that every
such proof would have to be far longer than is derivable by any human or by any
future machine.36 After overcoming her prejudice against philosophical notions,
Emma comes to accept and master the concept of arithmetical truth. She comes
to believe the compositional truth axioms (for arithmetical statements), and she
extends her mathematical induction scheme to cover also predicates in which the
concept of arithmetical truth occurs. Then she carries out the proof of the consis-
tency of PA in CT. This fundamentally changes Emmas doxastic state concerning
arithmetic: it persuades her that PA is consistent.

According to Wright, this scenario would have to be obviously incoherent. In-
deed, as we have seen in section 9.1, he claims that it is “hardly practical” as a
mathematician to stay on the fence about the consistency of PA [Wri94, p. 191].
But I don’t see what is problematic from a practical point of view about Emma’s
doxastic situation before she is down with the notion of arithmetical truth. She has
no practical worries, for she is convinced that any proof of an inconsistency must be
astronomically long and will therefore never be obtained. She proves arithmetical
theorems like nobody’s business, and that is, at least as far as her colleagues are
concerned, all that matters for her as a mathematician.

36On the concept of “long inconsistency proofs”, see [Woo98].
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Girard gives another argument for the thesis that the semantic argument cannot
“suade” [Gir87, p. 64]:

[A]ll theorems of PA are true, and justification lies in the stupid
[sic] remark that the axioms of PA are true, and the rules of the
predicate calculus preserve truth. Of course, the epistemological
value of this result is limited, because we have chosen the axioms
of PA precisely because we believe in their truth [. . . ]

So the idea is that we believe some of the premises of the semantic argument only
because we already believe in the consistency of PA. Thus the epistemic defectiveness
of the semantic argument is, according to Girard, due to the fact that it is implicitly
viciously circular.

But an antecedent belief in the truth of the axioms of PA is not why we chose
them as basic principles for our arithmetical reasoning. Rather, we selected them
as axioms in direct response to our mathematical experience37—which is not to say
that this “choosing” was in any way a straightforward or simple process! Indeed,
as argued in Section 8.2.2, as mathematicians, some of us might harbour deep
suspicions towards philosophical concepts such as arithmetical truth. For these
reasons, I find Girard’s argument without merit. Moreover, for the same reasons,
I am not convinced of the Kreiselian hypotheses, discussed earlier,38 that we only
accept a schema because we believe the statement that all instances of the scheme
are true, or because we believe a higher-order universal statement from which all
instances of the scheme follow.

Like Girard, Dean also expresses scepticism about “whether any useful epis-
temic work is achieved by [the semantic argument] beyond the promissory character
of its informal counterpart” [Dea15, p. 61]. The main epistemic weakness of the
semantic argument, in Dean’s view, derives from the fact that mathematical induc-
tion in the extended language containing the concept of truth is used in the proof
of GRF(PA) [Dea15, p. 59]:

[. . . ] although most of us believe that all instances of first-order
induction are true, our rationale for doing so presumably cannot
rest on the derivability of a statement like

[∀y(y is an arithmetical formula→ T (Ind(y))]39

in a formal theory of truth such as CT. For although this for-
mula can be interpreted as expressing that all instances of [the
mathematical induction scheme for the language of PA] are true,
its proof relies on an application of induction for a formula in the
richer language LT which presumably is no more evident than
[the mathematical induction scheme for the language of PA] it-
self.

Here again the objection appears to be Kreiselian in the sense discussed above:
we believe the few instances of mathematical induction for LT that we need in our
proof of GRF(PA) only because we already believe GRF(PA).40 Again it is unclear

37See the discussion in Section 7.5.
38See Section 9.1.
39Ind(y) denotes the instance of mathematical induction for the formula y.
40Indeed, Dean surmises that the point that he is making is similar to the point that is made

in the passage by Girard quoted above [Dea15, p. 59].
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wherein the evidence for this contention consists. It is perfectly conceivable that
some of us form, in direct response to our mathematical experience, a dispositional
acceptance of mathematical induction for any predicate that we regard as determi-
nate. They then can go on to prove GRF(PA), relying on open-ended mathematical
induction and the compositional truth axioms. In so doing, they obtain justification
for believing in GRF(PA).

In the above we assumed that before going through a truth-theoretic argument
for Con(PA), the reasoner fully believes PA, while being neutral about Con(PA)—
perhaps because she never even considered the statement Con(PA). In such cir-
cumstances, we have argued, a semantic argument can convince the reasoner of
Con(PA). If, before going through the semantic argument, the reasoner does not
fully believe PA, then she may not obtain full confidence in Con(PA) by going
through a standard semantic argument.

In general, a consistency argument for a theory T carried out in an extension
of a fragment of T can be persuasive even for a reasoner who does not fully trust
T. Consider Eva, who at the outset is worried about the principle of excluded
third, but has full confidence not only in the other principles of classical logic, but
also in the arithmetical axioms of PA. In this situation, she does not have full
confidence in PA. Presently she convinces herself also of transfinite induction up to
small countable ordinals including ε0. She then carries out Gentzen’s proof of the
consistency of PA in Heyting Arithmetic plus transfinite induction up to ε0, and
thereby convinces herself of at least the consistency of classical PA.41

The mere finiteness of formal proofs entails that in the ordinary semantic argu-
ment for the consistency of PA, beside compositional truth axioms only a fragment
of PA (in the extended language) is involved. A closer inspection of standard seman-
tic arguments for reflection principles for PA shows that they can straightforwardly
be carried out in the compositional theory over Elementary Arithmetic rather than
full PA. A mathematician may therefore at the outset be sceptical about mathe-
matical induction for complicated formulas and only fully trust a weak theory of
arithmetic that contains no more than Σ0 induction. In sum, the reasoner need
not, it seems, before embarking on a semantic argument, trust all of PA.

But in the case under consideration, this appearance is illusory. The aforemen-
tioned close inspection of the semantic argument works against the background of
Elementary Arithmetic in the extended language only because, given the Tarski-
biconditionals for arithmetical formulas,42 every complicated arithmetical formula
ϕ(x) is equivalent to a ∆0 formula Tϕ(x). In other words, the Tarski-biconditionals
allow us to ‘hide’ the complexity of arithmetical formulas. So if one distrusts math-
ematical induction for complicated purely arithmetical formulas, then one should
likewise distrust mathematical induction for quantifier-free formulas in the extended
language LT .

9.5. New conceptual resources

According to the semantic argument, reflection principles for a theory S that
we are warranted to believe, are justified by deriving them from principles that go

41This does not exclude that she could also have obtained her confidence by other means, for

instance by the double negation interpretation of PA into Heyting arithmetic, if she at the outset

explicitly believed that Heyting Arithmetic is consistent.
42See Proposition 5.13.
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beyond what S can prove. This raises the question: wherein consists our warrant
for believing these new principles?

Several answers to these questions are possible. One might argue that we
are somehow entitled to accept these new principles. Or one might argue that
we have justification for accepting them. Here we focus on the claim that we are
implicitly committed to accepting the new principles from which reflection principles
are derived.

In Chapter 7, several proposals for systematically deriving reflection principles
were already discussed.43 The important difference with the semantic argument
lies in the fact that the latter involves a new concept : truth. As we have seen, in
this respect, it rather resembles Gödel’s proposal of proving reflection principles by
“moving to higher types”.44 For instance, one can prove the consistency of PA by
appealing to second-order induction and a second-order comprehension principle.
So beside the concept of natural number that is described by PA, we are now helping
ourselves also to a new concept: the concept of set of natural numbers.

In a recent article, Nicolai and Piazza argue that the implicit commitment of
mathematical theories is weaker than it is commonly thought to be. They focus on
arithmetical theories. We will do likewise in the remainder of this section. But, as
always, it is worth bearing in mind that much of the discussion below also applies
to stronger starting theories.

Nicolai and Piazza find that recent philosophical work on systematically de-
riving reflection principles shows “how hard it is to eradicate the intuition that
reflection principles are conceptually dependent on the notion of truth” [NP19,
p. 923]. They believe that when we accept an arithmetical theory, we are implicitly
committed to the concept of truth [NP19, p. 931–932]:

The notion of truth is integral to any reasonable articulation
of what we are implicitly committed to when accepting a given
arithmetical theory.

With this, they step into Feferman’s footsteps [Fef91, p. 2]:

Which statements in the base language L of S [. . . ] ought to be
accepted if one has accepted the basic axioms and rules of S?
The answer is given as an ordinary theory Ref(S) formulated
in a language L(T, F ) [. . . ] where T and F are partial truth
and falsity predicates which are self-applicable in the sense that
they apply to (codes of) statements of L(T, F ) [. . . ] Thus, for
example, we may reason in [KF ] by induction about the truth
of statements which contain the notion of truth, and so arrive at
statements of the form: ∀x[BewPA(x)→ T (x)], and by repeating
this kind of argument derive iterated reflection principles for
arithmetic.

Earlier, in Section 7.3, we discussed Dean’s claim that theories of implicit com-
mitment must respect the epistemic stability of certain foundationally significant
mathematical theories, such as S1

2 , PRA, and PA. Nicolai and Piazza accept Dean’s
claim [NP19, p. 929]:

43See Sections 7.4.2 and 7.4.3.
44See Section 9.1.
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In other words, we do not claim that, say, Con(S) is not a nat-
ural principle to endorse once one has endorsed S, but what we
share with Dean is the view that if the justification of Con(S)
is equivalent to principles that are incompatible with the alleged
epistemic stability of S, [. . . ] then such a justification cannot be
implicit in the mere acceptance of S but should stem from more
general considerations.

In Section 7.3 it was argued that, for instance, a Hilbertian finitist is indeed
not committed to uniform reflection over PRA, since this requires an awareness the
boundaries of her own explicit commitments, which she does not have. But this
time we cannot satisfy Dean’s requirement so easily: adding compositional truth
axioms and extending the induction scheme does not require an awareness of the
boundaries of the explicit commitments of the position.

In the face of this challenge, Nicolai and Piazza propose to weaken the set of new
principles from which reflection principles can be derived. They aim to make them
truth theoretically as strong as possible without resulting in non-conservativeness.
Specifically, they argue that what they call the semantic core of the implicit com-
mitments of a theory S—which we shall abbreviate as SC(S)—consists of CT−(S)
plus the claim “All axioms of S are true” [NP19, p. 928]. It is not claimed that
SC(S) exhausts the implicit commitment of S in all cases: “[SC(S)] counts only
as a class of necessary conditions that our notion of truth has to satisfy” [NP19,
p. 933]. Thus Nicolai and Piazza allow that when the foundational position that
S intends to capture does not preclude mathematical principles exceeding S being
warranted, the implicit commitments of S may exceed SC(S).

At least for mathematical theories S that exceed Elementary Arithmetic, the
semantic core of S has the following properties:

(1) SC(S) is arithmetically conservative over S [Lei15, Theorem 2];
(2) SC(S) proves “All propositional tautologies are true” [NP19, p. 932];
(3) SC(S) proves that the rules of inference are truth-preserving [NP19,

p. 932].

But then of course SC(S) will not be able to prove that all theorems of S are true.
Shapiro and Ketland would probably not be satisfied with this proposal. As

we have seen, they take it a task of truth theory to provide justification for strong
reflection principles, such as GRP, and not only for weak reflection principles such
as (2). Nicolai and Piazza’s view is not in conflict with Shapiro and Ketland’s
dictum. They would concede that the minimal implicit commitment of a theory—
its semantic core—does not provide this. But they leave open the possibility that
more robust truth theories do provide such justification. It is just that to some
foundational points of view, such stronger truth theories are unacceptable.

Nicolai and Piazza only consider arithmetical starting theories. But suppose
that your starting theory is PA with open-ended induction. Moreover, suppose
that you also regard truth as a determinate predicate, suitable for appearing in
the induction scheme. Suppose you are a disquotationalist, and take this truth
predicate to be governed by the restricted Tarski-biconditionals. Call your theory
PA∗. Then

SC(PA∗) = CT (PA),

which is not arithmetically conservative over PA. (So for some theories S, the seman-
tic core of S is not mathematically conservative over S.) So PA∗ must be regarded
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as an unstable theory. But it is hard to see what is epistemically unstable about
it. So I regard this as an unwelcome consequence of Nicolai and Piazza’s theory.
The reason why they are committed to it, is that they buy into the strong “ought”
of Feferman’s conception of implicit commitment: they work with a “Prussian”
concept of rationality.

There is also, I believe, a lacuna in Nicolai and Piazza’s proposal. They hold
that when you accept a mathematical theory, you implicitly commit yourself to
certain properties of a new concept: truth. But how is this new concept implicit
in the acceptance of a mathematical theory?—the epistemological story is on this
point wholly missing in Nicolai and Piazza’s theory. In Section 8.2.2, I described a
mathematician who is sceptical about the notion of truth. In Nicolai and Piazza’s
view, such a person would be implicitly incoherent. But exactly how is that so?

9.6. From reflection to truth

In the previous Sections, we have discussed how truth principles can contribute
to providing a warrant for believing proof theoretic reflection principles. In this
Section, the epistemic direction is reversed: we explore whether and how reflection
principles can contribute to providing warrant for truth theories.

Clearly, if you start out with a purely mathematical theory, and add proof
theoretic reflection principles to it, you will not thereby be able to derive (non-
tautological) principles concerning a new concept such as truth. So in this Section
I will assume that you are already at the outset warranted in believing certain weak
truth principles: a class of restricted Tarski-biconditionals, perhaps. In Chapter 5
we saw that by repeatedly adding reflection principles to such a starting theory, a
stronger truth theory is obtained. Moreover, we saw that this is so both in a typed
and in a typefree context, and both in the context of classical and of partial logic.
In this Section, we examine the epistemological significance of these phenomena.

9.6.1. Horwich. In Section 5.3.2, we discussed Horwich’s views on truth. We
have seen how he argues that some disquotational theory is our best theory of
(typed) truth. Let us call this theory MT. Moreover, he argues that all we ever
need to know about the concept of truth follows from the disquotational axioms of
MT. We call this combined logico-philosophical package the minimalist conception
of truth.

We have raised the question whether the minimalist conception can deal with
the truth generalisation problem. I.e., we have asked how truth generalisations such
as

∀ϕ ∈ LPA : T (ϕ→ ϕ)

follow from the minimalist conception.
The vagueness of Horwich’s conception of truth makes it not easy to see how

this question should be answered. Horwich’s conception of truth is indeed rather
vague because he does not describe his theory of truth MT with mathematical
precision. Several aspects of MT are unclear. First, we have seen that Horwich
takes propositions as truth bearers. So in order to obtain a precise truth theory,
the disquotational axioms of MT have to be supplemented with a precise theory
of propositions. The history of philosophy of language has taught us that this is a
daunting task. Secondly, Horwich does not describe the collection of disquotational
axioms of MT with mathematical precision.
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In response to these difficulties, we will make MT more precise. We stick to
the approach that we have taken throughout this book, namely to sidestep the
philosophical problems connected to propositions by taking sentences to be the
bearers of truth and falsehood. Moreover, for definiteness, we assume that MT is
the disquotational theory TB. And we know, of course by Theorem 5.2, that TB
does not prove interesting truth-generalisations.

We will now discuss how Horwich gradually came to see a need for strengthening
his disquotational conception with a reflection rule in response to the generalisation
problem.45

In the Postscript of the revised edition of his book Truth, Horwich formulates
his first response to the truth generalisation problem. There he writes [Hor98,
p. 137–138]:

However, it seems to me that in the present case, where the
topic is propositions, we can find a solution to this problem. For
it is plausible to suppose that there is a truth-preserving rule
of inference that will take us from a set of premises attributing
to each proposition some property, F, to the conclusion that all
propositions have F. No doubt this rule is not logically valid, for
its reliability hinges not merely on the meanings of the logical
constants, but also on the nature of propositions. But it is a
principle we do find plausible. We commit ourselves to it, im-
plicitly, in moving from the disposition to accept any proposition
of the form ‘x is F ’ (where x is a proposition) to the conclusion
‘All propositions are F ’. So we can suppose that this rule is what
sustains the explanations of the generalizations about truth with
which we are concerned. Thus we can, after all, defend the the-
sis that the basic theory of truth consists in some subset of the
instances of the equivalence schema.

This truth-preserving rule amounts to a form of Hilbert’s ω-rule [Raa05, p.175],
which we have encountered before.46

Theorem 6.4 tells us that over PA, the ω-rule is strong: it causes all true
arithmetical sentences to become provable. When added (for all formulas of LT )
to TB, it is even stronger: it then causes all acceptable truth-generallisations for
LPA to become provable.

However, certain features of the ω-rule render this proposal problematic, and in
particular unacceptable to the minimalist truth theory. As finite human beings, we
cannot take infinitely many premises into consideration simultaneously [Wan61,
p. 349]:

There is a temptation to cut through the foundational problems
by using the non-constructive rule of induction (the omega-rule)
[. . . ] [But] we can never go through infinitely many steps in a cal-
culation or use infinitely many premises in a proof unless we have
somehow succeeded in summarizing the infinitely many with a
finite schema in an informative way. Both mathematical induc-
tion and transfinite induction are principles by which we make

45For a fuller discussion of Horwich’s reaction to the generalisation problem, see [HZng].
46See p. 153.
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inferences after we have found by mental experimentations two
suitable premises which summarize together the infinitely many
premises needed. A very essential purpose of the mathematical
activity is to devise methods by which infinity can be handled
by a finite intellect. The postulation of an infinite intellect has
little positive content except perhaps that it would make the
whole mathematical activity unnecessary.

Therefore, even if theory MT plus the ω-rule is capable of proving acceptable truth
generalisations, those generalisations are beyond the reach of ordinary human be-
ings [Raa05, p. 176].

It is not clear whether Horwich has accepted this objection to his first proposal.
In a more recent publication Horwich still seems to propose using the ω-rule as a
solution to the truth generalisation problem [Hor05b, p.84]:

For it is plausible to suppose that there is a truth-preserving rule
of inference that will take us from a set of premises attributing to
each proposition of a certain form some property, G, to the con-
clusion that the all proposition have property G. And this rule –
not logically valid, but nonetheless necessarily truth-preserving
given the nature of proposition – enables the general facts about
truth to be explained by their instances.

Yet in most of his recent writings, Horwich advocates an alternative resolution,
based on an introspective process. To this proposal we now turn.

Over the years, Horwich’s formulation of his second response has varied, and
it is not easy to select a preferred formulation from these variants. Nonetheless, we
will see that all variants of Horwich’s second proposal need emendation in order to
solve the truth generalisation problem.

A first fomulation of Horwich’s second attempt emerges in A Defense of Mini-
malism (2001) [Hor01b, p.157]:

Whenever someone can establish, for any F, that it is G, and
recognizes that he can do this, then he will conclude that every
F is G.

Call this Solution 2.0 (with the earlier proposal of adding the ω-rule being Solution
1). The new solution also consists in adding an additional rule of inference to MT,
but the additional rule of inference of Solution 2.0 is different from the ω-rule.

In a revised version (2010) of the same paper, Horwich formulates a variant on
this new proposal [Hor10, p. 45]:

Whenever someone is disposed to accept, for any proposition of
structural type F, that it is G (and to do so for uniform reasons)
then he will be disposed to accept that every F-proposition is G.

To the above statement, he adds the following proviso [Hor10, p. 44–45]:

We cannot conceive of there being additional Fs – beyond those
Fs we are disposed to believe are G – which we would not have
the same sort of reason to believe are Gs.

Call this Solution 2.1.47

Armour-Garb argues that Solution 2.1 is unsatisfactory because [AG10, p.699]:

47Horwich endorses this same solution in 2005 [Hor05b, p. 84].
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[O]ne will not be disposed to accept (the proposition) that all F-
propositions are G, from the fact that, for any F-proposition, she
is disposed to accept that it is G (NB, even for uniform reasons),
unless she is aware of the fact that, for any F-proposition, she is
disposed to accept that it is G.

The proviso that Horwich added to Solution 2.1 does not provide such an awareness
component. It merely adds a negative condition (“not being able to conceive of
there being F’s that are not G”), while Armour-Garb’s awareness-requirement is
a positive condition. In contrast with this, Solution 2.0 incorporates exactly the
awareness condition that Armour-Garb insists on (“and recognises that he can
do this”). Therefore Horwich’s Solution 2.0 must be regarded as superior to his
Solution 2.1.

Nevertheless, Armour-Garb would not be satisfied with Solution 2.0, either. He
argues that the switch, in the move from the premise to the conclusion of the rule
of inference in Solution 2.1, of ‘for any F-proposition’ from outside the ‘disposed
to accept’-context to inside the ‘disposed to accept’-context, is “viciously circular”.
He is certainly right that this quantifier shift, which is also present in Solution
2.0, is not derivable in classical logic. Nonetheless, I take issue with this aspect of
Armour-Garb’s critique of Horwich’s second proposal. I agree with Cieśliński that
Armour-Garb’s dismissal of Horwich’s second solution on the ground of its being
viciously circular is “hasty” [Cie18, p.1082]: I will come back to this later.

It is time to spell out the content of Horwich’s Solution 2.0 in more precise
terms.48 This is done by formalising Horwich’s informally expressed and somewhat
vague rule of inference in first-order logic. The aim is to be charitable. I do not
claim that Horwich would agree with the proposed formalisation, but I will argue
that there are good reasons for him to do so. Firstly, Solution 2.0 contains the
phrase ‘will conclude’, making it seem like a psychological prediction.49 If it is
taken in this way, then whether it is true or not, is an empirical matter. But
this is presumably not what Horwich intends. Rather, what he means, is that the
agent will be disposed to drawing this conclusion if she is rational. In other words,
Horwich purports to propose a rational rule of inference here. So it might be
better to replace, in Solution 2.0, “will conclude” by “may (rationally) conclude”,
or perhaps even “should (rationally) conclude”. Secondly, since we are concerned
with establishing truth generalisations, let us identify the concepts ‘being disposed
to accept’ and ‘recognising’ with being provable (Bew). Thirdly, let us identify
provability with provability in the background theory, which we have taken to be
TB. If we were to identify provability with provability in the system including the
rule, then the proposed rule would indeed be viciously circular, confirming Armour-
Garb’s suspicions. But if we identify provability with provability in TB then there
is no circularity. Fourthly, let us omit the concept of provability (“being disposed to
accept”) from the conclusion of the rule. With these qualifications in place—I leave
it open whether they are in accordance with what Horwich intended—we obtain
the following schematic rule:50

48See [HZng, Section 4].
49Cieśliński criticises this aspect of Horwich’s account: see [Cie18, p. 1085].
50Here H stands for Horwich.
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(H)
BewTB(∀x : F (x)→ BewTB(G(x))

∀x : F (x)→ G(x)
.

Observe that, unlike the ω-rule, H is an effective rule: adding it to TB (=MT)
yields an axiomatic system. The rule H can be seen as an effective version of the
ω-rule.

Worries based on the lottery paradox might cause one to doubt the rationality
of rule H. For any ticket (in a large, fair lottery), I believe that it is not the winning
ticket (and I believe this for “uniform reasons”). But from this, I am not prepared
to infer that every ticket is a losing ticket [Kyb70, p.56]. But such a worry would
be ill-founded, for the situation under consideration is different in one key respect.
The irrationality of the lottery paradox inference stems from the fact that many
small but non-zero probabilities (of being the winning ticket) can add up to a large
probability (of one of a large collection of tickets being the winning one). But what
is provable, has probability 1 rather than 1 − ε for some small ε, since provability
in a sound system from necessary premises, is itself necessary, and necessary truths
by a Kolmogorov axiom for probability receive probability 1. So the fair lottery
phenomenon is irrelevant to the evaluation of rule H.

Addressing a worry is one thing, a positive argument is another. Horwich does
not tell us how our acceptance of rule H is justified. Nonetheless, let us shelve this
question for now.

Let us denote MT+H as MT1. Now that we have made Horwich’s Solution
2.0 precise, we address the question whether the rule H is sound, and the question
whether MT1 can prove all intuitively acceptable truth generalisations.

The first of these two questions is easy. It is clear that given a sound theory S,
adding H (with BewMT replaced by BewS) to S, results in a sound system. So, in
particular, MT+H is a sound system.

Next, we make the crucial observation that H is equivalent to a reflection rule
that has intensively been investigated in proof theory, and that we have already
discussed at several places in this book. From Section 6.1, we recall the distinction
between reflection principles and reflection rules. However, we also know that
they are closely related. By Feferman’s little reflection theorem (Theorem 6.6)
the uniform reflection principle RFN(S) is equivalent to the uniform reflection rule
RFR(S). In the light of this, it is easy to see that [HZng, Section 5.1]:

Proposition 9.1. H is equivalent to RFR(MT ), and therefore also to RFN(MT).

At this point, a connection with Horwich’s first solution also becomes apparent.
Indeed, the uniform reflection rule is widely seen as an effective version (a “tamed”
version) of the ω-rule. Horwich’s appeal to the ω-rule was rightly rejected by Wang,
Raatikainen, and others on account of its non-effectiveness. Uniform reflection rules,
on the other hand, cannot be rejected on the same grounds.

It is fairly generally accepted that from the compositional axioms for truth,
all intuitively acceptable truth generalisations logically follow.51 So if Horwich can
derive the truth axioms of CT , then he has solved the truth generalisation problem.

51See [Hor11, chapter 6]. An apparent counterexample is a proposition such as ‘there are

as many truths as there are untruths’ [Gup93, p.363]. But this is a second-order statement,
involving not just sentences but also sets of sentences. So it falls outside the scope of MT (= TB),

which cannot even express claims involving sets of sentences.
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With only one exception, the compositional truth axioms can indeed be derived
in MT1. As an example, let us consider the compositional axiom for negation:

∀x ∈ LPA : T (¬x)↔ ¬Tx.
We know from Proposition 5.12 that every instance of this axiom can be proved
in TB (using Tarski-biconditionals). Moreover, PA can formalise the proof that
this is the case: PA recognises, as a combinatorial fact, that every instance of the
compositionality of negation can be proved in TB. In other words, we have

PA ` ∀x ∈ LPA : BewMT (T (¬x)↔ ¬Tx).

Then by the rule H we indeed obtain ∀x ∈ LPA : T (¬x)↔ ¬Tx.
The other compositional axioms can be derived in a similar way in MT1, with

the sole exception of the quantifier axiom:

∀ϕ(x) ∈ LPA : T (∀xϕ(x))↔ ∀xTϕ(x).

We cannot prove in MT, for every ϕ(x) ∈ LPA, that T (∀xϕ(x)) ↔ ∀xTϕ(x). The
reason is that TB (=MT ) only contains Tarski-biconditionals for sentences, i.e.,
for closed formulas. In order to prove, for each ϕ(x) ∈ LPA, that T (∀xϕ(x)) ↔
∀xTϕ(x), we need a slight strengthening of the Tarski-biconditionals of TB, namely
the uniform arithmetical Tarski-biconditionals of the theory UTB.52

In sum, by adopting the rule H, Horwich almost achieves his aim of deriving
all acceptable truth generalisations, but not quite. But Horwich could completely
achieve his goal by strengthening his minimal theory of truth from a collection of
Tarski-biconditionals (TB) to a collection of uniform Tarski-biconditionals (UTB).
This would mean a transition from a theory of truth to a theory of true of (satis-
faction). Horwich might well be open to this proposal.

9.6.2. From disquotational to compositional truth. Beside the argumen-
tative strategy I have just sketched, there is also another way of justifying the com-
positionality of truth on the basis of disquotationalism and reflection principles. In
Chapter 6, we saw that it does not matter whether our background theory is TB
or TB−,53 since by uniform reflection we can prove mathematical induction for the
extended language (Theorem 6.23). In other words, there is no need to take the
open-endedness of mathematical induction as an assumption in our argumentation.
Moreover, we also saw (Lemma 6.24) that the uniform Tarski-biconditionals can be
derived from the Tarski-biconditionals using one application of uniform reflection.

In other words, there is no need to take the notion of satisfaction to be basic:
the more general notion of satisfaction is implicitly contained in the concept of
truth, and is made explicit by one application of uniform reflection. Taking all this
together, we see that the full typed compositional truth theory CT is implicit in
the weak disquotational theory TB−, and becomes explicit by applying uniform
reflection to TB− twice (Theorem 6.26).

When we move to a classical type-free setting, the situation is similar. When we
start from the weak typefree disquotational theory TBF,54 we obtain the typefree
compositional theory Pos(KF) by two applications of uniform reflection (Theorem
6.27). And this is one way of addressing the truth generalisation problem.

52The uniform Tarski-biconditionals were introduced on p. 129.
53The theory TB− was introduced on p. 129.
54This disquotational theory, consisting of all positive truth-and-falsity biconditionals, was

introduced on p.131.
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At this point, it is worth taking a step back from the minutiae of the story.
Horwich is a truth theorist with a philosophical but not a proof theoretic back-
ground. From a purely philosophical perspective, he came to propose the thesis that
our belief in the compositionality of truth is grounded in our acceptance of proof
theoretic reflection rules. This shows that Feferman’s idea of implicit epistemic
commitment to reflection principles is a quite natural thought. But the preceding
pages also show the importance of proof theory for truth theory. It takes careful
(if elementary) proof theoretic analysis to see that one round of uniform reflection
does not suffice for obtaining compositionality from disquotational truth axioms.
In any event, in the end a pleasing picture emerges about the relation between
disquotationalism and the compositionality of truth.

Thus we end up in a curious situation. On the one hand, strong proof-theoretic
reflection principles can be derived from compositional truth axioms. On the other
hand, compositional truth axioms can be obtained from disquotational truth ax-
ioms by twofold uniform reflection. So from a purely logical point of view, dis-
quotational truth together with uniform reflection is just as basic as compositional
truth. Nonetheless a philosophical question stays with us: which is epistemologically
more basic: disquotational truth together with uniform reflection, or compositional
truth? The situation here is similar to the relation between proof theoretic reflec-
tion principles and principles of transfinite induction.55 Here, too, even though
there are many mathematical equivalences (as is emphasised in [Dea15]), they do
not in and of themselves answer the corresponding epistemological questions.

Let us first consider the question of our warrant for disquotational truth axioms
and for reflection principles.

Horwich argues that disquotational truth axioms are warranted by a success
argument. On the one hand, the Tarski-biconditionals form a simple and basic
theory [Hor98, p. 51]:

[The Tarski-biconditionals] could be explained only by principles
that are simpler and more unified than they are—principles con-
cerning propositional elements and the conditions in which truth
emerges from combining them. But the single respect in which
the body of minimal axioms is not already perfectly simple is
that there are so many of them—infinitely many; and no alleged
explication could improve on this feature. For there are infinitely
many constituents to take into account: so any characterization
of them will also need infinitely many axioms.

On the other hand, the Tarski-biconditionals play a central role in implementing
the explanatory function that the concept of truth plays in our theoretical and
practical lives [Hor98, Chapter 3].

Halbach pointed out that the disquotational principles cannot be taken to be
analytical truths, for they are not conservative over logic [Hal01b].56 The simple
argument goes as follows. Consider the Tarski-biconditionals

T (1 = 1)↔ 1 = 1,

T (1 6= 1)↔ 1 6= 1.

55See Section 6.2.1.
56In [HH17] it is shown that even in free logic, simple Tarski-biconditionals are non-

conservative over logic.
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The right-hand sides of these statements have (by a law of identity) opposite truth-
values. So by Leibniz’s law that identical objects have the same properties, the
sentences ‘1=1’ and ‘1 6=1’ must be different objects. Thus, by logic alone, simple
Tarski-biconditionals allow us to conclude that there are at least two objects.

So if analyticity entails ontological neutrality, then the Tarski-biconditionals are
not analytical. Nonetheless, there might be a case for saying that they are analytical
in the sense that, just as the introduction and elimination rules of conjunction may
be taken to give the meaning of the concept of conjunction,57 disquotational truth
rules or principles give the meaning of the concept of truth.

This line of reasoning has been questioned. Williamson argues that there is
always a possibility for a logical expert to come to doubt some of these principles
and rules on the basis of a complicated and ingenious, but ultimately confused
argument. In such a situation, Williamson contends, we should not say that the
experts fails to grasp the meaning of some of the logical connectives.58

Concerning uniform reflection, we are even more in the dark. Feferman claims
that we are implicitly committed to uniform reflection principles that we accept
without reservation. This claim invites questions about how and why we are so
committed, and how we can proceed from such implicit commitments to corre-
sponding explicit warranted beliefs. In the previous Chapter we have attempted
to address such questions about the microstructure of epistemic commitments that
accompany the explicit acceptance of theories. For consistency and local reflection
we believe that we were relatively successful. For uniform reflection, however, we
did not find satisfactory answers.59 Consider in this context also that due to the
“transcendence” of uniform reflection over local reflection, nothing less than a di-
rect philosophical account of our epistemic warrant for uniform reflection will do
here. In sum, whereas plausible epistemic accounts of our warrant for TB might be
available, the same cannot be said for uniform reflection—not yet, anyway.

Let us now briefly turn to the question how an account of our epistemic war-
rant for compositional truth principles might look like. Here we seek an account
that does not derive that warrant from a prior warrant in believing disquotational
truth principles and (iterated) uniform reflection along the lines that were discussed
earlier in this Section.

The claim that compositional truth principles directly give the meaning of the
concept of truth does not carry conviction. Davidson sought to give a success ar-
gument of sorts for the thesis of the compositionality of truth. He held that this
thesis must plays a central role in any theory that gives us a grip on the meaning
of natural language expressions. However, the Davidsonian research programme of
developing truth functional theories of natural language meaning has not been a
resounding success story. So it seems that, at least so far, our warrant for com-
positional truth principles cannot rest on the success of the theories of meaning in
which they figure prominently.

So the situation can be summed up as follows. The epistemic account of the
compositionality of truth in terms of disquotational truth principles and iterated
uniform reflection principles certainly has an appeal. However, the big unresolved
question in this story is how we come to have warranted belief in uniform reflection

57See for instance [Pra83].
58See [Wil07, Chapter 4].
59See Section 8.6.
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statements for theories that we already believe. This does not at this point come
as a surprise, since we saw earlier that it is very difficult convincingly to justify
uniform reflection without drawing on new conceptual resources.

9.6.3. From classical logic to partial logic. Beside the question how be-
lief in uniform reflection is systematically warranted, there is, unfortunately, an-
other problem with Horwich’s strategy. Earlier, we saw that KF is in a sense self-
undermining. In the same breath, it asserts the liar sentence (λ) and that the liar
sentence is not true (¬T (λ)).60 But even PA, formulated in the extended language
LT , and with the truth predicate allowed in the induction scheme, is arguably not
sound for its intended interpretation. Call this theory PAT . Using the diagonal
lemma, we obtain in PAT the sentence

(L) (λ ∧ ¬Tλ) ∨ (¬λ ∧ Tλ),

where λ is the liar sentence. But (L) seems clearly unacceptable on its intended
interpretation: both disjuncts of (L) are unacceptable, so (L) as a whole is unac-
ceptable. If someone were to assert “this sentence is not true”, and immediately
afterwards state that what she has just said is untrue, we would not know what
to make of her assertions. Similarly, something would be deeply wrong with an
assertion of the second disjunct of (L). But if one of the two disjuncts is the case,
then what would be wrong with asserting it?61

Since RFN2[TB] ⊇ PAT , the theory RFN2[TB] seems then likewise unsound.
This would imply that the derivation of CT from RFN2[TB] does not have war-
ranting force, and the truth generalisation problem remains unsolved.

But perhaps it would be too harsh to say that all truth theories that are for-
mulated in classical logic are unsound. Following [Fie94], we may say that there
are (at least) two concepts of truth. The first is a concept of truth that plays
some role in scientific explanations—e.g. explaining communication by specifying
truth-conditions for some natural language expressions; we can call this theoretical
notion scientific truth. The second is a notion of truth that is governed by rules of
semantic ascent and descent, and we can call it disquotational truth.

The scientific concept of truth is a theoretical concept, like the concept of force
in classical mechanics, for instance. It is related to our pre-theoretic concept of
truth. But there is no reason to think that it should coincide with it, just as there
is no reason to expect that the scientific concept of force coincides with our pre-
theoretic concept of force. The scientific concept of truth is governed by classical
logic, since all scientific concepts are governed by classical logic.

The disquotational concept of truth, on the other hand, coincides with our pre-
theoretic truth concept, which unrestrictedly serves as a a device of full quotation
(semantic ascent) and disquotation (semantic descent).

Indeed, a core part of the meaning of the pre-theoretic truth predicate is given
by principles that allow for a substitution of a sentence φ by the statement of its
truth Tφ and vice versa, at least in all extensional contexts. The principles of
ascent and descent are the following rules of inference:

φ

Tφ

Tφ

φ
.

60See Proposition 5.32.
61This argument is discussed, among other places, in [Fie08, Chapter 6] and in [Hor11,

Section 9.6.3].
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The liar paradox then teaches us that if there is a coherent concept of type-free
disquotational truth, then it is governed by non-classical logic.

The principles governing the scientific concept of truth are not warranted by
their intrinsic plausibility, but by the extent to which they organise our empiri-
cal and non-empirical scientific knowledge effectively. In this way, the scientific
conception of truth fits into a holistic, Quinean picture of scientific knowledge.

Davidson may still be proven right in his expectation that truth theories in
the end play a pivotal role in successful linguistic theories, and more specifically, in
linguistic theories of natural language semantics. Because linguistics is a scientific
discipline, it will be governed by classical logic. And this means that the relevant
truth theories will then also be governed by classical logic. In Quinean fashion, these
truth theories will then gain support from their scientific consequences, despite the
fact that they do not fully agree with our pre-theoretical intuitions about truth.

Suppose, just for the sake of argument, that KF is such a theory. The interesting
question then arises to which extent KF, in such a situation, can play a justificatory
role in mathematics. Suppose that you have mathematically warranted belief in PA
and in nothing more. Presently you come to realise that KF plays a central role
in certain highly successful theories of natural language semantics. Does that then
warrant you to believe in the arithmetical consequences of predicative analysis? If
so, then the nature of your warrant for believing in the arithmetical fragment of KF
that goes beyond PA will be different from the nature of your warrant for believing
in PA. The former is then at least in part empirical; the latter is a priori.

For disquotational truth, the situation is different. The full typefree disquota-
tional rules in partial logic, which result in the weak disquotational theory TS0,62

can stake a claim to intrinsic plausibility. Also, repeated application of the uni-
form reflection rule to this theory does not yield any counterintuitive consequences.
Theorem 6.36 teaches us that two applications of a natural uniform reflection rule
to this disquotational theory results in a natural theory of compositional truth
in partial logic, namely, PKF. Moreover, it follows from Theorem 6.35 that if we
continue uniformly reflecting in this way along an autonomous path (in the sense
of Feferman), then we are able to prove the theorems of a fragment of classical
predicative analysis.63

Halbach and Nicolai have formulated a critique of the disquotational concept
of truth that was discussed earlier,64 and the partial theories of typed and untyped
compositional truth that it gives rise to.65 They argue for instance that PKF is
inferior to KF on foundational grounds. Whereas KF proves and therefore justifies
(the arithmetical part of) classical predicative analysis up to level ε0 (Theorem
5.29), PKF falls short of this (Theorem 5.37). Moreover, we have seen that iterated
applications of a uniform reflection rule applied to KF or even TFB lead one to war-
ranted acceptance of full predicative analysis in an autonomous manner (Theorem
6.28).

Given that KF is to some extent self-undermining,66 the question whether KF
can justify mathematical theories at all is not easy to adjudicate. If one judges

62The theory TS0 was introduced on p. 132.
63See [FHN21, Section 5].
64See Section 9.6.3.
65See [HN18].
66See Proposition 5.32 and the discussion following it.
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that they cannot, then it is not clear that the fact that PKF cannot justify (the
arithmetical part of ) classical predicative analysis is objectionable. Also, we must
in this context remember that Theorem 6.37 shows that this discrepancy in math-
ematical strength between KF and PKF disappears when we instead consider the
schematic versions of these theories.

9.7. From rationality and justification to truth

Instead of taking the idea that proof-theoretic reflection principles express trust
or acceptance for granted, one might decide to investigate the notion of acceptance
of a given theory T directly, with the aim of spelling it out without the help of
reflection principles or the concept of truth. In this case, the concept of accepting
a theory T should be made precise.

9.7.1. Galinon. An attempt at doing this was made by Galinon in [Gal14],
where he focusses on the weakest reflection principle: consistency. In his explication
of the reflection process, Galinon uses two key principles. The first of these is the
Principle of (first-person) Responsibility [Gal14, p. 328]:

If a rational agent accepts a collection T of propositions, then
she must accept “T is acceptable”.

Second, he endorses the following principle [Gal14, p. 325]:

A rational agent must accept that if a collection of propositions
is acceptable, then that collection is coherent.

Galinon argues for the Principle of Responsibility on the basis of norms of ra-
tionality [Gal14, section 7], and he argues for the second principle on the basis
of a “Gödelian dutch book argument” [Gal14, section 5]. Using these two prin-
ciples, Galinon develops the following argument for the acceptance of consistency
statements [Gal14, p. 329]. Suppose a rational agent unconditionally accepts a
mathematical theory T . Then, using the Principle of Responsibility, she must ac-
cept “T is acceptable”. And from this, using the second principle, the agent is
rationally obliged to infer that T is consistent.

The Principle of Responsibility seems a demanding requirement, however. In
the light of our discussion in Section 8.3.2, one might wonder if reflecting on one’s
acceptance of T might not, in some cases, lead one to abandon rather than to
accept one’s acceptance of T . Of course this does not exclude that there are cases
where we reflect on our acceptance of a theory T and legitimately conclude that
T is acceptable. If that is so, then maybe Galinon and Feferman go too far when
they claim that one is rationally obliged to accept reflection principles for theories
that one accepts. Perhaps the claim should rather be that there are cases where
an agent is rationally permitted to accept, on the basis of reflecting on a theory T
that she already accepts, reflection principles for T .67

9.7.2. Believability theory. Galinon’s account of the relation between norms
of rationality and reflection is rather sketchy. In the final chapter of [Cie17],
Cieśliński aims to give an epistemic account that explains why it is rational to ac-
cept reflection principles for a theory that one has good reasons to believe. (In what
follows, PA will play the role of such a reasonable background theory.) Cieśliński’s
account of the relation between principles of rational belief on the one hand, and

67This stance is taken in [FHN21].
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reflection principles on the other hand, is more detailed than Galinon’s account. So
let us discuss Cieśliński’s view in some detail.

Mathematicians are typically cautious. As we have seen, they may be suspicious
of the notion of truth: they may find it philosophical and speculative.68 For this
reason, Cieśliński develops an epistemic account of reflection in which the notion
of truth does not play a role [Cie17, p. 252].

Mathematicians have reasons for their mathematical beliefs. We may reason-
ably expect of mathematicians that they reflect on these reasons, and on the concept
of reason more generally. Cieśliński argues that this leads the mathematician to
come to consider the concept of believability, and to accept certain principles that
govern it. This seems a promising way to develop the connection between ratio-
nality and reflection principles. Rationality, after all, is a matter of having good
reasons for one’s beliefs. Moreover, in spelling out in some detail how, reflecting
on reasons, a mathematician can come rationally to believe reflection principles for
PA, Cieśliński’s account goes substantially beyond that of Galinon.

Cieśliński explains the content of the concept of believability as follows [Cie17,
p. 251]:

The expression ‘ϕ is believable’ means that there is a good reason
to accept ϕ. (To be more exact, the intuitive intended interpre-
tation of ‘ϕ is believable’ is that there is a reason to accept ϕ
which is normally good enough, with ‘normally’ meaning ‘in the
absence of strong reasons to accept the negation of ϕ’).

Here I take ‘there is a good reason’ to mean that the mathematician in question has
a good reason, i.e., that we a subjective rather than an objective notion of reason
is at play here.

Believability in Cieśliński’s sense is a term of art that is unfamiliar to most
epistemologists. Believability is clearly closely related to the familiar notion of jus-
tified belief : it is common to say that a person is justified in her belief that ϕ if
she has good reasons for believing ϕ. Cieśliński avoids the term ‘justified belief’
because he does not want to be burdened with the associations that stem from the
formidable body of epistemological literature that is devoted to this notion. Intu-
itively, it indeed appears that the believability concept and justified true belief are
not completely co-extensional. Consider again the situation where our mathemati-
cian has reasons that speak in favour of ϕ, as well as reasons that speak against
ϕ. In those circumstances, ϕ would be believable, but if the mathematician were
to believe ϕ, she would not be taken to be justified in doing so. Nonetheless, it
is worth bearing the close connection between believability and justified belief in
mind. Indeed, if the predicate B of believability is translated into the predicate J ,
then a super-theory of the base theory of Schuster and Horsten’s basic theory of
justified belief minus the consistency axiom ¬J(0 = 1) is obtained.69

Cieśliński argues that from a rational acceptance of PA, our mathematician
should rationally progress to a rational acceptance of Bel(PA). As we have seen
in section 6.4, from the believability theory over PA, the believability of iterated
uniform reflection principles for PA logically follows (Theorem 6.45).

Believability is a notion that cannot always rationally be discharged: “there is
no automatic transition from B(ϕ) to the rational acceptance of ϕ” [Cie17, p. 269].

68See Section 8.2.2.
69See Section 4.3.
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The Co-Necessitation rule
` B(ϕ)

` ϕ
is indeed not valid. After all, a mathematician might at the same time have good
reasons for ϕ and good reasons against ϕ. In that case, ϕ is still believable in
the sense above, but it would be irrational for the mathematician to infer ϕ. In
particular, this means that even though from Bel(PA), the believability of reflection
principles for PA can be proved, there indeed is no “automatic transition” to an
acceptance of these reflection principles themselves. It is only when she has no
reasons that speak against them, that the mathematician can rationally infer to the
reflection principles themselves. But of course, the mathematician can find herself
in exactly this position, and come through the reflection process that Cieśliński
describes come rationally to believe reflection principles for PA.

Typically, the theory Bel(S) will be proof-theoretically conservative over the
background arithmetical theory S for LPA. The internal theory of Bel(S), i.e.,
the collection of statements that Bel(S) proves to be believable,70 in contrast, will
not be arithmetically conservative over S (Theorem 6.45). This internal theory of
Bel(S) is then identified by Cieśliński with the implicit commitment of S. So the
implicit commitment of S consists of what a mathematician rationally should judge
to be believable if she accepts S. But since co-necessitation does not hold for B, she
need not rationally come to believe all statements that she is implicitly committed
to.

9.7.3. Believing the believability theory. The basic principles of believ-
ability theory sound like norms of rationality in the sense of Galinon. But the for-
mer are more precise than Galinon’s two basic principles of rationality. In addition,
Cieśliński gives a more detailed account of the structure of a process of reflection
than anyone before him. Nonetheless, Cieśliński’s account is still incomplete.

A first sense in which Cieśliński’s account is incomplete concerns the epistemic
warrant for the principles of believability theory themselves. In [Cie17], a fully
detailed account of the mathematician’s warrant for the believability axioms and
rules is not given.71 Let us consider this question in some detail.

We start by making two preliminary points. First, although the notion of be-
lievability may somehow be less speculative or philosophically charged than the
notion of believability, it is a new, non-mathematical concept, which needs to be
acquired in order for the reflective process to go through. Indeed, one can act from
and believe on the basis of reasons without having a general concept of reason,
whereas a general concept of reason is required for having the concept of believabil-
ity. So the question arises whether the general (epistemic) concept of believability is
kosher. I do not doubt that it is, but it is something of which the mathematician has
to convince herself. In this respect, the reflection process that Cieśliński describes
differs from the reflection process described in Chapter 8, which involves no new,
non-mathematical concepts. Secondly, some idealisation is needed in Cieśliński’s
account. The steps in Cieśliński’s reflection principles are non-trivial cognitive ac-
tions. So, just as the discharging of the believability predicate is not “automatic”,
neither is the progression from a rational acceptance of PA to a rational acceptance
of Bel(PA).

70See Definition 6.42.
71Cieśliński’s relevant considerations can be found in [Cie17, p. 252–256].
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The starting point of a reflection process in Cieśliński’s sense consists in the
mathematician accepting PA on the basis of having good grounds for doing so. This
entails her being in a situation where PA is believable for her. So, by introspectively
becoming aware of the grounds of her acceptance of PA, and knowledge of the con-
cept of believability, she can come to have good grounds for accepting Axiom B2 of
Bel(PA).72 By her understanding of the concept of believability, and her knowledge
that having good reasons is closed under Modus Ponens, our mathematician can
also come to have good grounds for accepting Axiom B3.

Rule B4 is somehow in the ballpark of uniform reflection: like RFN, it has
the flavour of an effective version of Hilbert’s ω-rule. Cieśliński is of course fully
aware of the strength of this principle, and of the central role that it plays in his
believability theory [Cie17, p. 255]:

[Rule B4] is absolutely crucial. It is exactly this [Rule] which
permits us to derive (in the scope of ‘B’) strong consequences,
possibly unprovable in [PA] itself.

It is immediate that Rule B4 implies the much weaker Converse Introspection
Rule

(CIR)
` BB(ϕ)

` B(ϕ)

We already know from section 4.3 that in full generality, most introspection prin-
ciples for justified belief (even if not CIR itself!) are inconsistent over a weak and
seemingly unproblematic base theory. This gives us reason to believe that the jus-
tification of introspection axioms is no trivial matter. Indeed, even the principle
CIR appears to be doubtful in full generality. In [SH22, Section 6], the following
situation is considered:73

Suppose that Catrin finds an apparent proof, which is compli-
cated and long, for a mathematical statement φ. She takes her
argument to be a valid mathematical proof, and checks it several
times. She lets some of her colleagues check her proof, too: no
one finds a mistake. Yet there is a subtle mistake in Catrin’s
mathematical argument. In this situation, it seems that Catrin
is not justified in φ, since her argument contains a mistake.
Nonetheless she is justified in believing that she is justified in
believing φ. She fulfilled her epistemic obligations in that re-
gard: she did all she could do to secure her belief that she has
justified the conclusion of her mathematical argument.

There are variations on this scenario. For instance, instead of consulting her col-
leagues, she could run her putative proof through a proof checker, which, because
of some hardware glitch or software problem would give the argument a clean bill
of health. In situations such as these, it seems that Catrin has good reasons for
believing B(φ); yet she does not have good reasons to believe φ. In any case, there
is a non-trivial question here: what are the mathematician’s reasons for accepting
Rule B4?

72The Axioms of Cieśliński’s believability theory were discussed in Section 6.4.
73In [Hor18], another worry about Rule B4 is discussed.
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Rule B5 seems to be inductively justified, conditional on the rational accept-
ability of the other rules and axioms. If the principles B1–B4 are justified then it
can easily be seen inductively that B5 must be fine, too.

Aside from the worry concerning Rule B4, it seems to me that in [Cie17] the
defeasible nature of the inference rule

` B(ϕ)

` ϕ
has not been described in sufficient detail. In order to be a complete account
of reflection, the conditions under which the believability operator may rationally
be discharged from a proposition of the form B(ϕ) must be described more fully.
We also need an account of the way in which such a discharge can later again be
withdrawn when reasons against ϕ are found. In other words, believability theory
must be integrated with a theory of belief revision. I see no reason why this cannot
be done, so I take this to be a task for future research on believability theory.

9.7.4. Discussion. The main worry appears to be the justification of Rule
B4. But if epistemic warrant for that Rule can be found, then rational belief and
even knowledge of (iterated) uniform reflection principles can be obtained through
reflecting on believability.

I will now compare the believability reflection process with the reflection pro-
cess that was described in Chapter 8, assuming that both processes can lead to
rational belief in or even knowledge of reflection principles. Let Belinda be a math-
ematician who reflects on believability (over PA) and who agrees with Cieśliński
about the philosophical interpretation and rationale of this process, and let Conny
be a mathematician who reflects on consistency (of PA) in the manner described
in Chapter 8.

The following two differences between the two reflection processes are obvious.
Through her process of reflection, Belinda arrives at stronger reflection principles
(uniform reflection principles) than Conny does through her process of reflection
(consistency statements and perhaps local reflection principles). Belinda’s reflec-
tion process essentially involves a new non-mathematical concept (believability),
whereas Conny’s reflection process does not. Therefore Belinda’s eventual knowl-
edge of reflection principles will not be purely mathematical in nature, whereas
Conny’s knowledge of consistency statements will be purely mathematical.

Belinda’s notion of acceptance of the background theory (PA) is guarded,
whereas we have seen Conny’s notion of acceptance to be unconditional. Conny be-
lieves PA without any reservations. In particular, she does not doubt its consistency—
she has not even considered the question. Belinda is more cautious in the sense
that she does not unqualifiedly accept PA. She regards PA merely as very plausible
for the time being, pending further evidence.

Belinda believes that Conny is rash. After stage 1 of her reflection process,
Conny is able to carry out the following quick consistency proof.74 She believes
that she is disposed to accept any consequence of PA. In particular, she can see
(by universal instantiation) that if she were to obtain a PA-proof of 0=1, then she
would on the basis of that come to believe 0=1. But she can also easily come
to know that she is not disposed to accept 0=1. Therefore, by Tollendo Tollens,
she concludes that PA does not prove that 0=1. Indeed, this Myhill’s consistency

74Thanks to Cezary Cieśliński for pressing these concerns in private conversation.
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argument that we have considered earlier,75 and it is a bare bones version of the
reflection process that was described in chapter 8. Belinda’s concern is that this
is too easy, that epistemic warrants for the consistency of PA do not come this
cheaply. This would have been avoided, Belinda says, if Conny’s initial belief in PA
would have been more guarded and conditional.

Conny believes, on the other hand, that Belinda is epistemically intolerant.
Belinda maintains that the mathematician should believe the consistency of PA,
based on a believability reflection argument [Cie17, p. 274]:

[Accepting the believability axioms for the theory Th that he al-
ready accepts] is something which [the epistemic agents who re-
flects on his practice] should do, as rejecting (or even suspending
judgement on) the statement ‘All theorems of Th are believable’
would make his practice irrational.

Conny believes that this is going too far. She urges Belinda to opt instead for a
more liberal conception of rationality, on which it is not irrational to refrain from
accepting Bel(PA), possibly because of doubt about some specific principle (such as
Rule B4, perhaps), or because of scepticism about the viability of the general notion
of justified belief (and thus also of believability). Nonetheless, Conny does not have
to reject Belinda’s rejection process in its entirety. She may admit that reflecting on
believability may be one way to come to know proof theoretic reflection principles
of PA. (Indeed, Conny sees that her own reflection process is not powerful enough
to lead her to accept iterated uniform reflection principles for PA.)

9.7.5. Instrumental acceptance and believability. In the foregoing, we
have investigated in some detail several forms of acceptance of a theory : full accep-
tance, acceptance as true, and believability. In this section, we take a closer look
at instrumental acceptance of a theory.

In recent times, instrumentalism is probably best known from the philosophy
of science. According to van Fraassen’s anti-realist view, we should accept our
best scientific theories in an instrumentalist sense [vF80]. Here instrumentalist
acceptance of a scientific theory S is interpreted as entailing unconditional belief in
the observational consequences of S, but no more. We may, as rational beings, also
fully believe unobservational parts of S, but the canons of rationality do not oblige
us to do so.

In the foundations of mathematics, Hilbert articulated and defended an in-
strumentalist position [Hil26]. According to this view, ZFC is an ideal theory,
which we should not unconditionally believe. Instead, we should accept it as a
useful engine for proving real statements, which we should fully believe. Hilbert
was somewhat vague about the question which theorems of set theory count as
real statements in this context. Perhaps the real statements of ZFC are those
ZFC-theorems that are purely about the hereditarily finite sets, or, equivalently,
its arithmetical statements. But there are also indications that Hilbert interpreted
the class of real statements more restrictively as the ZFC-theorems that can be
interpreted as statements in the quantifier-free language of PRA.

Hilbert’s programme went further than his instrumentallist stance towards ideal
mathematics. The aim of his program was to prove the consistency of set theory

75See p. 227.
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(or perhaps even the uniform reflection principle for ZFC restricted to arithmeti-
cal statements) in a “real” mathematical theory such as PRA (or, perhaps, less
restrictively: in PA). We know that this program failed in spectacular fashion.
Nonetheless, one can adopt Hilbert’s instrumental stance towards infinitary mathe-
matics without signing up to his program.76 Observe that if one would take such an
instrumentalist stance towards ideal mathematics, then it seems that one would be
implicitly committed to certain statements that go far beyond PA. If one had rea-
sons to believe ¬Con(PA), for instance, then it could not play the instrumentalist
role that Hilbert wants it to play.

We have seen that the most popular theory of type-free truth, KF, has self-
undermining features (Proposition 5.32). So it is difficult to fully believe everything
that KF proves. For this reason, instrumentalism is particularly appealing in the
area of theories of self-referential truth.

Even though it is in some sense self-undermining, KF is arithmetically sound
(Theorem 5.26). So one option is to see KF as an engine that reliably produces
arithmetical truths. Perhaps, in some of his moods, Feferman saw things along
these lines, for he writes in his classical article on KF [Fef91, p. 3]:

The schematic notion of reflective closure meets among other
things the aim to give a more perspicuous generation procedure
for predicativity without use of progressions of theories or prima
facie impredicative notions such as those of ordinals or well-
orderings. As already mentioned, this had previously been ac-
complished [. . . ] in a quite different way tied essentially to the
basic ideas of predicativity. The characterization there may still
be considered more persuasive for that purpose, but I hope the
reader will find the use of the notions here to be of indepen-
dent interest as a general means of expressing closure under the
reflective process.

Reinhardt has also advocated an instrumentalist stance towards KF. But he
believed that instead of only its first order arithmetical consequences, we should
fully believe its entire internal logic IKF [Rei86].77 The reason is that IKF belongs
to the extension of the truth predicate at the least fixed point model, which is an
intended interpretation of KF. It is not clear that such a semantic justification for
IKF is acceptable: it appears to be an appeal to a notion of truth in the metatheory
that goes against the spirit of the axiomatic approach to truth. But let us set that
worry aside here.

At this point one may wonder whether the instrumental acceptance of KF
carries with it implicit commitments that go beyond KF. The investigation of this
question, using tools of believability theory, is the subject matter of [CG23].

A first observation is that we cannot identify the implicit commitments of an
instrumental acceptance with Bel(KF), where Bel is Cieśliński’s believability the-
ory that we have discussed earlier: otherwise someone who instrumentally accepts
would be implicitly committed to the whole of KF! So the believability theory would
have to be modified for instrumental acceptance.

76Similarly, one could take an instrumentalist stance towards class theory, and see a class

theory such as MK merely as an ‘ideal’ instrument for proving first-order ‘real’ (i.e., first order)

statements about sets.)
77The theory IKF was defined on page p. 142.
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Reinhardt argued that someone who instrumentally accepts KF (in his sense)
is not implicitly committed to RFN [KF ], but instead to the following “internal”
uniform reflection principle [Rei86, p. 232]:

Definition 9.2. RFNI [KF ] ≡ ∀ϕ ∈ LT : BewKF (T (ϕ))→ T (ϕ).

Importantly, Reinhardt observes that RFNI [KF ] is in the extension of the truth
predicate in the least fixed point model. So it can be coherently added to IKF to
obtain a stronger but equally unobjectionable truth theory.

All this is taken by Castaldo and G lowacki as a clue for how Cieśliński’s believ-
ability theory should be modified for the appropriate epistemic attitude towards
KF. The resulting believability theory for instrumental acceptance of KF, which
we call Bel∗(KF ) is formulated in the language LT,B , and consists of the following
principles:78

B1∗

KF ;

B2∗

∀ϕ ∈ LT : BewKF (T (ϕ))→ B(ϕ);

B3∗
` ∀xB(ϕ(x))

` B∀xϕ(x)
;

B4∗
` T (ϕ)→ T (ψ)

` B(ϕ)→ B(ψ)
.

Clearly Axiom B2∗ is inspired by Reinhardt’s reflection principle RFNI [KF ].
Rule B3∗ is again a version of a formalised ω-rule. Rule B4∗ expresses (roughly)
that having a proof that a statement is true is a good reason for judging that
statement to be believable.

Castaldo and G lowacki go on to show that the new believability theoryBel∗(KF )
has the following properties:

Theorem 9.3. Bel∗(KF ) is conservative over KF for sentences not containing
the believability predicate B.

Theorem 9.4. Bel∗(KF ) ` B(¬BewKF (0 = 1)).

Theorem 9.5. Bel∗(KF ) ` B(RFN(IKF )).

Theorem 9.4 says that even instrumental acceptance of KF à la Reinhardt en-
tails some sort of commitment to the consistency of KF (namely, commitment to the
believability of its consistency), in the same way that Hilbertian instrumentalism
entails a commitment to the consistency of ideal mathematics.

Theorem 9.5 says that Reinhardt’s reflection principleRFNI [KF ](= RFN [IKF ])
also belongs to the implicit commitments of instrumental acceptance of KF. This
makes one wonder how tight the connection between the “normal” believability
theory over IKF on the one hand, and the modified believability theory over KF is.
After all, much if not all of the content of Reinhardt’s instrumentalism seems to be
that we should fully believe IKF. So, in particular, one might wonder:

78Actually, this is only one out of four believability theories modified for instrumental accep-
tance that are discussed in [CG23]. The authors do not express a preference for one of these four

believability theories.
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Question 9.6. How does Bel∗(KF ) relate to Bel(IKF )?

In some sense, one would expect them to coincide. But literally speaking, this
can hardly be correct since IKF is a non-classical theory, so presumably Bel(IKF)
is non-classical, too. Indeed, in order to make progress with this question, one
would first have to spell out in precise terms what the believability theory over a
non-classical theory looks like.

In our discussion of Cieśliński’s believability theory for unconditional accep-
tance,79 we expressed some reservations about a variant of Rule B3∗. It is not hard
to see that these worries also apply to Rule B3∗ itself. Against the background
of this, it is worth remembering that the detour through believability theory is
perhaps not necessary. One might take the implicit commitment of instrumentalist
acceptance of KF to be directly given by RFNI [KF ] (and iterations of it). But
then more would need to be said. Just as there is the question how and why we are
implicitly committed to uniform reflection for theories that we unconditionally ac-
cept, we have the question why and how we are committed to the uniform reflection
principle RFNI [KF ] if we instrumentally accept KF.

9.8. Warrant for set theoretic reflection

In the last Section of this Chapter, we turn to questions about warrant for the
set theoretic reflection principles that were discussed in Section 6.5. Many philoso-
phers of mathematics believe that we have a good grip on questions of warrant for
set theoretic reflection principles. Against this, I will argue that the question why
(and indeed whether) set theoretic reflection principles are true, is in fact not an
easy one.

9.8.1. From theology to richness. We have seen earlier how Cantor adopts
Augustine’s view that the mathematical objects (such as sets) are ideas in the mind
of God.80 Moreover, Cantor argues that not only God’s mind as a whole, but
also the mathematical part of it, cannot even approximately be known [Can32,
Abhandlungen zur Mengenlehre III, Endnote to section 4, p. 205]:

The Absolute can only be acknowledged, but never known, nor
even approximately known.

Here Cantor takes us to already have ‘approximate knowledge’ of God if we can
‘take the measure’ of a dimension or compartment of God’s mind. In particular, we
would have approximate knowledge of God’s mind if we could ‘measure’ the extent
of it by means of the natural numbers, since the concept of the natural numbers
is, for Cantor, perfectly clear. This leads him to posit a reflection argument in
mathematics [Can32, Abhandlungen zur Mengenlehre III, Endnote to section 4,
p. 205]:

Whereas hereto, the infinity of the first number class (I) [i.e.,
the class of finite cardinal numbers] alone has served as such a
symbol [of the Absolute], for me, precisely because I regarded
that infinity as a tangible or comprehensible idea, it appeared as
an utterly vanishing nothing in comparison with the absolutely
infinite sequence of numbers.

79See Section 9.7.4.
80See p. 76.
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In other words, Cantor concludes from the unknowability of the mathematical uni-
verse as a whole to the existence of ω as a completed infinity.

His reasoning here goes along the following lines.81 Suppose there is a one-to-
one correspondence between the natural numbers and the mathematical world as
a whole. Then ‘the measure has been taken’ of the mind of God using a perfectly
clear measuring stick (the natural numbers). So by elementary knowledge of the
natural numbers we have knowledge of the mathematical part of the mind of God.
But this is incompatible with the epistemic transcendence of God. Therefore the
collection of the natural numbers must be of bounded size in comparison to the
immeasurability of the mind of God. Bounds are given by numbers. Therefore
there must be a number that measures the size of the natural numbers. This will
then have to be a transfinite number: a bounded completed infinity.

There seems no obstacle to the human knowability of the number that mea-
sures the size of the natural numbers, since this knowing this number would give
us no knowledge of the mathematical compartment of the mind of God, which im-
measurably transcends the collection of the natural numbers. All this also holds
for other ‘clear’ collections of numbers, such as the rational numbers and the real
numbers. So might as well try to come to know the cardinal number of the natural
numbers, as well as the cardinal numbers of other infinite collections, and how to
calculate with these transfinite numbers. And this is of course exactly what Cantor
did. In this way, he went beyond what Augustine thought possible. The latter’s re-
marks were tentative, and he thought that in any event calculating with transfinite
numbers is beyond the intellectual capacities of humans.

Cantor’s reflection argument is restricted in scope. The Burali-Forti argument
shows that the plurality of all ordinal numbers does not form a set. So, for Can-
tor, the infinity of all ordinals cannot be a ‘tangible, comprehensible idea’, and is
therefore not subject to a reflection principle.82 This is somewhat puzzling, though,
since the definition of the concept of ordinal seems quite perspicuous.

We have seen how Gödel thought that set theoretic reflection principles follow
from the unknowability of V . Actually, it seems rather the undefinability of V ,
together with its classes, that is the fundamental thought here. It motivates the
that if a definable property holds in V (with its classes), then

Modern set theoretic reflection arguments more closely follow Philo’s reason-
ing83 than Cantor’s reasoning about the Absolute. Set theoretic reflection principles
center around indiscernibility. They somehow express that the set theoretic uni-
verse V is indistinguishable from certain parts of V. It is not completely clear which
notion of indiscernibility Philo had in mind: perceptual indiscernibility, epistemic
indistinguishability in general, semantic indiscernibility. . . In modern set theory, the
focus is firmly on a form of semantic indiscernibility. Like in Philo’s reflection from
God to certain angels, and in contrast to Cantor’s reflection arguments, no dis-
tinction is made in modern set theoretic reflection between ‘clear’ and ‘unclear’ (or
‘indefinite’) infinities.

Many (but by no means all) foundational researchers today believe reflection
arguments in set theory to be warranted. Maddy, for instance writes that reflection
argumentation “is probably the most universally accepted rule of thumb in higher

81See [Hal84, p. 116–118].
82In his later work, Cantor calls the plurality of all ordinals an inconsistent multiplicity.
83See Section 3.3.
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set theory” [Mad88, p. 503], where “rules of thumb” are “vague intuitions about
the nature of sets, intuitions too vague to be expressed directly as axioms, but
which can be used in plausibility arguments for more precise statements” [Mad88,
p. 484].

Contemporary foundational researchers seek to support reflection arguments
and reflection principles in set theory by richness considerations.84 The idea is
that “the set-theoretic universe should be sufficiently rich (in the sense that there
are sufficiently many sets of varied kinds) that we are unable to distinguish the
universe from one of its initial segments” [Bar16, p. 354].

Maddy gives an excellent example of this kind of reasoning. Let me quote her
somewhat at length here [Mad88, p. 750–752]:

The most general version of Vopenka’s principle states that any
proper class of structures for the same language will contain two
members, one of which can be elementarily embedded in the other.
The rule of thumb usually cited as lying behind this principle is
the idea that the proper class of ordinals is extremely rich [. . . ]
Suppose, for example, that a process is repeated once for each
ordinal—Ord-many times, we might say—and every step produces
a structure. Then richness implies that no matter how closely we
keep track of the structures generated, there are so many ordinals
that some will be indistinguishable. A similar idea can be devel-
oped from reflection: Anything true of V is already true of some
Rα, that is, there is an Rα that resembles V. This property of V
should also be reflected, that is, there is an Rα with a smaller Rβ
that resembles it.

Either way, we get a new rule of thumb, resemblance:
. . . there are Rα’s that resemble each other.
. . . there should be stages Rα and Rβ which look very much

alike.
[. . . ] The trick, of course, comes in spelling out “resembles”.

To do this, let us go back to richness and imagine ourselves
in an Ord-long process, generating an Rα, at each stage, one for
each ordinal. Suppose we step several ranks at a time, so that by
step α, we are already to Rγα , for some γα > α. We keep careful
track of the structures at each stage by making copious notations
on a clipboard, one scoresheet for every stage; we note down every
detail of the structure we have just generated, along with every
detail of the process that got us there. Richness then implies that
with so many stages, our scoresheets cannot all be different. At
step one, we record the complete diagram of

(Rγ0 , ε, 〈Rβ : β < 0〉).
At step two, we look to see if that scoresheet is satisfied by

(Rγ1 , ε, 〈Rβ : β < 1〉).
Of course it is not, so we write down the complete diagram of
this new structure. And so on. At each step, we generate a new

84See for instance [Mad88], [Bar16].



9.8. WARRANT FOR SET THEORETIC REFLECTION 257

structure, then check to see if any of our old scoresheets will do; if
not, we prepare a new one.

Richness then guarantees that we will eventually reach a step
α′ where one of our old scoresheets will match up. That is, we will
reach a step α′ where

(Rγα′ , ε, 〈Rβ : β < α′〉)
is a model of the complete diagram of

(Rγα , ε, 〈Rβ : β < α〉)
for some α < α′. This means that the smaller structure can be
elementarily embedded in the larger; that is:

∃j : (Rγα , ε, 〈Rβ : β < α〉) −→e (Rγα′ , ε, 〈Rβ : β < α′〉).
This embedding must be nontrivial, because:

α′ = length(〈Rβ : β < α′〉)

= length(j(〈Rβ : β < α〉))
= j(length(〈Rβ : β < α〉))
= j(α).

We thus have a nontrivial elementary embedding of Rα into Rα′ .
Our conclusion is a special case of Vopenka’s principle, namely,
that in any proper class of Rα’s, there is a nontrivial elementary
embedding of one into another.

However, statements about the richness of V do not have the privileged epis-
temological status that bible-based statements about the nature and properties of
God once had. This raises the question: how do we know that the set theoretic
universe has the required richness to support reflection arguments and reflection
principles? We have seen that Maddy at this point makes a vague appeal to math-
ematical intuition. But this is hardly satisfactory, and more needs to be said.

9.8.2. The nature of classes. Let us tread carefully and to go slowly at
this point. First we must prepare the background by being clear about what the
prerequisites are for set theoretic reflection principles to make sense. Then we can
proceed to investigate why we might accept (some of) them.

We have seen that set theoretic reflection principles are mostly not only about
sets but also about proper classes. They cannot be true if there are no proper
classes. The universe V must exist, as well as many other proper classes (such as
Ord), and quantification over proper classes must make good sense. Let us for the
sake of argumentation grant all this.

Russell’s argument shows that proper classes cannot be sets. But we have
seen that a predicative conception of classes also will not do. Indeed, against the
background of a predicative class theory such as NBG, already Bernays’ reflec-
tion principle entails that the classes are governed by the Morse-Kelly axioms.85

Moreover, under these assumptions there would in addition have to be a global well-
ordering of the set theoretic universe.86 There is no consensus among set theorists

85See Theorem 6.51.
86See Theorem 6.52.
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about whether there is a global well-ordering of the universe; whether there exists
an (in some sense) definable well-ordering of V is of course at least as dubitable.

One person’s proof is another person’s reductio. On the one hand, one may
see this connection as conclusive evidence that the predicative conception of classes
is untenable. On the other hand, one can see this as conclusive evidence that set
theoretic reflection principles are false. The latter position is taken and defended
in [Sch94].

There appear to be three conceptions of classes that are robust enough for
set theoretic reflection principles to make sense. First, there is the conception of
proper classes as very large collections. Second, there is the conception of classes
as mereological parts of the set theoretic universe.87 Third, there is the conception
of classes as pluralities of sets.88

Until the 1980s, the first conception, which we may perhaps still call the stan-
dard conception, was the only rival to the predicative conception of classes. On this
view, proper classes are collections, and do not differ in this respect from ordinary
sets. Nonetheless, proper classes cannot be sets. According to the standard con-
ception, this is because proper classes are too large to be a set. Of course Russell’s
argument can be applied to classes too. There can be no class of all proper classes,
for such a collection would be too large to be a proper class. The collection of all
classes is then a hyperclass. The collection of all hyperclasses is again too large to
be a hyperclass, and so on.

According to the mereological conception of classes, the set theoretic universe
is not a collection but a mereological whole, where the parthood relation is the
sub-class relation. The laws that govern the mereological parthood relation are
quite different from the laws that govern the elementhood relation. For instance, a
part of a part of x is always a part of x, whereas all elements of elements of y are
elements of y only if y is a transitive set.

The plural conception of classes is a no class-theory of classes. According to
this conception, sets are in the final analysis all the mathematical entities there are.
But there exist two types of quantification. First, there is singular quantification,
which takes the following form:

There is at least one entity x such that the property ϕ holds of it,

where for our purposes, the entities that are quantified over are the sets. Aside
from this, in ordinary discourse we also use plural quantification, which generally
takes the following form:

There are some entities xx, such that the property ϕ holds of them.

Singular quantification is of course standardly formalised by the familiar tool of first-
order quantification (“∃xϕ(x)”); its laws are described in first-order logic. Plural
quantification is easily confused with singular quantification over entities that are
of a different nature than sets, namely classes. But this interpretation can be, and
should be, resisted. The reason is that plural quantification over sets does not carry
with it an ontological commitment to entities that are in certain respects like sets,
but that are not sets but proper classes.

These three conceptions of classes all motivate impredicative class theories.
Indeed, arguably on each of these conceptions, class theory is governed by the

87See [WH16].
88See [Boo85].
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laws of ZFC2. So if we want to decide between them, then we have to do so on
philosophical grounds. So let us now briefly discuss some philosophical differences
between the three conceptions.

Hard questions can be, and have been, asked about the standard conception of
classes. According to this view, our most general theory of collections is not given
by set theory, but by a theory of the hierarchy of sets, classes, hyperclasses, and
so on, where the question arises how far this hierarchy continues. At this point,
one’s instinct is to internalise the type structure of this hierarchy in roughly the
way in which ZFC internalises the structure of the ranks of the universe, which
can after all also be seen as types. But once this is done, one wonders whether
anything was gained by the whole exercise. After all, one ends up with a theory of
collections that is virtually indistinguishable from some strong theory of sets that
includes many inaccessible ranks.

Let us now turn to the mereological conception of classes. Material objects are
standardly thought to be governed by the part-whole relation. Perhaps also mental
entities have parts. Thoughts and emotions may, for instance, perhaps be seen as
parts of minds. But the mereological conception of classes non-trivially extends the
province of the part-whole relation by positing that even certain abstract entities
(such as V ) have proper parts.

When set theorists engage in class talk, as they freely do in informal practice,
they often seem to use the machinery of singular predication (the class of all sets,
the class of the ordinals). Indeed, when one tries to paraphrase apparently singular
quantification over more complicated classes in terms of plural quantification, it
sounds increasingly awkward and hard to understand. Thus, when taken at face
value, class talk commits set theorists to extending their ontology to extend their
ontological commitment to include proper classes. So the plural interpretation of
class talk involves a rational reconstruction of this piece of informal discourse.

As far as providing a suitable background for set theoretic reflection principles
goes, the three conceptions discussed above are certainly more suitable than a
predicativist conception of classes. Still, there are some subtleties here.

The mereological conception of classes provides a very natural natural frame-
work of set theoretic reflection principles. The quantification involved is ordinary
first-order quantification, which is well understood. So set theoretic reflection prin-
ciples can be interpreted straightforwardly as saying that the set theoretic universe,
as a mereological whole, with all its parts, resembles a small part of the set theoretic
universe (a set), with its parts. This is in harmony with the history of ontological
reflection, and in particular with the way in which Philo conceived of ontological
reflection.89

If we opt for the plural interpretation of classes, then the notion of resemblance
that is at the heart of set theoretic reflection has to be “pluralised”, too. There
will then be no question of a small entity resembling a large entity, because the
large entity does not exist. Instead, on this conception, a set theoretic reflection
principle expresses that some sets and their relations resemble some other sets and
relations on them, where the latter sets are “small in number”.

In the more established set theoretic reflection principles, there is mostly no
talk about hyper-classes, hyper-hyperclasses, etcetera. These reflection principles
do not express that the universe, with all its, classes, hyper-classes,. . . resemble some

89See Section 3.3.
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set with its power set, the power set of its power set, etcetera. This may be seen
as a mark against the standard conception of classes as an appropriate framework
for considering set theoretic reflection principles. On the other hand, the standard
conception can accommodate higher-order reflection principles, which is not easily
done with the mereological conception or with the plural conception.90 Thus the
standard conception of classes might serve as a framework for considering higher-
order versions of Welch Reflection,91 which yield α-extendible cardinals for α > 1.92

Perhaps the standard conception of classes can even function as a framework that
accommodates plausible set theoretic reflection principles that entail the existence
of much larger infinities, such as supercompact cardinals.

9.8.3. What rests on what? Let us now take up the question with which
we were left at the end of Section 9.8.1, namely the question wherein our warrant
for set theoretic reflection principles consists.

We have seen that strong set theoretic reflection principles are class theoretical
statements. Many set theorists are somewhat suspicious of classes in general. So
these researchers will regard set theoretical reflection principles as not warranted
at all.

Many of those who do take set theoretical reflection principles to be warranted
(such as Gödel) take them to be intrinsically justified.93 More specifically, they
believe that there exists such a rich variety of sets (and in particular ranks of
V ) that the universe as a whole, together with its classes, has a high degree of
undefinability.94

We have seen how something like this metaphysical thought used to be backed
by theology. The theological justifications for ontological reflection that were given
before the twentieth century appeal to what the bible teaches us about God. As a
source of knowledge, the bible had a status similar to that of perceptual experience.
Its statements were treated as givens.

When God disappeared, He cleared out his bank account. The old theological
arguments convince no longer. Indeed, we live in an age in which all theological
argumentation is met with a great deal of scepticism. So we must really face the
question: why should we believe that the set theoretic universe is so rich that it sup-
ports set theoretic reflection principles? Unfortunately, contemporary philosophy
of set theory has not really engaged with this question to any great extent. At any
rate, vague appeals to mathematical intuitions at this point do not suffice. If the
richness premise is not argued for in detail, then it is hard to evaluate the strength
of the argument in favour of set theoretic reflection principles.

Against the background of this, Sam Roberts defends the claim that set theo-
retic reflection principles are not intrinsically but extrinsically justified : we should
believe these principles because of their consequences.95 He argues that within

90The plural conception would have to be extended in such a way that hyper-classes are
conceived of as “super-pluralities”.

91See p. 169.
92For considerations in this direction, see [Rob17].
93We discussed the distinction between intrinsic and extrinsic epistemic warrant in Section

1.7.
94For an example of such a defence of strong set theoretic reflection principles, see for instance

[McC21].
95See [Rob].
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the rather broad category of extrinsic justification, set theoretic reflection princi-
ples score particularly highly on the dimension of unification of our set theoretic
knowledge. We have seen that even weak set theoretic reflection principles make
the Axioms of Infinity and Replacement superfluous. Moreover, strong reflection
principles entail most of the strong principles of infinity that play an important
role in set theoretic practice. Furthermore, set theoretic reflection principles entail
natural generalisations of axioms of standard first-order set theory (Replacement,
Choice). Lastly, one might add that set theoretic reflection principles entail (long
iterations of) proof theoretic reflection schemes for the background theory (“good”
consequences) in ways that large cardinal axioms typically don’t.96

The truth of set theoretic reflection principles is not the only explanation of
their success. Embedding principles seem to equally good at unifying and organising
our set theoretic knowledge, but they differ from ‘standard’ reflection principles in
not implying the existence of a global well-ordering of V . Indeed, if there are
plausible large cardinal principles that can be formulated as embedding principles
but not as ‘standard’ reflection principles, then embedding principles are perhaps
even better at unifying our set theoretic knowledge. In other words, it could be seen
as an alternative explanation of the “success” of set theoretic reflection principles
that their desirable consequences are entailed by embedding principles. (Of course,
the success of embedding principles and of set theoretic reflection principles could
still be good reasons for accepting both of them.)

One might wonder, however, if the explanatory direction might not be the other
way round. In Section 1.7, I argued that neither the acceptance of the axioms of
ZFC, nor the acceptance of large cardinal axioms needs justification: the acceptance
can be warranted without being justified. Now suppose that acceptance of large
cardinals principle is warranted in some such non-justificatory way. Large cardinal
axioms entail reflection phenomena within V . They entail that there are ranks Vκ
that are very similar to many other ranks, in the way that “miniature versions” of
reflection principles express.97 Moreover, reflecting ranks resemble the true state
of affairs to a significant degree. (For instance, they are standard models of the
basic axioms of set theory.) Now suppose that one also accepts that the universe
V and its “large parts” exist as entities, namely as proper classes. The universe
V , with its classes, is the true state of affairs, and is suitably closed in the way
that reflecting ranks are. Therefore, one might say, one might expect ontological
reflection to hold also for V and its classes. Therefore, in other words, set theoretic
reflection principles are likely to be true. (A similar argument can of course be
given for class embedding principles.)

Some set theorists may actually reason in this way. They are interested in
what holds for all sets, for all ordinals, etcetera. In discussing the situation they
are interested in, they naturally extend their ontology: they treat the set theoretic
universe, the ordinals, and so on, as entities that are much like sets. Of course these
mathematicians are aware of the fact that these “entities” are not sets. They have
typically never heard of plural quantification, or of mereological wholes. So they are
somewhat vague about the nature of these new entities, about how many of them
there are, and about the laws that govern them. Moreover, they do not want to
worry much about such matters, because they know that these new entities are not

96See Theorem 6.7.
97First-order versions of embedding principles were briefly discussed on p. 174.
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mathematical entities in exactly the same sense as the objects of their investigations,
i.e., the sets. Nonetheless, they take the similarity between V and its classes on
the one hand, and reflecting ranks (with their subsets) on the other hand, to be
sufficiently strong to accept precise set theoretic reflection principles for V .

Reflection arguments and phenomena play an essential role in set theoretic
practice: they crop up everywhere. But if the foregoing considerations are along
the right lines, set theoretic reflection principles do not play an important role in
set theory, and set theoretic reflection principles do less justificatory work in set
theory than is fairly commonly believed.



Part IV





CHAPTER 10

Outlook

We have discussed lines of research that have been pursued intensely in math-
ematical logic since the 1950s. These research directions were from the start con-
nected with deep foundational ideas. Philosophers have been slow to analyse the
philosophical ideas behind these research programmes, and they (we) are still lag-
ging far behind. That is probably just in the nature of the discipline: the owl
of Minerva takes flight only at dusk. Be that as it may: there is much work for
philosophers still to do.

In this short final chapter, I do two things. First, I try to canvas what we have
have learned in our investigation of reflection in the mathematical sciences. Second,
I identify some main open problems, and point to possible directions of future
research. I will be happy if concerning one or two of them, significant progress will
be made in the coming years.

10.1. Looking back

Even though from a logico-mathematical point of view, quite a bit is known, our
philosophical discussion of numerous issues has been rather exploratory in nature.
In particular, we might think that we know quite a bit about the epistemology of
reflection principles in the mathematical sciences. But this, I believe, is an illusion.

Reflection principles are thought to play a significant role in reducing incom-
pleteness in the mathematical sciences. Proof theoretic reflection principles reduce
Gödelian incompleteness, whereas set theoretic reflection principles reduce incom-
pleteness phenomena that are revealed by forcing. (Of course there may be sources
of mathematical incompleteness that we do not yet know about.)

We know fairly well, I believe what proof theoretic reflection principles are,
and what set theoretic reflection principles are. But in the case of set theoretic
reflection principles, even this is not completely trivial. It is not always clearly
recognised, for instance, in which sense embedding principles differ from “real” set
theoretic reflection principles.

Proof theory has done an excellent good job, over the past 70 or so years, in
calibrating the strength of proof theoretic reflection principles, both the “purely
mathematical” ones, an the proof theoretic reflection principles in which the con-
cept of truth is involved. Even though the situation in the case of set theoretic
reflection principles is not as clear, there also we know quite a bit about their
strength. Surprisingly, it has emerged in the last decade that natural set theoretic
reflection principles can have quite a lot of large cardinal strength. Indeed, Gödel’s
bold conjecture that all plausible large cardinal axioms can be obtained from set
theoretic reflection principles seems to me still not to have been refuted. But as for
large cardinal principles, there seem to be limits to the extent to which set theo-
retic reflection principles can reduce incompleteness revealed by forcing. It seems
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unlikely, for instance, that reflection principles will be of much help in resolving the
Continuum Problem. As far as consistency strength goes, but not necessarily as far
as outright strength goes, set theoretic reflection principles easily outperform proof
theoretic reflection principles.

On the question of epistemic warrant for reflection principles, it seems to me
that we are in a better position vis-à-vis proof theoretic reflection than vis-à-vis set
theoretic reflection. There is a sense, I think, in which warranted full acceptance
of S puts us in an excellent epistemic position for coming to accept iterations of
consistency and local reflection principles for S in a warranted manner. Concerning
set theoretic reflection, the smoke has not lifted yet. On the “intrinsic” side, it is
at present unclear what the epistemic force of richness arguments is. The reason
for this is that these arguments have not yet been worked out in sufficient detail
to evaluate them. The strength of “extrinsic” arguments for set theoretic reflection
principles seems to me at present also somewhat unclear, because it is not clear how
integrated the use of set theoretic reflection principles is in set theoretic practice.

10.2. Looking forward

It is needless to say that it is difficult to look into the future. Nevertheless, I
will now briefly discuss what I take to be some of the main open problems.

10.2.1. Reflection in the history of philosophy. In Chapter 3, and at-
tempt was made at tracing the concept of reflection in the history of philosophy
and theology. But our journey through the history of philosophy and theology was
very far from complete.

We saw in Section 3.9 that in the nineteenth century, reflection started to play
a role in mathematics. But this does not mean that the concept of reflection ceased
to evolve in philosophy and theology. So we may ask:

Question 10.1. Which nineteenth and twentieth century philosophical or the-
ological theories of reflection are of relevance to the philosophical understanding of
reflection in the mathematical sciences?

The traditions of idealism and phenomenology may be good places to look.

10.2.2. Warrant for uniform and global reflection. In Chapter 8 I have
argued that if someone fully accepts a theory S, and is moreover warranted to do so,
then a process of reflecting on the acceptance of S can lead her to accept iterations
of consistency and local reflection statements for S in an equally warranted fashion.
What about uniform reflection?

It has been known for a long time that truth might be able to come to the
rescue. The proof theoretic global reflection principle GRF (S) for S can be derived
from compositional truth principles against S as a background theory (Theorem
5.14), and from GRF (S) the uniform reflection principle for S can be easily derived.
General scepticism about the epistemic import of the derivation of proof theoretic
reflection principles from truth axioms seems unwarranted.1 But we do, on this
line of reasoning, face the question of our epistemic warrant of the compositional
truth axioms. We have seen that compositional truth can be derived from (twofold)
iteration of uniform reflection (Theorem 6.26). But this would be putting the cart
before the horse—which is not to say, however, that there may not be convincing

1See Section 9.4.
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alternative accounts of how we can acquire warranted belief in uniform reflection
statements.

The question how we can attain warranted belief in uniform reflection principles
without appealing to “higher-order concepts” remains. It is not clear how reflecting
on the acceptance of a theory S can warrant explicit acceptance of the uniform
reflection principle for S.2 The thesis of implicit commitment to uniform reflection,
which goes back all the way to Feferman’s work on transfinite progressions of formal
theories in the 1960s. has been spelled out in other ways. However, I have argued
in Section 7.4 that known attempts at justifying uniform reflection for an accepted
theory S without appealing to “higher-order concepts” are in one way or another
unsatisfactory. This leaves us with the following open question:

Question 10.2. Are we implicitly warranted to believe in uniform reflection
principles for theories that we already accept in a warranted manner?

10.2.3. Set theoretic reflection. As a result of the work of Koellner, Roberts,
and others, it has become clearer over the past decade what set theoretic reflec-
tion principles are. A distinction can furthermore be made between set theoretic
reflection principles that are natural on the one hand, and set theoretic reflection
principles that are perhaps less natural on the other hand. Among the natural
reflection principles I count Bernays’ reflection principle; among the perhaps less
natural ones I count the reflection principles that have been proposed by Tait and
those that have been proposed by Marshall.3

We have seen how Gödel believed that all strong principles of infinity flow from
natural set theoretic reflection principles, and how Koellner, in sharp contradistinc-
tion, believes that even the Axiom of measurable cardinals does not follow from set
theoretic reflection principles. I believe that it has become clear that natural set
theoretic reflection principles at least entail the existence of 1-extendible cardinals.4

Nonetheless, Gödel’s bold conjecture is still open, i.e., we may ask:

Question 10.3. How much large cardinal strength have the strongest natural
set theoretic reflection principles?

Here the work of Marshall and the recent work of McCallum may be of considerable
importance. From a philosophical point of view it is, at this point in time, not well
enough understood.

Many are sceptical about the prospects of intrinsically justifying large large
cardinal axioms and embedding principles. Compared to first-order large cardi-
nal axioms and first-order embedding principles, set theoretic reflection principles
pose additional difficulties because of their essential second-order nature (except
Montague-Levy reflection, of course). Nonetheless, we have seen how it has been
argued that natural set theoretic reflection principles can be intrinsically justified
on the basis of large cardinal considerations. But aside the question how richness
arguments should be spelled out with some degree of precision, we may pose the
following elementary question:5

2See Section 8.6.
3See [Tai05], [Mar89].
4See Section 6.5.
5“Out of the mouths of babes and children. . . ”
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Question 10.4. Why should we believe that the set theoretic universe (with
its classes) has the required richness to support natural set theoretic reflection
principles?

This question has, in my view, not received nearly enough attention.
Lastly, as mentioned in the Introduction, set theoretic reflection also plays a

role in potentialist and multiversist theories of sets.6 But concerning this matter,
much work remains to be done, so we may simply ask:

Question 10.5. What is the relation between set theoretic potentialism and
set theoretic reflection principles? What is the relation between set theoretic mul-
tiversism and set theoretic reflection principles?

10.2.4. Between ontological and epistemic reflection. The following con-
cerns a puzzle that I have not been able to resolve. On the one hand, we have seen in
Section 6.6, that there are reflection principles that have characteristics of epistemic
reflection principles and of ontological reflection principles. From a mathematical
point of view, there is much that we do not yet know about this intermediate area
of reflection principles. But these recent results suggest that there may be a con-
tinuum between epistemic and ontological reflection reflection principles. On the
other hand, we have defended the thesis that our epistemic warrant at least for
many proof theoretic reflection principles (“implicit commitment”) is very different
from our warrant for ontological reflection principles (richness or perhaps success
arguments).

How can that be? Indeed, we may ask:

Question 10.6. Corresponding to the continuum between epistemic and on-
tological reflection principles, might there be a continuum between the kinds of
warrant for reflection principles?

10.2.5. Unfolding and what is implicit in concepts. In his work on re-
duction of Gödelian incompleteness and on predicativism, Feferman pursued three
strategies.

In early work, Feferman investigated transfinite progressions of formal the-
ories, powered by uniform reflection principles. Later he turned to theories of
self-referential truth, such as the theory KF, as a way of capturing predicativist
mathematics. We have seen how, at the end of [Fef91], Feferman formulated and
investigated a schematic version of KF.7 This served as an important inspiration for
his later work with Strahm, in which Feferman studied the operations on objects
and predicates that are implicit in the full acceptance of a formal theory.8

In the foregoing, we have discussed the epistemological ideas behind Fefer-
man’s work on transfinite progressions on formal theories and behind his work
on axiomatic self-referential truth in much detail. But I have scarcely given any
attention to unearthing the epistemological ideas behind Feferman and Strahm’s
technically challenging work on unfolding schematic theories. This is a challenging
task, which, in my view, philosophers should take up:

6For the connection between set theoretic reflection and set theoretic potentialism, [Rei74]

is a seminal article.
7See p. 141.
8See [Str18].
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Question 10.7. Given that a person fully accepts a schematic formal theory
S, is she somehow implicitly warranted explicitly to accept the schematic unfolding
of S? If so, how exactly can she come to do so in a warranted manner?

More in general, the relation between implicit commitment of mathematical
theories on the one hand, and implicit commitment of concepts9, on the other
hand, is at present ill-understood.

10.2.6. Probabilistic reflection. In Section 6.7, variants of van Fraassen’s
probabilistic reflection principle were briefly discussed. Even though such principles
are much discussed in formal epistemology, they have not been much investigated
in a truly formal setting. Indeed, it has only recently become known that, against
a fairly weak background theory of type-free probability, the synchronic version of
van Fraassen’s reflection principle cannot be consistently added as a new axiom.

Since by now we have a fairly good grip on theories of type-free truth, and the
notion of type-free subjective probability is clearly related to the notion of type-
free truth, it seems that a basic understanding of type-free subjective probability
should be within reach. Moreover, results in type-free truth—in particular, results
on theories of positive type-free truth—might suggest new versions of van Fraassen’s
synchronic reflection principles that can consistently be added but are independent
of the background probability theory. Moreover, formal understanding might to
some extent guide conceptual understanding, so perhaps in this way we can even
arrive at warranted probabilistic reflection principles.

Nonetheless, at the moment, the field is completely open. Our formal and
conceptual understanding of probabilistic reflection seems to me very poor, so we
may simply ask:

Question 10.8. Understand probabilistic reflection better!

9See Section 9.2.
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Lecture Notes in Logic. Gödel ’96. Logical foundations of mathematics, computer sci-

ence and physics—Kurt Gödel’s legacy (P. Hájek, ed.), Association for Symbolic Logic,
1996, pp. 3–22.

[Fef05] , Predicativity, Oxford Handbook of Philosophy of Mathematics and Logic
(Stewart Shapiro, ed.), Oxford: Oxford University Press, 2005, pp. 590–624.

[FHN21] Martin Fischer, Leon Horsten, and Carlo Nicolai, Hypatia’s silence. truth, justifcation,

and entitlement, Noûs (2021), 62–85.
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[Wan96] , A logical journey. from gödel to philosophy, MIT Press, 1996.

[Wax17] Daniel Waxman, Deflationism, arithmetic, and the argument from conservativeness,
Mind 126 (2017), 429–463.

[Wes03] Kenneth R. Westphal, Epistemic reflection and cognitive reference in kant’s transcen-

dental response to skepticism, Kant Studien 94 (2003), no. 2, 135–171.
[Wey18] Hermann Weyl, Das kontinuum. kritische untersuchungen über die grundlagen der

analysis, Veit, 19818.

[WH16] Philip Welch and Leon Horsten, Reflecting on absolute infinity, Journal of Philosophy
113 (2016), 89–111.

[Wil78] Bernard Williams, Descartes: The project of pure enquiry, Pelican, 1978.

[Wil95] Andrew Wiles, Modular elliptic curves and fermat’s last theorem, Annals of Mathe-
matics 141 (1995), no. 3, 443–551.

[Wil00] Timothy Williamson, Knowledge and its limits, Oxford University Press, 2000.

[Wil01] Michael Williams, Problems of knowledge: A critical introduction to epistemology,
Oxford University Press, 2001.

[Wil07] Timothy Williamson, The philosophy of philosophy, Wiley-Blackwell, 2007.
[Wit22] Ludwig Wittgenstein, Tractatus logico-philosophicus logisch-philosophische abhand-

lung, Kegan Paul, 1922.

[WL17] Bartosz Wcis lo and Mateusz  Le lyk, Notes on bounded induction for the compositional
truth predicate, Review of Symbolic Logic 10 (2017), 455–480.

[Wol47a] Harry Austryn Wolfson, Philo: Foundations of religious philosophy in judaism, chris-

tianity, and islam vol. i, Harvard University Press, 1947.
[Wol47b] , Philo: Foundations of religious philosophy in judaism, christianity, and islam

vol. ii, Harvard University Press, 1947.
[Woo98] Hugh Woodin, The tower of hanoi, Truth in mathematics (H. Dales and G. Oliveri,

eds.), Oxford University Press, 1998, pp. 329–351.

[Woo01] Hugh Woodin, The continuum hypothesis. i, Notices of the American Mathematical
Society 48 (2001), 567–576.

[Woo17] , In search of ultimate-l: the 19th midrasha mathematicae lectures, Bulletin of

Symbolic Logic 23 (2017), 1–109.
[Wri94] Crispin Wright, About ”the philosophical significance of gödel’s theorem”: Some issues,
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