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This article explores the connection between Boolean-valued class models of set the-
ory and the theory of arbitrary objects in roughly Kit Fine’s sense of the word. In
particular, it explores the hypothesis that the set-theoretic universe as a whole can
be seen as an arbitrary entity. According to this view, the set-theoretic universe can
be in many different states. These states are structurally like Boolean-valued models,
and they contain sets conceived of as variable or arbitrary objects.

Maybe the following analogy will explain my attitude. We use the
standard American ethnic prejudice and status system, as it is gen-
erally familiar. So a typical universe of set theory is the parallel ofMr
John Smith, the typical American; my typical universe is quite inter-
esting (even pluralistic): it has long intervals where GCH holds, but
others in which it is violated badly … This seems no less justifiable
than stating thatMr John Smith grewup in upstateNewYork, got his
higher education inCalifornia, dropped out from college in his third
year, lived in suburbia in the Midwest, is largely of Anglo-Saxon
stock with some Irish or Italian grandfather and a shade of hispanic
or black blood, with a wife living separately and 2.4 children. ‘Come
on,’ I hear. ‘How can you [so] treat … CH? You cannot say some-
where yes, somewhere no!’ True, but neither could Mr Smith have
2.4 children, and still the mythical ‘normal’ American citizen is in a
suitable sense a very real one.

— Saharon Shelah (2002, p. 5)

1. Introduction
Contemporary philosophy of physics aims to develop metaphysical in-
terpretations of fundamental current physical theories. In philosophy
of quantummechanics, for instance, researchers articulate metaphysical
accounts of what the physical world at themicro-level could be like given
our current quantum-mechanical theories. The aim of this article is to
do something similar for set theory. The aim is to articulate a metaphys-
ical view of what the set-theoretic world could be like given our current
set-theoretic theories and practices.
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2 Leon Horsten

The most important development in set theory since the Second
World War is Cohen’s discovery of forcing, which is an incredibly power-
ful and flexible technique for producing independence results. There are
today two main approaches to forcing. The first approach is called the
forcing poset approach (see Kunen 1980). The second approach is called
theBoolean-valued approach.The latter was pioneered by Scott and Solo-
vay (and discovered independently by Vopĕnka), and was first described
in Scott (1967).1 The two approaches are for most intents and purposes
equivalent.

TheBoolean-valued approach, as described in Bell (2005), is centred
on the concept of Boolean-valued sets, which are functions into a com-
plete Boolean algebra. Boolean-valued sets have been studied mostly
with the aim of proving set-theoretic independence results. Here I want
to consider structures of Boolean-valued sets from a metaphysical per-
spective. I will argue that Boolean-valued sets can be seen as arbitrary
objects in the sense of Fine (1985) andHorsten (2019). Indeed, Fine him-
self suggests that arbitrary object theory might be applicable to forcing
(Fine 1985, pp. 45–6), although his suggestion has hitherto not been
followed up.

I will develop the metaphysical hypothesis that there is a sense in
which the set-theoretic universe itself is also an arbitrary entity. On the
view that I explore, there is only one mathematical universe. But just as
with the elements in it, the set-theoretic universe as a whole is an ar-
bitrary entity. And just as the arbitrary sets in the universe can be in
different states, the set-theoretic universe can also be in different states.

In this article, the Boolean-valued approach to forcing is used as
a tool to express a metaphysical view. Given the mathematical equiva-
lence of the Boolean algebra approach and the forcing poset approach
to set forcing, the metaphysical view that I want to explore can also be
expressed using the poset approach; but I will not do so here. For class
forcing, the two approaches are not mathematically equivalent (see An-
tos, Friedman andGitman 2021). In this article, I will mostly ignore class
forcing.

The proposal explored in this article is tentative: there are multiple
ways in which it can be developed more fully. This is just because at
this point I am unsure what the best way is of further fleshing out the
proposed view. Also, I will not attempt to argue that it is, all things con-
sidered, more plausible than rival proposals; that task is left for a future
occasion.

1 The early history of forcing is described in Moore (1987).
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Boolean-Valued Sets as Arbitrary Objects 3

The structure of this article is as follows. First, I review key elements
of the theory of arbitrary objects. Then I show how in an obvious way ar-
bitrary objects play a role in the model described in Scott (1967), which
is the oldest incarnation of the Boolean-valued models approach to forc-
ing. Then I show how arbitrary object theory can also be used to give a
metaphysical interpretation of ‘modern’ Boolean-valued models.

Some elementary knowledge about set and proper class forcing, and
about random variables, is required for reading this article. In what fol-
lows, I use the notation used in Bell (2005). In particular, concerning
algebraic notions, I denote the join, meet, complementation, and impli-
cation operations as ∨, ∧, c, and ⇒, respectively, and I denote the top
and bottom elements of an algebra as 1 and 0, respectively. Moreover, I
use the slightly unusual convention adopted by Bell to refer to Boolean
algebras as B, B′, …

2. Arbitrary objects
An arbitrary F is an abstract object that can be in a state of being some or
other F. We may say that an arbitrary F coincides with some F in a state,
or takes a certain value in some state. So, mathematically, an arbitrary F
can be modelled as a function

f ∶ Ω → F,

where Ω is a state space and F is a collection of objects.2 In order to
develop a basic feeling for what arbitrary objects are like, we briefly
consider a few simple examples.

Example 1. A fair coin is an arbitrary object. It is an object that can
be in a state where it takes the value heads, and it can be in a state
where it takes the value tails.

Example 2. Consider an arbitrary natural number. Such an arbitrary
object can be in a state where it takes the specific number 3 as value,
but it can also be in a state where it takes the specific number 4 as
value.

Let us briefly relate this second example back to the modelling proposal
above.3 In Example 2, we can evidently take the value space to be ℕ.

2 Formore information about the conception of arbitrary object that is operative in this article,
and the role of the notion of state in this conception, see Horsten (2019, ch. 3, esp. §§3.5–3.7).

3 For more details, see Horsten (2019, §4.1.2).
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4 Leon Horsten

We want there to be as many states as are needed for there to be fully
arbitrary natural numbers, that is, arbitrary natural numbers that can
be any specific natural number. Moreover, we do not seem to have rea-
sons to have more states. This means that we can set ∣Ω∣ = ℵ0. Arbitrary
natural numbers can then be seen as threads through the matrix ℕ×ℕ,
that is, functions from ℕ to ℕ.

Typically, for a collection F, there is more than one arbitrary F.4 For
instance, consider an arbitrary natural number a1 strictly between 3 and
6. Then there is also another arbitrary natural number strictly between
3 and 6, call it a2, which in every state differs from a1. So, for instance,
in a state where a1 takes the value 4, a2 takes the value 5. This shows that
arbitrary Fs can be correlated with each other.

It has been argued, by Frege (1979) for instance, that there are no
arbitrary objects. This is still the prevailing view. But in the spirit of Fine
(1985) and Horsten (2019), I will take arbitrary objects ontologically
seriously. The aim of this article is not to argue for this metaphysical
stance.

In many cases, the function range of an arbitrary F, when regarded
as a function, consists of specific objects. For instance, in a state where
a1 coincides with the number 4, it takes a specific value. But there are
also arbitrary objects that can be in a state of being this or that arbitrary
object. For instance, an arbitrary arbitrary natural number strictly be-
tween 3 and 6 can be in a state of being the arbitrary number a1, but it
can also be in a state of being the arbitrary number a2. Such higher-order
arbitrariness will play a role in what follows.

I will also be liberal in not just considering maximally specific state
descriptions, also known as (Leibnizian) possible worlds. I will also per-
mit as states situations that are less than fully specified: call them partial
states. We will see later how these partial states can be modelled as sets
of possible worlds.

3. Forcing and random variables
In early work on Boolean-valued models, random variables play an
important role. In particular, this is so in the first exposition of the
method of Boolean-valued models, Scott’s (1967) article, ‘A Proof of the
Independence of the Continuum Hypothesis’.

4 At least at one point, Fine held that for every F, there is ultimately no more than one
‘independent’ arbitrary F (Fine 1983, p. 69). I will not make this assumption here.
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Boolean-Valued Sets as Arbitrary Objects 5

Scott starts his construction of Boolean-valued models with a prob-
ability triple ⟨Ω,A,P⟩, where Ω is a state space, A is a σ-algebra on Ω,
and P is a probability function defined on A. This probability triple is
the background to the notion of a random real over Ω, where a random
real over Ω is a function

ξ ∶ Ω →ℝ

that satisfies some measurability constraint.5 Let R be the collection of
random reals. It is easy to see that ℝ is canonically embedded inR (by
constant functions).

Scott’s aim is, roughly, to construct a Boolean-valued analogue of the
classical rankVω+2, which is the level of the iterative hierarchy where the
continuum hypothesis (CH) is decided. In this Boolean-valued model
the axioms of set theory, in so far as they describe Vω+2, turn out to be
true, whereas CH is false.

The language in which Scott describes the initial transfinite levels of
the iterative hierarchy has a type-theoretic flavour.6 In particular, it con-
tains variables ranging over real numbers, and variables ranging over
functions on the reals. The set of natural numbers ℕ is defined in this
language as a special collection of reals (Scott 1967, p. 95).

In the resulting model S , the real-number variables range over ran-
dom reals (as defined above).The function variables range over a setRR
of functions from R to R that meet an extensionality condition (Scott
1967, p. 102).

In the Boolean-valued model S , sentences of the language take val-
ues in a complete Boolean algebraB, which is obtained from the Boolean
σ-algebra A by identifying events that differ from each other only by a
set of probability 0 (as measured by the probability function P). More-
over, B can be seen to have the countable chain condition, which entails
that B is complete.

Then Scott chooses Ω in such a way that S contains many random
reals that are ‘orthogonal’ to each other. This ensures that S ⊧ ¬CH,
where the consequence relation ⊧ is based on the Boolean-valued truth
relation. In particular, the ‘degree’ to which two random reals ξ and η
coincide according to S is ‘measured’ by a Boolean value, that is, an ele-
ment of B. And such an element of B can roughly7 be taken to be the set
of states on which ξ and η coincide.

5 In particular, it is required that for each r ∈ ℝ, {o ∈ Ω ∶ ξ(o) ≤ r} is measurable.
6 But this is not essential for his argument, as Scott himself observes.
7 That is, up to P = 0 difference.
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6 Leon Horsten

Now S only verifies the usual set-theoretic axioms as far as Vω+2
goes. But Scott sketches how S can fairly routinely be extended to a
Boolean-valued model of ZFC that still makes CH false.

As objects that take values in states, Scott’s random reals are ar-
bitrary objects in the sense of Fine (1985) and Horsten (2019)8 (or at
least they are modelled in the same way). But the values of function
variables are not natural modellings of arbitrary objects. Going up the
hierarchy, functionals, and so on, are also not arbitrary objects. This
‘non-uniformity’ is eliminated in later versions of Boolean-valuedmodel
theory, such as Bell (2005), as we will see shortly.

The take-away message is that arbitrary objects have played a role in
Boolean-valuedmodels from the start. Randomvariables in Scott’s sense
have mostly disappeared from modern treatments of Boolean-valued
models,9 and Scott himself already observed that hismethod for proving
the independence of the continuum hypothesis does not really require
them (Scott 1967, p. 110).

4. Boolean-valued sets as arbitrary objects
I will now argue that in more recent versions of Boolean-valued model
theory, arbitrary objects play an even more pervasive role, albeit in a
somewhat less obvious way. First, Boolean-valued sets and Boolean-
valued models are defined. Then we will see how complete Boolean
algebras can be seen as algebras of situations. To conclude this section,
I will discuss two ways of regarding Boolean-valued sets and Boolean-
valued models as arbitrary objects, with the Boolean algebra playing the
role of the state space.

4.1. Boolean-valued sets
Let us turn to the contemporary approach to Boolean-valued models, as
described in Bell (2005). A Boolean-valued class model V(B) consists of
functions

u ∶ V(B) → B,

where B is a complete Boolean algebra. Dom(u) can be seen as the
quasi-elements of u: the elements of Dom(u) are elements of u only to
a certain extent, as measured in the algebra B. Moreover, the elements
of Dom(u) are themselves Boolean-valued sets. This is reflected in the

8 See, in particular, Horsten (2019, ch. 10).
9 But not entirely: see, for instance, Krajíček (2011).
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Boolean-Valued Sets as Arbitrary Objects 7

recursive build-up of the universe V(B) of Boolean-valued sets. Indeed,
given a complete Boolean algebra B, the Boolean-valued class model
V(B) is formally defined as follows by recursion on α (Bell 2005, p. 21):

Definition 3.

V(B)α = {x ∣ Function(x)∧Ran(x) ⊆ B∧∃ξ < α ∶ Dom(x) ⊆ V(B)ξ }.
This means that, just as with ordinary sets, to each Boolean-valued set
u ∈ V(B), a rank is assigned.

A Boolean-valued model V(B) comes with a notion of truth in V(B).
We start by considering the clauses for identity and elementhood in
some more detail, since they form the key components of the truth
definition. We define (Bell 2005, p. 23, 1.15):

⟦u ∈ v⟧B ≡ ⋁
y∈Dom(v)

(v(y) ∧ ⟦y = u⟧B). (1)

This is what it means for some Boolean-valued set u to be to some ex-
tent (as measured in B) a member of the Boolean-valued set v. Given
extensionality, identity and elementhood are intertwined in set theory:
identity constitutively depends on elementhood, and vice versa. This is
reflected in the clause for identity of the definition of Boolean-valued
truth (Bell 2005, p. 23, 1.16):

⟦u = v⟧B ≡ ⋀
y∈Dom(v)

(v(y)⇒ ⟦y ∈ u⟧B)

∧ ⋀
y∈Dom(u)

(u(y)⇒ ⟦y ∈ v⟧B), (2)

where x⇒ y is an abbreviation of xc ∨ y (with c being the complementa-
tion operation of B). These clauses are obtained by taking a standard
equivalence and then interpreting it within a Boolean-valued model.
Thus for u to belong to v is for something identical to u to belong to v.

The Boolean-valued truth conditions of non-atomic statements are
exactly what you would expect (Bell 2005, p. 22), so there is no need to
spell them out here.

It is easy to see that all these clauses taken together constitute a
proper recursive definition that determines a notion of Boolean-valued
truth. From now on we will write V(B) ⊧ ϕ for ⟦ϕ⟧B = 1. The atomic
clauses of the truth definition are the non-standard ones. Clause (2) is
clearlymotivated tomake the axiomof extensionality come out true, and
one can verify that despite the non-standardness of the atomic clauses
of the truth definition, the usual laws of identity come out true.
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8 Leon Horsten

A little more can be said to motivate the atomic clauses. The clause
for the elementhood relation says that the extent to which u ∈ v is
obtained by:

1. considering each quasi-element y of v;
2. ‘measuring’ (in B) the extent to which y coincides with u;
3. ‘tempering’ this measurement by the extent to which y is a

quasi-element of v; and
4. summing the values (in B) thus obtained for each y.

In a similar vein, the clause for the identity relation says that the ex-
tent to which u = v is obtained by considering the extent to which the
quasi-elements y of v are elements of u, and vice versa.

One of the basic facts about Boolean-valued models is that for every
complete Boolean algebra B, V(B) ⊧ ZFC. As in the case of Scott’s mod-
els from §3, much of the mathematical interest of these models lies in
the fact that the Boolean algebra B can be chosen such that V(B) makes
statements such as CH false (or true).

4.2. Algebras of situations
I will now argue that Boolean-valued models, as well as all the Boolean-
valued sets that they contain, can be viewed as arbitrary objects.We have
seen in §2 that arbitrary objects are functions from states to values. Un-
like Carnapian state descriptions (Carnap 1956, p. 9), which always give
a specification of a fully determinate or Leibnizian possible world, states
typically contain only partial information about a possible world. Thus
states are situations (roughly) in the sense of Barwise and Perry (1983).10
The fair coin, for example, can be in the state of being heads. This state
contains only a partial specification of a possible world: it contains no
information, for instance, about the number of planets orbiting the sun.
A state can therefore be modelled as a set of Leibnizian possible worlds,
namely, the set of those Leibnizian possible worlds that are compatible
with the information that the state contains.

By the Stone representation theorem, any Boolean algebra B is iso-
morphic to the algebra of the clopen sets of its associated Stone space
S(B).11 The elements of B can therefore be seen as sets of points in S(B),
and these points can be taken to be Leibnizian possible worlds. It is

10 Caveat: I do not adopt the formal machinery of Barwise and Perry’s theory of situations
here.

11 The elements of S(B) are the ultrafilters on B, and the topology on S(B) is generated by the
sets of the form {U ∈ S(B) ∶ b ∈ U} for b ∈ B. The isomorphism is uniquely determined if B is
atomic.
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Boolean-Valued Sets as Arbitrary Objects 9

therefore natural to regard the elements of B as sets of possible worlds,
that is, as states.

A Boolean algebraB also contains information about the structure of
states.WhenB is seen as an algebra of states, the join operation expresses
union of states (‘a or b’); similarly for join and complementation. If in
B we have a < b, then the state a is a refinement or precisification of
state b. When we look at a and b as states, that is, as sets (of Leibnizian
possible worlds), then this means that for i an isomorphism from B to
S(B), i(a) ⊂ i(b); that is, situation a excludes more Leibnizian possible
worlds than situation b does.

The relation of refinement imposes natural structure on the collec-
tion of situations. Suppose a is a situation where Mary is drinking coffee,
and b is a situation where not only is Mary drinking coffee but John is
talking toMary.Then it is natural to regard b as a situation that ‘includes’
a but is more detailed than a; situation b extends situation a.

The algebra B need not be, and typically is not, atomic, where atoms
are situations that are (according to the algebra) maximally specific. In-
deed, Bmay contain no Leibnizian possible worlds (maximally determi-
nate states) at all. Partitions of unity, that is, maximal anti-chains of B,
are then especially significant as collections of mutually exclusive and
jointly exhaustive sets of states. In atomless contexts, partitions of unity
are the closest counterparts to the set of all Carnapian possible worlds.

Actuality plays no role in the picture. Just as it makes no sense to
ask which state the fair coin is actually in (heads or tails), there is no
state that V(B) is actually in. There are just many states that V(B) can be
in, and that is all we can say in this case. Certainly the maximally un-
specific top element 1 ∈ B should not be seen as the actual world. If B
contains no atoms, then there is not even a candidate for being the actual
(Leibnizian) world.

Since the notion of modality that is at play here does not involve
the notion of actuality, it cannot be the familiar notion of metaphysical
possibility with which, for example, Kripke (1980) is concerned. Yet in
the foundations ofmathematics there are independent reasons to believe
that a modality without actuality is needed. Set-theoretical potentialists,
for instance, claim that there could have been more sets. On the face of
it, this seems to presuppose there that there is a matter of fact about
which sets actually exist. But any answer to the question ‘Which sets
actually exist?’ seems to contain a high degree of arbitrariness, and the
immediate further question ‘Why are there not fewer or more sets than
exactly those?’ seems very hard to answer. Better to say, then, that for the
modality at play, the question of how many sets there actually are makes

Mind, Vol. xx . xx . July 2023 © Horsten 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/m

ind/advance-article/doi/10.1093/m
ind/fzad035/7275767 by U

niversity Konstanz user on 17 January 2024



10 Leon Horsten

no sense. Of course,more needs to be said about the nature of themodal-
ity involved in arbitrary object theory, but I do not pursue this question
further here.12

The foregoing constitutes the reason why B is a prima facie promis-
ing candidate for serving as the state space for the Boolean-valuedmodel
V(B), as well as the sets containing it, viewed as an arbitrary objects. In-
deed, I will go further, and argue that V(B) and all elements of V(B)
can naturally be seen as arbitrary objects. Thus the non-uniformity of
Scott’s model, where the range of the first-order quantifiers is somehow
distinguished, is eliminated.

4.3. Boolean-valued sets as arbitrary objects
Given that Boolean-valued sets are functions u ∶ V(B) → B, Boolean-
valued sets are arrows that ‘point in the wrong direction’ to be arbi-
trary objects. Their domain, rather than their range, should be a state
space. This problem of the arrows pointing in the wrong direction can
be remedied, as we will now see.

We start by defining a function ∗ which takes Boolean-valued sets
as arguments and yields arbitrary objects as function values:

Definition 4. For every u ∈ V(B), u∗(a) = ua(∈ V(B)), where ua
is defined as the function with the same domain as u such that
∀s ∈ Dom(ua), ua(s) = a ∧ u(s).

Since the function ∗ takes states (elements of B) as inputs, any u∗ is an
arbitrary object. Hence the function ∗ transforms the Boolean-valued
universe V(B) into a universe (V(B))∗ of arbitrary objects.

In order to get a minimal feeling how a function f∗ is obtained from
a Boolean-valued set f, consider the following simple example.

Example 5. Clearly the function f = {⟨∅, 1⟩} is an element of V(B).
Therefore the function

f∗ ={⟨b, fb⟩ ∣ b ∈ B}={⟨b, ⟨∅, b∧1⟩⟩ ∣ b ∈ B}={⟨b, ⟨∅, b⟩⟩ ∣ b ∈ B}

is an element of (V(B))∗.

The following simple proposition shows that V(B) and (V(B))∗
mutually determine each other.

Proposition 6. For every u ∈ V(B):

(i) u∗ is uniquely determined by u.
(ii) u is uniquely determined by u∗.

12 More information about the modality at play can be found in Horsten (2019, §3.6).
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Boolean-Valued Sets as Arbitrary Objects 11

Proof . Clause (i) follows from Definition 4. Clause (ii) of the propo-
sition follows because u = u1 (where 1 is, as before, the top element
of B). ◻

This means that it makes no difference whether we take V(B) to
consist of Boolean-valued sets u or their counterparts u∗. In particu-
lar, if we modify the truth definition accordingly (left to the reader),
then (V(B))∗ assigns to any given formula φ of the language of set the-
ory the same (Boolean-valued) truth-value as V(B) does. So, in particu-
lar, if B is a complete Boolean algebra, then we also have that (V(B))∗
⊧ ZFC.

Whereas every u∗ is an arbitrary object, the elements of the range of
u∗, that is, the Boolean-valued sets ua, are generally not arbitrary objects,
but ordinary elements ofV(B).Moreover, it is clear that for each Boolean-
valued set u ∈ V(B), each element of the range of u∗ is a Boolean-valued
set of the same rank as u.

Since for each u ∈ V(B), the arbitrary object u∗ is mathematically
equivalent to u, we can also see u as a second-order arbitrary object, that
is, a function from B to (V(B))∗:

Definition 7. For every u ∈ V(B), u† is the function from B to
(V(B))∗ such that for all a ∈ B, u†(a) = (ua)∗(∈ (V(B))∗).

The operation † then transforms the collection of first-order arbitrary
objects (V(B))∗ into a collection (V(B))† of second-order arbitrary ob-
jects.We can of course continue in this vein, and arrive at the conclusion
that for every n, the Boolean-valued universe V(B) is mathematically
equivalent to a collection of n-th order arbitrary objects.

Example 8. In Example 5 we saw that the function f∗ = {⟨b, ⟨∅, b ⟩⟩ ∣
b ∈ B} is an element of (V(B))∗. Then according to Definition 7, we
have

f† = {⟨c, (fc)∗⟩ ∣ c ∈ B}
is an element of (V(B))†, where (fc)∗ = {⟨b, (fc)b⟩ ∣ b ∈ B}.
Here fc = {⟨∅, c ∧ 1⟩} = {⟨∅, c⟩}, whereby (fc)b = {⟨∅, b ∧ c⟩}. So

f† = {⟨c,{⟨b, ⟨∅, b ∧ c⟩ ∣ b ∈ B}⟩ ∣ c ∈ B}.

For any Boolean algebra B, the restricted Boolean algebra Ba consists
of all elements of the form y ∧ a, with y ∈ B, and which is such that for
x, y ∈ Ba, x⋆ y is the same as x⋆ y in B for ⋆ ∈ {∧,∨}, and xc in Ba is
xc∧a in B (Jech 2006, p. 79). If B has the countable chain condition, then
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12 Leon Horsten

Ba has it also.13 If B is a complete Boolean algebra, so is the restricted al-
gebraBa.Therefore, ifB is a complete Boolean algebra, then for any a ≠ 0,
we have V(Ba) ⊧ ZFC. A structure V(B) might be such that neither CH
nor¬CH is true in it, but that it could be in a state where CH is true and
it could be in a state where CH is false, that is, that B contains states a, b
such that V(Ba) ⊧ CH and V(Bb) ⊧ ¬CH. Such a V(B) could function as
a toy model of a set-theoretic universe in which neither CH nor¬CH is
true.

Thus both V(B) and Boolean-valued sets u in V(B) are arbitrary ob-
jects in the following sense. If the Boolean algebra B is atomless, then as
we ‘go down’ B, the universe V(B) takes a more specific state V(B)a with-
out ever reaching a maximally specific state. Likewise, as we go down
B, a given Boolean-valued set u may take more specific state ua without
this state ever becoming maximally specific.

We have seen that for each u ∈ V(B), u∗ is an arbitrary object, or,
to be philosophically more correct, can be modelled as such. Thus we
can regard every u ∈ V(B) as an arbitrary object in the sense of §2.
Particularly:

• The u∗s are total arbitrary objects (since Dom(u∗) = B).
• The state space B of the u∗s consists mostly of partial states (since

typically the algebra B will be non-atomic).

The ∗-map can be seen as factorizing every Boolean-valued set, in
the following sense. For every situation a ∈ B, u∗(a) expresses which
Boolean-valued set the set u ‘is’ in situation a, namely, the Boolean-
valued set ua. The ∗-map can also be seen as factorizing the whole
Boolean-valued universe V(B) into states: in a state a, the universe V(B)
takes the value V(Ba). It is in this sense, I think, that the following state-
ment of Shelah (as well as the epigraph to this article) can be under-
stood:14 ‘“Does CH, i.e., 2ℵ0 = ℵ1 hold?” is like “Can a typical American
be Catholic?”’ Shelah (2003, p. 211).

Given that a state can be regarded as a situation (see §4.2), a par-
tition of unity {ai ∣ i ∈ I} in B is a collection of mutually exclusive
but jointly exhaustive situations. Now let {ui ∣ i ∈ I} ⊆ V(B) and
suppose that v ∈ V(B) is such that ai ≤ ⟦v = ui⟧ for all i ∈ I. Then
V(B) ⊧ v = Σi∈I(ai ∧ ui) (Bell 2005, p. 34, Problem 1.26(ii)). In our ter-
minology of arbitrary objects, this means that {ai ∣ i ∈ I} forms an

13 A Boolean algebra satisfies the countable chain condition if all its anti-chains are countable.
14 An anonymous referee has pointed out that this is not the only possible interpretation of

these quotes.
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Boolean-Valued Sets as Arbitrary Objects 13

exhaustive set of situations such that for each situation ai, the set v takes
the value ui in that situation, and v itself can be seen as a combination of
these situations and values. Every situation ai can furthermore be seen as
a Boolean-valued universe V(Bai). So the V(Bai)s form a mutually exclu-
sive but jointly exhaustive set of possible ways the set-theoretic universe
can be.

We have seen that Boolean-valued sets can be regarded not just
as first-order arbitrary objects but also as higher-order arbitrary ob-
jects (Definitions 4 and 7). This suggests that Boolean-valued sets can
be recursively defined, in the spirit of Definition 3 of the hierarchy of
Boolean-valued sets, as follows:

Definition 9. For every u ∈ V(B), u∗ is the function from B to V(B)
such that for all a ∈ B, u∗(a) = (ua)∗.

This modification of Definition 4 would be well-formed if (ua)∗ is
generally of lower rank than u∗. We have seen, however, that this is not
the case. In other words, since there occurs no reduction of rank of the
non-arbitrary object component of u in this process, the Boolean-valued
universe V(B) is not equivalent to a collection that consists of elements
that are arbitrary objects ‘all the way down’;15 even though Boolean-
valued sets can be conceived of as (first-order or higher-order) arbitrary
objects, they cannot be conceived of as having only further arbitrary
objects as components.16

There is, however, a way of defining a hierarchy of arbitrary sets re-
cursively from other arbitrary sets, and such that it is equivalent to the
hierarchy V(B) of Boolean-valued sets (and therefore also to (V(B))∗.
This new hierarchy, which we call VB (to be distinguished from V(B)!),
is defined in stages as follows:

Definition 10.

VB
α+1 = { f ∣ Function( f ) ∧Dom( f ) = B ∧ Ran( f ) ⊆
P(VB

α) ∧ ∀a, b ∈ B ∶ a ≠ b⇒ f(a) ∩ f(b) = ∅};

VB
λ =⋃

β<λ
(VB

β) for λ a limit ordinal.

15 Thanks to an anonymous referee for making this point.
16 In this sense, the elements of (V(B))∗ and (V(B))† differ from the higher-order arbitrary

objects described in Horsten (2019, §6.9).
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14 Leon Horsten

The idea behind this is that at every successor stage, every function from
B to sets of arbitrary sets that have already been generated,17 is gener-
ated as a new arbitrary set. This definition clearly allows us to assign an
ordinal rank α to each element of VB.

Now we will define a natural one-to-one mapping from the new
hierarchy VB to the Boolean set hierarchy V(B).

Definition 11. For all f ∈ VB, and for all f′ ∈ V(B): f′ corresponds to
f⇔ ∀g ∈ VB, ∀a ∈ B: g ∈ f(a)↔ f′(g′) = a, with g′ corresponding
to g.

Observe that this is a well-formed recursive definition, since the
Rank(g) < Rank(f).

It is then not hard to see that the ′-mapping defines the desired
one-to-one function:

Proposition 12.

(i) For all f ∈ VB, there is a unique f′ ∈ V(B): f′ corresponds to f.
(ii) For all f′ ∈ V(B), there is a unique f ∈ VB: f′ corresponds to f.

Proof . Straightforward simultaneous transfinite induction on ranks. We
define f′ given f and, conversely, f given f′ in a straightforward way us-
ing Definition 11, observing that we can define f′ from f in this way only
because f satisfies the condition ∀a, b ∈ B ∶ a ≠ b⇒ f(a)∩ f(b) = ∅. ◻

Example 13. The constant function c ∶ B → VB such that ∀a ∈ B ∶
c(a) = 0 is an element of VB

1 . It is easy to see that c′ is the empty
function, that is, ∅.

As before, Proposition 12 entails that it makes no mathematical
difference whether we work with VB or with V(B). In particular, if we
modify the truth definition accordingly (again left to the reader), then
VB assigns to any given formula φ of the language of set theory the same
Boolean-valued truth-value as V(B) does.

5. Kaleidoscopic absolutism
We have seen how Boolean-valued universes, and the sets that they
contain, can be seen as arbitrary objects. Now I will argue that the

17 Except those functions that do not satisfy the requirement ∀a, b ∈ B ∶ a ≠ b ⇒
f(a)∩ f(b) = ∅.
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Boolean-Valued Sets as Arbitrary Objects 15

set-theoretic universe as a whole can itself be seen as an arbitrary entity.
The slogan is, roughly:

The set-theoretic universe is an arbitrary V(B).
Let us designate such an arbitrary V(B) as V .

As in the case of arbitrary natural numbers (§2), V can be modelled
as a function from a state space to a value space. The value range of V
is a collection of V(B)s where B is an element of a collection B of com-
plete Boolean algebras. Since (as in Example 2) we do not need more
states than there are elements of B, the collection B can then be taken
to be the state space of V . So V can be modelled as the (possibly proper
class-size) function that takes each B ∈ B to V(B).

At this point, my account becomes somewhat vague: I am not able
to say with much precision what B and V are like. B should be a large
collection of complete Boolean algebras (possibly proper class-sized), so
that what set theorists regard as real possibilities are all represented as
states that V can be in. V should be large enough to maximize the inter-
pretative power of set theory (Steel 2014, §5). Beyond this, I see only a
few more constraints that B and V satisfy: see below.

You may ask: can we not ‘complete’ the state space of V to a complete
Boolean algebraB∗ and take the set-theoretic universe to be (structurally
like) V(B

∗)? But this does not work. As is pointed out, for instance, in
Antos, Friedman and Gitman (2021), if B is indeed a proper class, then
B∗ is a hyperclass, and V(B

∗) therefore does not make ZFC true.
So on the proposed view, the set-theoretic universe is an arbitrary

entity that can be structurally like a V(B), and only like some V(B); but
this arbitrary entity V itself is not structurally like a V(B). Here the re-
quirement that the set-theoretic universe can only be structurally like a
V(B) is an expression of the confidence of many set theorists that ‘possi-
bilities’ only arise in ways described by forcing techniques. Of course, it
is not guaranteed that this confidence will turn out to be justified in the
long run.

Like all slogans, the motto that the set-theoretic universe is an arbi-
trary V(B) has to be taken with a grain of salt. Because of well-known
anti-reductionist arguments (for instance, Benacerraf 1965), the thesis
should not be that the set-theoretic universe is an entity that can be in
the state of being this or that V(B). After all, just as it is unreasonable to
hold that the number 19 is some pure set or other, so it is unreasonable
tomaintain that the set-theoretic universe can be in a state of being some
V(B). The point is rather that it can be in states that are structurally like,
or can be fruitfully modelled as, V(B)s.
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16 Leon Horsten

It is sometimes argued that there are different, equally valid concepts
of set, and that it is somehow indeterminate which of these notions is
described in set theory.18 The position I am putting forward here is not
intended as an articulation of this view. The thought that I am trying to
develop is not that two states of the set-theoretic universe describe dif-
ferent set concepts. Rather, the view is that there is one conception of set
that the set-theoretic universe answers to: a notion of set as an arbitrary
object.

The central component of the proposed view consists of truth def-
initions for the formulae of the language of set theory (LZFC). I have
sketched the definition of truth in a Boolean-valued structure in §4. But
a natural definition of truth in the set-theoretic universe V can also be
given:

V ⊧ φ ≡ for all V(B) in the value range of V ∶ V(B) ⊧ φ.
As adumbrated above, this truth definition is somewhat vague: we do
not have a strong grasp of what the range of V is.

By Tarski’s theorem on the undefinability of truth, this definition for
truth in V can only be expressed in an extension L+ZFC of the language
LZFC. This ‘Boolean-valued’ truth definition quantifies over Boolean-
valued models (V(B)s), which consist of Boolean-valued sets that are
applied to other Boolean-valued sets, Boolean operations that are ap-
plied to values of Boolean-valued sets, and so on.Wehave seen that every
Boolean-valued set can be seen as an arbitrary object, and that also the
V(B)s themselves can in the same sense be seen as arbitrary objects.

The view being proposed is meant to be a foundational interpreta-
tion. As such, ideally, it stands on its own two legs and is not parasitic
on any other foundational interpretations, in particular standard inter-
pretations of set theory exclusively in terms of ‘{0, 1}-valued sets’. The
proposed view should be logically and conceptually autonomous from
them, in the sense that it should be possible to state it without appeal-
ing to notions belonging specifically to such interpretations, and that it
should be possible to understand it without first understanding the no-
tion of {0, 1}-valued set (Linnebo and Pettigrew 2011, p. 241). To what
extent does the present proposal satisfy this requirement?

We have formulated two hierarchies of arbitrary sets that are equiv-
alent to the hierarchy V(B) of Boolean-valued sets: (V(B))∗ and VB.
Boolean-valued sets are components of the arbitrary sets belonging to
(V(B))∗. Moreover, the hierarchy V(B) of Boolean-valued sets is defined

18 See, for instance, Hamkins (2012, p. 416), but also Nodelman and Zalta (2014).
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Boolean-Valued Sets as Arbitrary Objects 17

in ordinary set theory. So, arguably, universes of the form (V(B))∗ do
not satisfy the autonomy requirement. Arbitrary sets belonging to VB

are functions that take states to sets of arbitrary sets.19 So here, too, one
may have reservations about whether the autonomy requirement is met.

The logical and conceptual autonomy requirement is hard to meet.
It is not even clear whether category theorymeets it: some argue that the
concept of amapping is ultimately parasitic on the concept of set. At any
rate, most multiverse theories do not meet it. Multiverse theories such
as Hamkins (2012) are described using standard set theory. Nonetheless,
such theories are not devoid of philosophical interest; it just means that
more philosophical work remains to be done.

On the proposed view, V is the ‘ultimate’ set-theoretic universe. In
this sense, an absolutist interpretation of set theory is proposed. Nev-
ertheless, there is an obvious connection with multiverse views such as
those of Hamkins (2012), Steel (2014) and Väänänen (2014). We have
seen how every state that V can be in determines a Boolean-valued set-
theoretic universe V(B). Moreover, if we take an anti-chainA in B, then
every a ∈ A determines a set-theoretic universe. The universes de-
termined by elements of A will in general not be classical two-valued
universes: they are Boolean-valued universes. Moreover, such universes
themselves typically contain other universes. In this sense, the ultimate
set-theoretic universe containsmany ‘multiverses’. So the position under
consideration can be labelled kaleidoscopic absolutism.20

As a foundational mathematical theory, set theory must be suffi-
ciently rich to carry out all of accepted mathematics, albeit sometimes
in an exceedingly cumbersome way. Thus, in a naturalistic spirit, I take
it as a conditio sine qua non that the set-theoretic universe makes ZFC
true, and we have seen that V does this.

As mentioned above, there is a two-valued universe V that is canon-
ically embedded in every V(B). But the idea is that our mathematical
experience suggests that the set-theoretic world is not such a two-valued
structure:

[The] abundance of set-theoretic possibilities poses a serious diffi-
culty for the universe view, for if one holds that there is a single

19 Not everyone agrees that this is how arbitrary sets should be seen. Sam Roberts has sug-
gested to me that arbitrary sets should rather be regarded as having different elements (which
are again arbitrary sets) in different states. This is clearly an important thought, which needs to
be explored further. But even on this interpretation, the official definition of VB is carried out in
ordinary set theory.

20 The ‘multiverses’ in V(B) (determined by anti-chains) can be turned into multiverses of
classical, two-valued universes by well-known ultrafilter techniques (Bell 2005, ch. 4).
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18 Leon Horsten

absolute background concept of set, then one must explain or ex-
plain away as imaginary all of the alternative universes that set
theorists seem to have constructed. This seems a difficult task, for
we have a robust experience in those worlds, and they appear fully
set-theoretic to us. (Hamkins 2012, p. 418)

Hamkins takes the independence phenomena to be evidence for hismul-
tiverse view; I take them to be evidence for the kaleidoscopic absolutist
view.

One might wonder whether it is reasonable to expect V to be a state
of (some, or even every) V(B). If it is, for some V(B), then B will have
at least one atom a, and V = V(B)a . So then V(B), and therefore also
V , will contain at least one maximally specific state, that is, a possible
world in the Carnapian sense of the word. There are, however, reasons
for believing that V is not a state of a V(B) in the range of V . If for
some a ∈ B, V = V(B)a , then there is at least one completely classi-
cal state that the set-theoretic universe can be in. Moreover, this state
is then also the only fully determinate state that the set-theoretic uni-
verse can be in. Set-theoretic experience provides no reason to think that
there is any such super-special universe that the set-theoretic universe
can be.

The general picture is then as follows. Set-theoretic experience—
forcing, combined with large cardinal axioms, infinitary combinatorics,
and so on—suggests that there aremany states that the set-theoretic uni-
verse can be in. So V has to be such that it can be in all and only those
states. And this imposes restrictions on whatV is like and what B can be
like. We have seen that for any V(B) in the value range of V , the Boolean
algebra B should probably not be the {0, 1}-algebra.

Beyond this, matters are less clear. Since we want universes with at
least some large cardinals to be possibilities, we probably do not want
V to be Gödel’s constructive universe L. Perhaps it can be argued that V
contains many large cardinals. If indeed V ≠ L, then elementary consid-
erations concerning forcing show that V cannot be in the state of being
L (rather than L just being definable in some such state). I take this to be
in agreement with the fact that the existence of large cardinals is much
less controversial than, for instance, the assertion that the continuum
hypothesis is true (or the assertion that it is false). The fact that we have
only very limited knowledge of what theV(B)s in the range of V are does
not, however, preclude us from drawing some conclusions about truth-
value determinateness beyond the theorems of ZFC. For instance, since
forcing techniques show that CH is independent even of set theory with
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Boolean-Valued Sets as Arbitrary Objects 19

large cardinals, we have good reasons to believe that CH does not have
a determinate truth-value.

6. Identity
In Boolean-valued models we can have ⟦ξ = η⟧ = a for some Boolean
value 0 < a < 1. So it seems that we are committing ourselves to identity
being to some degree an indeterminate relation.

Evans (1978) held that indeterminacy of identity is incoherent. His
argument is a simple reductio based on Leibniz’s principle of the indis-
cernibility of identicals. Consider any ξ and η that are not determinately
identical. Then ξ has a property, namely, being identical to ξ, that η does
not have. So ξ and η are determinately different from each other.

It has been observed that, strictly speaking, Evans’s argument does
not go through. In Evans’s argument, Leibniz’s principle is applied to the
predicate λz[z is identical with ξ]. But then we can only conclude that ξ
and η are not identical, not that they are determinately non-identical.

However, Williamson (2005, §8) has shown how an Evans-like ar-
gument can nonetheless be carried through with the use of two further
plausible principles. First, the following inference rule seems valid:

From a proof of ϕ→ ψ, infer that if it is determinately the case that
ϕ, then it is determinately the case that ψ.

Moreover, if it is determinately the case that ϕ, then ψ. Using these proof
principles, Evans’s argument can validly be strengthened to conclude
that there can be no ξ, η, such that (i) it is determinately the case that
they are not determinately identical, and (ii) it is also determinately the
case that they are not determinately different.

The moral that is often taken from arguments such as these is that
there is no ontological vagueness but only semantic and epistemic vague-
ness. That is, I surmise, also the attitude that set theorists habitually take,
and it is one of the main reasons why the V(B)s other than V are not
taken to be candidates for being the ‘real’ mathematical universe. Indeed,
in the forcing poset approach, the vagueness involved is pretty much
officially regarded as semantic in nature, for the counterparts of the ‘on-
tologically vague’ sets in the Boolean-valued approach are the ℙ-names
(Kunen 1980, ch. 7, §2).

I believe that the received view, that there is only semantic and epis-
temic vagueness, is correct. I will now argue that this view is compatible
with the foundational proposal explored in the present article.
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20 Leon Horsten

Clearly there are many ‘correlated’ pairs ξ, η of Boolean-valued sets
that are not numerically identical to each other but that are ‘judged’
to be identical by certain Boolean-valued models. Here is a simple
example.

Example 14. Consider the simple Boolean algebra B0 = {0, a, b, 1}
with 0 < a, b < 1 and a⊥b. Let ξ = {∅→ 1, (∅→ 1)→ 1},meaning
that Dom(ξ) = {∅,∅ → 1} and ξ(∅) = ξ(∅ → 1) = 1. More-
over, let η = {u → 1, v → 1}, with u and v being the following
‘anti-correlated’ sets:

• u = {∅→ a, (∅→ 1)→ b}
• v = {∅→ b, (∅→ 1)→ a}

Then clearly we have, in the strict sense, ξ ≠ η. Nonetheless, a routine
but tedious calculation shows that V(B0) ⊧ ξ = η.

In a Boolean-valued class model, the identity symbol ‘=’ expresses
a congruence relation other than the real identity relation: it ‘measures’
the states in which its arguments coincide. On the proposal under con-
sideration, some Boolean-valued class models are good interpretations
of the language of set theory. Therefore the proposed view is commit-
ted to the claim that in set theory, the symbol ‘=’ does not express
the real identity relation. As a consequence, it is not threatened by
Evans’s argument, nor by Williamson’s modification of it. It is at the
metaphysical level, that is, in arbitrary object theory, that we truth-
fully say that ξ ≠ η; in set theory, we truthfully say that ξ = η. So in
these two contexts we do not use the identity symbol with the same
meaning.

From the debate about mathematical structuralism, we are familiar
with the claim that in many areas of mathematics the identity symbol
is sometimes not used to express the metaphysical relation of identity—
remember the slogan ‘identity is isomorphism’. Set theory, as a founda-
tional discipline, is often taken to be an exception to this phenomenon.
The reason is that the isomorphism-as-identity phenomenon is taken to
appear only when identifications across structures aremade, for instance,
when a substructure of the real numbers is identified with the natural
numbers. On the view explored in the present article, this is not correct.
Set theory is only concerned with one single structure. Nonetheless, ac-
cording to the arbitrary object interpretation of set theory, even in the
official language of set theory, the identity symbol does not express the
real identity relation.
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Boolean-Valued Sets as Arbitrary Objects 21

7. In closing
On the view that I have sketched, there is a set-theoretic universe. More-
over, as an arbitrary object, it is an abstract entity. It seems natural to
say that on the proposed conception, the set-theoretic universe is mind-
independent. The combination of these three commitments makes the
position under consideration a form of mathematical platonism. At the
same time, this position rejects a strong form of truth-value realism ac-
cording to which every set-theoretic statement has exactly one of the
traditional truth-values (true, false). However, it is now fairly gener-
ally recognized that mathematical platonism per se is not committed
to this extra thesis, even though most traditional forms of mathematical
platonism do sign up to it.

Versions of set-theoretical platonism without truth-value realism
have been proposed in the literature. In this article, I have suggested
one particular such view that takes the set-theoretic universe and the
sets in it to be arbitrary objects. I do not claim that the view that I have
proposed is the onlyway in which forcing models can metaphysically be
related to arbitrary object theory. I will close by outlining the contours
of what may be an alternative way of seeing elements of forcing models
as arbitrary objects.

The construction of a forcing model is sometimes seen as analogous
to the process of adjoining an object to an algebraic structure (see, for
instance, Chow 2008, p. 2). For definiteness, consider the construction
of the ring of polynomials in one variable over ℝ. In terms of arbitrary
object theory, this process can be seen roughly as follows. We start with
an arbitrary object X with value range ℝ. Then we consider all arbitrary
objects that depend onX, in the sense of being polynomially determined
by X. The resulting collection of arbitrary objects forms a ring.

Similarly, given a poset ℙ in a countable model set theory, a generic
filterG can in a sense be taken to be an arbitrary subset of ℙ. This is how
Fine himself appears to interpret the role of arbitrary objects in forcing:

It sometimes appears as if a mathematician is making significant use
of an arbitrary or ‘generic’ object. Obvious examples are the use of
generic sets in the independence proofs … (Fine 1983, p. 74)

More specifically, the filter G can be taken to be arbitrary in the sense
that it intersects every dense subset of ℙ, where dense subsets of ℙ are
taken to express ‘typical’ properties (Venturi 2019). Given such an ‘arbi-
trary’ subset G of ℙ, the forcing extension M[G] can then be regarded
as a collection of dependent arbitrary objects (for they depend on G).
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22 Leon Horsten

This way of connecting forcing models with arbitrary object theory
makes use of a distinction between dependent and independent arbitrary
objects. Such a distinction does not figure in the theory of arbitrary ob-
jects used in the present article.21 But it is the cornerstone of Fine’s arbi-
trary object theory. So this alternative account is perhaps best developed
fully within the framework of Fine’s theory.

Observe, however, that the sense of arbitrariness that is operative
in this alternative account is somewhat different from the one explored
in the present article. We have seen how in the Boolean-valued model
approach, the elements of the complete Boolean algebra play the role
of the states. Given the nature of the mathematical correspondence be-
tween the Boolean-valued model approach and the poset approach, it
must be the elements of the poset ℙ that play the role of the states in the
latter approach. Indeed, when q ≤ p in a poset ℙ, this is commonly de-
scribed as ‘q being a refinement of p’. It is therefore not the filter G, but
the standard name of G in M that must be seen as an arbitrary object in
M according to the approach developed in the present article.22
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