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Abstract
In this article the idea of random variables over the set theoretic universe is investi-
gated. We explore what it can mean for a random set to have a specific probability of 
belonging to an antecedently given class of sets, or, in other words, to have a specific 
probability of having a given set-theoretic property.

1  Introduction

Probabilistic notions have been applied to mathematical objects and concepts. Prob-
abilistic concepts have been applied in the theory of random graphs, random closed 
sets, random Banach spaces, random series, random fields, random vectors, etcetera. 
The aim of the present article is to apply a notion of probability not to any spe-
cific restricted class of mathematical objects, but to the mathematical universe as a 
whole. More in particular, we wish to explicate what it could mean for a property 
A of sets to have a probability of being true of a set y in the set theoretic universe V. 
Properties are identified with their extensions, so that A ranges over all proper and 
improper classes in V.

The aim is to develop a theory of the probability of events of the form A(�) , where 
A is a class and the variable � is a random variable. Intuitively, then, ‘ Pr(A(�)) ’ 
refers to the probability that the random variable � takes a value that has the prop-
erty A.
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Formally, a random variable is a function from an outcome space (also called a 
state space) Ω to another space E, which is often a measurable space (Blitzstein and 
Hwang 2015, p. 92). The outcome space Ω is associated with a probability function. 
The outcome space Ω represents the states that the random variable can be in; the 
space E represents the values associated with the states that one is interested in.

A familiar simple example is the throwing of a fair coin, where the outcome 
space is {state of Heads, state of Tails} , the space it maps into is {0, 1} , and the asso-
ciated probability function is such that the probability of the coin landing Heads is 
the same as it landing Tails. In this situation (as in many others), the outcome space 
can be identified with the measurable space. This is also true for the case that we 
are interested in, where the state space must be large enough to have different states 
associated with the random variables taking different sets as value, but need not be 
larger. So we will take the outcome space Ω to be V, and we will take the space E 
that it maps into also to be V.

Without invoking fixed sets of postulates, intuitions about probability have occa-
sionally been used in set theory, for instance to motivate new basic principles (Freil-
ing, 1986).1 The article (Freiling, 1986) also provides an instance of an application 
of the notion of random variable to a class of mathematical entities (at the real num-
bers of the unit interval); so does (Scott, 1967) (random reals). In the light of all this, 
it is natural to wonder what we might require from probability functions associated 
with random variables on V.

Surely it would be unreasonable to insist on there being one uniquely correct 
probability function that yields the probability of a random variable taking a value 
in a given class of sets. At any rate, finding such a “uniquely correct” or “objec-
tive” probability function is not widely regarded as a viable research objective. On 
the other hand, for our functions to have any hope of meriting the label probability 
function, the usual rules for finitely manipulating probabilities must apply. Thus they 
have to satisfy the calculation rules for finitely additive probability functions. So all 
of the probability functions that we shall consider are finitely additive probability 
functions in the sense of Kolmogorov, except for his stipulation that probabilities are 
measured by elements of the real [0, 1] interval.

From the outset we impose three additional constraints on the class of probability 
functions that we are interested in:2

1.	 Totality. The probability functions are defined on all classes.
2.	 Uniformity. All singleton events are given the same probability.
3.	 Regularity. All singleton events are given non-zero probability.

For familiar reasons these extra constraints are not compatible of infinite sample 
spaces if the values of probabilities lie in the real [0, 1] interval. Consider the fair 
lottery on ℕ . By the extra constraints, there is some r ∈]0, 1] such that for every 
ticket n, the probability of n being the winning ticket is r. But then, by Finite 

1  Such attempts are mostly regarded as unsuccessful (Hamkins, 2015).
2  For a discussion of the first two of these constraints in the context of non-Archimedean probability the-
ory, see (Benci et al., 2018); for a discussion of the third constraint, see (Wenmackers & Horsten, 2013).
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Additivity and the Archimedean property of ℝ , there is a natural number k such that 
for every collection S of k tickets, the probability of the winning ticket belonging to 
S is greater than 1. This means that the desired probability functions will have be 
non-Archimedean.

As will be explained in detail in Sect.  2, unlike Kolmogorov probability func-
tions, these non-Archimedean probability functions depend on a choice of ultrafilter 
on the “small” subsets of the sample space.3 The resulting probability functions will 
also turn out not satisfy �-additivity. Nonetheless we will see that they instead sat-
isfy a generalised infinite additivity rule.4

Totality means that there are no non-measurable classes. This makes the prob-
abilities that we will consider in a sense maximally informative, which we take to 
be a desirable feature. Regularity means that our probability functions will be very 
fine-grained, since they will always distinguish between impossible and contingent 
events. We take this, too, to be a desirable feature.

Lastly, we turn to Uniformity. (Freiling, 1986) considers the abstract possibil-
ity of randomly throwing darts at the real number line. In this paper, we consider 
the even more abstract possibility of randomly throwing darts at the set theoretic 
universe. When considering a dart randomly thrown at ℝ , it would be unnatural to 
consider probability functions that take the probability of the dart landing on the 
number �−1 to be 0.9, say. Indeed, if the event of the randomly thrown dart landing 
on a given real number receives a probability at all (which it will, in the setting that 
we shall be considering), then the randomness assumption causes us to expect the 
probability of it landing on one real number to be the same as the probability of it 
landing on some other real number.5 In the same vein, in our setting the Uniformity 
property says that the probability of one given set being randomly picked from the 
set theoretic universe is the same as the probability that some other set is randomly 
picked. In view of this, we take Uniformity to be desirable for the kinds of abstract 
processes that we want to model.

Uniformity is commonly seen as a symmetry property for probability functions.6 
Pruss rightly stresses, however, that Uniformity does not even come close to exhaust-
ing the content of the condition fairness and symmetry for probabilistic scenarios: 
“A lottery with our radically skewed probabilities that nonetheless treat[s] all indi-
vidual integers as equiprobable does not intuitively appear to be fair. Thus, [even] 
weak translation invariance plus equiprobability of singletons does not appear to be 
sufficient to capture our intuitions of fairness and symmetry” (Pruss 2021, p. 8521).

In this article, we investigate additional constraints that a finitely additive, total, 
uniform, and regular probability function might satisfy. In particular, we will con-
sider extra requirements that, given Totality and Regularity and Uniformity, from a 

3  This sensitivity of the properties of such probability functions to choice of ultrafilter has been the sub-
ject of discussion in the literature: see for instance (Kremer, 2014).
4  This generalised infinite additivity rule also follows from (Benci et al 2013, Sect. 3.4, Proposition 8).)
5  Similarly, the attempt to model a fair lottery on the natural numbers motivates an assumption of uni-
formity in (Wenmackers & Horsten, 2013) .
6  One (of many) example(s) that can be adduced to illustrate this is (North, 2010).
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pre-theoretic perspective represent possible or even natural probabilistic scenarios.7 
For instance, we may ask if such a probability function might in addition satisfy the 
principle that if any two sets A and B have the same cardinality, then a random variable 
on V will be as likely to take a value in A as in B; or one may ask whether such a prob-
ability function might in addition satisfy the principle that the probability of a random 
variable taking the value of an ordinal is infinitesimally close to 0. We will see that 
some such additional requirements are jointly satisfiable, others not.

The arguments that establish the satisfiability of combinations of such addi-
tional constraints turn on a careful selection of ultrafilters on “small” subsets of the 
state space. A key objective of the present article is to explore the sensitivity of 
properties of random variables on V on the choice of ultrafilter. We aim to chart, to 
some extent, the relationship between and trade-offs that come with various techni-
cal choices in the definition of random variables on the set theoretic universe. This 
strikes us as a worthy foundational enterprise.

The project in which we are engaging in this article is related to the work in 
(Benci et al., 2007), (Benci et al., 2006). The aim of these articles is to construct a 
theory of sizes for mathematical universes inspired by the Euclidean principle that 
the size of the whole is larger than the sizes of its proper parts. Now there is of 
course a familiar theory of size—Cantor’s theory of cardinality,—which does not 
satisfy this Euclidean principle. But Benci and his co-authors prefer the Euclid-
ean theory. In the abstract of (Benci et al., 2006), they write that they maintain the 
Euclidean principle in exchange for giving up half of Cantor’s equinumerosity prin-
ciple for sets (Benci et al 2006, p. 43).8 So Benci and his co-authors propose their 
Euclidean theory of size as a rival to Cantor’s theory.

There is a close relationship between the mathematical techniques that are used 
in the present article and the mathematical techniques that are used in (Benci et al., 
2007), (Benci et  al., 2006). But ideologically, our standpoints are very dissimi-
lar. Whereas Benci and his co-authors from (Benci et al., 2007) and (Benci et al., 
2006) reject Cantor’s theory of cardinality in favour of the Euclidean principle, we 
fully embrace it. Nonetheless, the probability functions that will be constructed sat-
isfy the probabilistic Euclidean principle that the probability of an event is strictly 
greater than the probability of each of its proper sub-events. This is in contrast with 
Kolmogorov probability, where it frequently happens that the probability of an event 
is equally great as the probability of one or more of its proper sub-events.

Moreover, what we shall mean by ‘mathematical universe’ is not the same as 
what is meant in (Benci et al., 2007) by the term. The authors of (Benci et al., 2007) 
impose mainly algebraic constraints on what counts as a mathematical universe 
(Benci et al 2007, Introduction). We, in contrast, take the term ‘mathematical uni-
verse’ in the set theoretical sense: the mathematical universe is the arena in which 
all of mathematics can in principle be carried out. Naively, you may take there to 
be one preferred set theoretic universe: V. But if you are uncomfortable with taking 

7  Benci et al call the desideratum that a probability theory allows as many seemingly coherent probabil-
istic scenarios the requirement of weak Laplacianism: see (Benci et al 2018, p. 510–511).
8  This does not prevent them from making use of Cantor’s theory of cardinals in their articles, as an 
anonymous referee rightly pointed out to us.
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V as given, then you might want to take a mathematical universe to be a rank V� 
that constitutes a model of most or perhaps even all of the standard principles of set 
theory, such as some strongly inaccessible rank. Indeed, we will see that for random 
variables defined on any large set S, the general idea of equipping them with a prob-
ability function will be the same as that for random variables on V.

We will discuss two ways of generating non-Archimedean probability functions 
for random variables on V. In Sect. 2 a simple way of generating such probability 
functions (the finite snapshot approach) will be described. In Sect. 3 we go on to 
discuss how global properties of these probability functions can be made to hold by 
imposing constraints on the process of generating such functions (choice of ultra-
filters). In Sect.  4, a theoretically more satisfying but also more complicated way 
of generating non-Archimedean probability functions for random variables on V is 
discussed (the bootstrapping method).

2 � The Finite Snapshot Approach

A random variable � on V is a function from states to the outcome space, i.e., an 
element of VV  . So there are many random variables on V. Our aim is to associate a 
notion of probability with elements of VV  that meet the minimal constraints (Total-
ity, Uniformity and Regularity) that were described in Sect. 1.

In fact, we want to give precise meaning to conditional probability statements of 
the form

where �, � ∈ VV  and A,B ⊆ V  . We will see that it will in fact be sufficient for 
our purposes to give meaning to unconditional probability statements of the form 
��(� ∈ A). Given that random variables are elements of VV  , it is clear that the sym-
bol ‘ ∈ ’ in ‘ ��(� ∈ A) ’ does not have its usual literal meaning of membership (in a 
class), as we will see shortly. Informally, ‘ ��(� ∈ A) ’ should be read as: ‘the prob-
ability that the random variable � is in a state where it has as its value some element 
of A’.

Our fundamental problem amounts to giving meaning to expressions of the form 
��(� ∈ A). Such probability measures will be determined by a choice of a fine ultra-
filter9 on the collection [V]<𝜔 of finite subsets of the state space.10

The starting point is a fine ultrafilter U on [V]<𝜔 . This fine ultrafilter U defines a 
non-Archimedean field FU in the following way.

For any two functions f , g ∶ [V]<𝜔 → ℚ we define:

��(� ∈ A ∣ � ∈ B),

9  A filter on a set S is a non-empty collection F of subsets of S that is closed under finite intersections 
and arbitrary supersets. U is an ultrafilter on a set S if U is a filter on S such that for every A ⊆ S , either 
A ∈ F , or S ⧵ A ∈ F . An ultrafilter U on a set [S]<𝜔 (i.e. the collection of all finite subsets of S) is fine if 
for every a ∈ S , the collection A of all finite subsets of S that include a as an element, belongs to U.
10  What follows is an adaptation of the approach of (Brickhill et al 2018, Sect. 2). The name ‘finite snap-
shot approach’ is drawn from a passage in that article: “ ��(A) is conceived of as the limit of the relative 
frequency of A’s on finite snapshots of the sample space” (Brickhill 2018, p. 524).
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Definition 1 

In words: two functions are equivalent under U if they coincide on ultrafilter-
many states.

The relation ≈U is an equivalence relation, so we can take equivalence classes for 
which we then have

Moreover, it is again a routine exercise to verify that the [f ]U ’s form a hyper-rational 
field FU.

Now suppose A ⊆ V  and � ∈ VV  . Then we define the function f𝜃∈A ∶ [V]<𝜔 → ℚ 
as follows:

Definition 2  For every non-empty T ∈ [V]<𝜔 ∶

In words: for every finite set of states T, f�∈A(T) is the ratio between the number of 
states s in T for which �(s) ∈ A and the number of states in T. In this sense, f�∈A(T) 
is the probability of � ∈ A on a finite snapshot of states, i.e., ��(� ∈ A ∣ � ∈ T) , where 
� is the identity random variable and the probability is given by the ratio formula.

Similarly, we define the function f�∈A∧�∈B as follows:

Definition 3  For every non-empty T ∈ [V]<𝜔 ∶

Now we are ready to define the probability of � ∈ A , relative to a fine (and there-
fore free11) ultrafilter U on [V]<𝜔:

Definition 4 

Similarly, we define ��U(� ∈ A ∧ � ∈ B) as [f�∈A∧�∈B]U . Thus we have constructed 
a probability function ��U that takes its values in the hyperrational field FU , i.e., 
FU contains infinitesimal elements. Such probability functions are sometimes called 
NAP functions (Non-Archimedean Probability functions).

Conditional probability can then be expressed in terms of unconditional probability:

Definition 5 
Thus we have given a recipe for the construction of probability measures ��U 

on V that is mathematically coherent. Nonetheless, since ultrafilters on [V]<𝜔 are 

f ≈U g ↔ {T ∈ [V]<𝜔 ∶ f (T) = g(T)} ∈ U.

[f ]U = [g]U ⇔ f ≈U g.

f�∈A(T) ≡
|{s ∈ T ∶ �(s) ∈ A}|

|T| .

f�∈A∧�∈B(T) ≡
|{s ∈ T ∶ �(s) ∈ A and �(s) ∈ B}|

|T| .

��U(� ∈ A) ≡ [f�∈A]U.

��U(� ∈ A ∣ � ∈ B) ≡
cU(� ∈ A ∧ � ∈ B)

��U(� ∈ B)
.

11  An ultrafilter U on a set S is free if the intersection of all elements of U is empty.
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hyperclasses (i.e., entities that contain proper classes as elements), it follows from 
definition 4 that the resulting probability measures are hyperclasses, too.12 It is of 
course a difficult philosophical question whether classes and/or hyperclasses exist, 
and, if they do, what their nature is. We will not go into this question here, but 
merely reiterate our earlier observation13 that those who are sceptical about classes 
may take V to be some strongly inaccessible rank.

3 � Constraints

From Sect. 1 we know that the aim is not to arrive at a unique (correct) probability 
function on V. But we did insist from the outset on our probability functions satisfy-
ing three global constraints: totality, uniformity, and regularity. It will be shown that 
these properties are always guaranteed to hold.

There are further global conditions on probability functions on V that seem from 
a pre-theoretic point of view attractive, and that are not guaranteed to hold without 
further work. These global constraints will be explored in what follows. We will 
show that many of them can be forced to hold by imposing constraints on the ultra-
filters from which the probability functions are generated.

3.1 � Elementary Properties

The definition of ��U is relative to an initial choice of the fine ultrafilter U . The prop-
erties of ��U depend on U . Nonetheless, certain basic properties of ��U can be easily 
seen to hold regardless of which fine ultrafilter U is chosen. For instance, it is easy to 
see that ��U is always a total finitely additive probability function (Benci et al 2013, 
Sect. 4).

Now we define the notion of a bijective random variable:

Definition 6  A random variable � is said to be a bijective random variable if for any 
set x, there is exactly one element u of the state space such that �(u) = x.

In words: a bijective random variable is a random variable that takes every value 
exactly once. This simply means that bijective random variables have no built-in 
bias towards taking as their value any particular set.

In terms of the notion of random variable (on V), we define the notions of regu-
larity and uniformity:

Definition 7  (regularity) A probability function ��U is regular if for every bijective 
random variable � and for every x ∈ V , ��U(𝜃 = x) > 0.

12  It is unavoidable that probability measures on V of this kind are larger than set-size: see (Pruss, 2013).
13  See p. 4.



	 L. Horsten, H. Brickhill 

1 3

Definition 8  (uniformity) A probability function ��U is uniform if for every bijec-
tive random variable � and for all x, y ∈ V ∶

Proposition 1  For every fine ultrafilter U : 

1.	 ��U is regular;
2.	 ��U is uniform.

Proof  These properties are proved as propositions 2.5 and 2.6 in (Brickhill 
2018, p. 525–526), respectively. 	�  ◻

Here we note that it is the fineness of the ultrafilter that guarantees the Regularity 
and Uniformity of the resulting probability function. So our requirement of fineness 
on ultrafilters is motivated by our desire to obtain Regularity and Uniformity.14

The Euclidean property is formally defined as follows:

Definition 9  (Euclidean) A probability function ��U is Euclidean if for every bijec-
tive random variable � and all A,B ⊆ V:

Then we have:

Proposition 2  For every fine ultrafilter U , the probability function ��U is Euclidean.

Proof  By finite additivity and regularity. 	�  ◻

Now we turn to infinite additivity. Countable additivity means that the probability 
of the union of a countable family of disjoint sets is the infinite sum of the probabili-
ties of the elements of the family, where the notion of infinite sum is spelled out in 
terms of the classical notion of limit. In the present setting, the probability PrU of 
the union of any family of disjoint sets is also the infinite sum of the probabilities 
of the elements of the family (Benci et al 2013, Sect. 3.4). But now the notion of 
infinite sum is spelled out in terms of the generalised notion of limit based on the 
ultrafilter U . More precisely, the new notion of infinite sum is defined as follows. 
Suppose we are given a family {qi ∶ i ∈ S} of rational numbers, and I ⊆ S . Then 
consider the function f ∶ [S]<𝜔 → ℚ given by

��U(� = x) = ��U(� = y).

A ⊊ B ⇒ 𝖯𝗋U(𝜃 ∈ A) < 𝖯𝗋U(𝜃 ∈ B).

f (T) =
∑

i∈I∩T

qi.

14  The Uniformity property can be relaxed by assigning weights to states (see (Brickhill et al 2018, sec-
tion 2.4). For certain purposes, such as establishing analogues of the representation theorems that are 
proved in (Brickhill & Horsten, 2018), this is useful and desirable. But, for the reasons given on p. 3, we 
will not consider such “non-random” probability functions here.
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This function can be seen as giving the value of the infinite sum on all finite 
parts (“snapshots”) of the index set. So we identify the infinite sum of the family 
{qi ∶ i ∈ I} of rational numbers with the generalised limit of f according to the ultra-
filter U:

Definition 10 
Using this notion of infinite sum,15 we can express the probability of the union 

of a disjoint family of sets as the sum of the probabilities of the members of that 
family:

Proposition 3  For any index set I, if A =
⋃

i∈I Ai , with Ai ∩ Aj = � for all i, j ∈ I , 
then for every random variable �:

In sum, ��U has a natural infinite additivity property that is sometimes called per-
fect additivity.

Proposition 4  For every fine ultrafilter U , the probability function ��U is perfectly 
additive.

Proof  This proposition is proved as proposition 8 in (Benci et al 2013, p. 132–133). 	
� ◻

3.2 � Symmetry Principles

The Euclidean-ness of ��U has implications for symmetry principles. We have 
already seen that our probability functions satisfy Uniformity, which is is naturally 
regarded as a symmetry principle that holds for our probability functions. However, 
we will now recount how the Euclidean-ness of ��U entails that certain other symme-
try principles fail. The results below complement other results in the literature that 
indicate that in the presence of Uniformity, it is difficult to satisfy further symmetry 
principles.16

Proposition 5  For every fine ultraflter U , the probability function PrU is not invari-
ant under all permutations of V.

Proof  We concentrate on ℕ as it is canonically represented in V (by means of the 
Zermelo ordinals, for instance). Define a permutation � of V as follows:

∑

i∈I

∗
qi ≡ [f ]U.

��U(� ∈ A) =
∑

i∈I

∗
��U(� ∈ Ai).

15  This infinite sum gives rise to a generalised notion of integral: see (Eskew, 2021).
16  See (Benci et al., 2007), (Benci et al., 2013), (Benci et al., 2018), (Pruss, 2021).
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•	 �(x) = x for x ∈ V ⧵ ℕ ; Otherwise:
•	 �(x) = x + 2 for x even;
•	 �(1) = 0;
•	 �(x) = x − 2 for x odd and > 1.

Let A ≡ {0, 2, 4,…} , and let � be a bijective random variable. Then 𝜋(A) ⊊ A . 
Therefore, by the Euclidean principle, ��U(𝜃 ∈ 𝜋(A)) < ��U(𝜃 ∈ A). 	�  ◻

This of course entails that there are bijective random variables �, �′ such that for 
some A ⊆ V ,

One popular global constraint on probability measures is translation-invariance. The 
Lebesgue measure has this property, and Banach limits seem to occupy a privileged 
position in the class of generalised limits at least in part because they are translation-
invariant. In our context, translation-invariance does not make obvious sense. For 
a random class A, it is not clear what ‘ A + � ’ (where � is a number) means. But a 
clear interpretation of ‘adding an ordinal number’ can of course be given if A is a 
collection of ordinals:

Definition 11  For A any collection of ordinals:

Then for A to be translation-invariant means that for all ordinals � and for every �,

However, even if we consider non-Archimedean measures (of the kind that we have 
been describing) on ordinals, translation-invariance conflicts with the Euclidean 
Property of our generalised probability functions. In particular, there is no NAP 
probability function ��U on any infinite cardinal � such that there is even one ordinal 
� with 0 < 𝛼 < 𝜅 and

The reason is simple. We have 𝜅 ⊕ 𝛼 = 𝜅�𝛼 ⊊ 𝜅, so if we had 
��U(𝜃 ∈ 𝜅) = ��U(𝜃 ∈ 𝜅 ⊕ 𝛼), then we would contradict the Euclidean principle.

As this example shows, such translations are not necessarily one to one so we 
may not want full invariance in general. In (Benci et al 2007, section 1.3), Benci, 
Forti, and Di Nasso explore a restricted notion of translation-invariance of NAP-like 
measures on ordinals. We do not pursue this theme further here, but only pause to 
note that there are other reasonable-looking principles that are hard to satisfy. In the 
context of their theory of numerosities, Benci, Forti , and Di Nasso consider a prin-
ciple that in the present context would take the following form:

Definition 12  (Difference Principle)

��U(� ∈ A) ≠ ��U(�
� ∈ A).

A⊕ 𝛼 ≡ {𝛽 ∶ ∃𝛾 ∈ A such that 𝛽 = 𝛾 + 𝛼}.

��U(𝜃 ∈ A) = ��U(𝜃 ∈ A⊕ 𝛼).

��U(𝜃 ∈ 𝜅) = ��U(𝜃 ∈ 𝜅 ⊕ 𝛼).
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On countable sample spaces, the difference principle can be made to hold by 
building ��U from a selective ultrafilter (Benci & Di Nasso, 2003).17 But the exist-
ence of selective ultrafilters is independent of ZFC.18 As far as we know, it is an 
open question whether the difference principle can be consistently made to hold for 
NAP probability functions on uncountable sample spaces.

3.3 � Probability and Cardinality

In this subsection we investigate the relation between our notion of generalised 
probability on the one hand, and the familiar notion of cardinality on the other hand.

3.3.1 � Hume’s Principle for Probability

One might naively wonder whether the following probabilistic analogue of Hume’s 
Principle for cardinality can hold:

Definition 13  (Hume’s principle for probability) For all A,B ∈ V:

But the probability functions ��U that we have been considering cannot satisfy 
Hume’s principle for probability, as its failure is an immediate consequence of Prop-
osition 5: invariance under permutations and Hume’s principle for probability are 
mathematically equivalent. However, this was only to be expected. After all, we do 
not expect Kolmogorov probability (on infinite spaces) to satisfy any such principle.

3.3.2 � Superregularity

The hyper-rational field FU in which the probability functions ��U take their val-
ues contain infinitesimal numbers —this is what makes it non-Archimedean. We 
will write ��U(� ∈ A) ≈ 0 if ��U(𝜎 ∈ A) < n−1 for each n ∈ ℕ . And we will write 
��U(𝜎 ∈ A) ≪ ��U(𝜏 ∈ B) if

We have seen that ��U cannot satisfy Hume’s principle for probability. But, at least at 
first sight, it seems that it would be reasonable to ask for:

∀A,B ∈ V ∶ 𝖯𝗋U(𝜃 ∈ A) < 𝖯𝗋U(𝜃 ∈ B) ⇒

∃C ∈ V ∶ 𝖯𝗋U(𝜃 ∈ B) = 𝖯𝗋U(𝜃 ∈ A) + 𝖯𝗋U(𝜃 ∈ C).

|A| = |B| ⇒ 𝖯𝗋U(� ∈ A) = 𝖯𝗋U(� ∈ B).

��U(� ∈ A)

��U(� ∈ B)
≈ 0.

17  An ultrafilter U on ℕ is selective if for every partition of [ℕ]2 into two pieces, there is a set H ∈ U 
homogeneous for the partition.
18  Their existence can be proved from the Continuum Hypothesis: see (Booth, 1970).
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Indeed, if in addition |B| ≥ � , then we might even seek to demand

Further, this may be expected to hold if B is a proper class but A is a set. The result 
is a size constraint which is a strengthening of the requirement of regularity:

Definition 14  (Superregularity)

Note that if A is finite and B is infinite then the consequent holds automatically.
By a suitable restriction on admissible ultrafilters U , superregularity can indeed 

be made to hold:

Theorem 1  There are fine ultrafilters U such that ��U is superregular.

Proof  If A,B ∈ V  such that 𝜔 ≤ |A| < |B| are given, then we have 
��U(𝜃 ∈ A) ≪ ��U(𝜃 ∈ B) if and only if for each n ∈ ℕ,

The aim is to build an ultrafilter U for which this holds.
For any n ∈ ℕ , define

Moreover, let

Define also

We want to prove that F  has the finite intersection property. Therefore take any 
x1,… , xk ∈ V  , and any ⟨A1,B1, n1⟩,… , ⟨Al,Bl, nl⟩ such that |||Aj

||| <
|||Bj

||| and nj ∈ ℕ 
for j ≤ l. Assume for the construction that |A1| ≤ |A2| ≤ ⋯ ≤ |Al| . For every finite 
D, if {x1,… .xk} ⊆ D, then D ∈

⋂
i≤k Axi

. So setting n = max{nj ∶ j < l} we will 
extend {x1,… .xk} to a set in Cn

AjBj
 , and hence Cnj

AjBj
 , for each j ≤ l . Set 

F0 = {x1,… .xk} and a0 = |F0 ∩ A1| . As B1 is infinite and of larger cardinality than 
A1 we add n ⋅ a0 elements of B1 ⧵ A1 to F0 , yielding a finite set F1 . Now set 
a1 = |F1 ∩ A2| , and add n ⋅ a1 elements of B2 ⧵ (A1 ∪ A2) to F1 to give F2 . Note we 
can find these elements of B2 as |B2| > |A2| ≥ |A1| . Continuing in this manner, set 
F = Fl . Then we have ensured that for all j ≤ l

|A| < |B| ⇒ 𝖯𝗋U(𝛿 ∈ A) < 𝖯𝗋U(𝛿 ∈ B).

|A| < |B| ⇒ 𝖯𝗋U(𝜎 ∈ A) ≪ 𝖯𝗋U(𝜎 ∈ B).

𝜔 ≤ |A| < |B| ≤ |V| ⇒ 𝖯𝗋U(𝜃 ∈ A) ≪ 𝖯𝗋U(𝜃 ∈ B).

{D ∈ [V]<𝜔 ∶
��(𝜃 ∈ A ∣ 𝜃 ∈ D)

��(𝜃 ∈ B ∣ 𝜃 ∈ D)
≤ n−1} ∈ U.

Cn
AB

≡ {D ∈ [V]<𝜔 ∶
��(𝜃 ∈ A ∣ 𝜃 ∈ D)

��(𝜃 ∈ B ∣ 𝜃 ∈ D)
≤ n−1}.

Ax ≡ {D ∈ [V]<𝜔 ∶ x ∈ D}.

F ≡ {Cn
AB

∶ n ∈ ℕ, |A| < |B|} ∪ {Ax ∶ x ∈ V}.
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and so we have F ∈ Cn
AjBj

, and since D ⊆ F, we also have F ∈
⋂

i≤k Axi
.

So F  indeed has the finite intersection property, whereby it can be extended to a 
filter and then further to an ultrafilter U . By design, then, the resulting probability 
function ��U is super-regular. 	�  ◻

Once again, Hume’s Principle for probability cannot hold for the notion of prob-
ability that we are investigating. But this leaves open the question whether the con-
verse of Hume’s Principle for probability can be made to hold. This is called Can-
tor’s Principle in (Benci et al., 2007), where the authors investigate it in the context 
of their Euclidean theory of size:

Definition 15  (Cantor’s Principle)

Benci, Forti, and Di Nasso prove that ‘Cantor’s Principle’ can be made to hold 
(Benci et al 2007, Sect. 3.2). It is also clear that Cantor’s Principle (for A, B such 
that |A|, |B| ≥ � ) follows from super-regularity.

3.3.3 � The Power Set Principle

The question whether

is true, is independent of the axioms of set theory. (Of course the principle is true 
if the Generalised Continuum Hypothesis holds.) Like the cardinality operator, our 
generalised probability functions are measures of some kind. One might wonder 
what should follow from ��U(𝜃 ∈ A) < ��U(𝜃 ∈ B). In particular, given that ��U is 
intended to be a fine-grained quantitative possibility measure, perhaps probability 
should be expected to co-vary with the power set operation in some fairly direct 
manner. In other words, it is natural to ask if the following principle can be made to 
hold:

Definition 16  (Power Set Condition)

It turns out that the power set condition can indeed be satisfied:

Theorem  2  There are fine ultrafilters U such that ��U satisfies the power set 
condition.

The argument for this is somewhat more involved.

��(� ∈ Aj ∣ � ∈ F)

��(� ∈ Bj ∣ � ∈ F)
≤ n−1,

If ��U(� ∈ A) = ��U(� ∈ B), then |A| = |B|.

∀A,B ∈ V ∶ |A| < |B| ⇒ |P(A)| < |P(B)|

∀A,B ∈ V ∶ 𝖯𝗋U(𝜃 ∈ A) < 𝖯𝗋U(𝜃 ∈ B) ⇔ 𝖯𝗋U(𝜃 ∈ P(A)) < 𝖯𝗋U(𝜃 ∈ P(B)).
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We aim to prove Theorem 2 by building the probability function up from an ultra-
filter U which is based on a pre-filter C ⊆ P([V]<𝜔).19

The class C is built up in stages, and in such a way that it eventually witnesses the 
truth of the power set condition for all A,B ∈ V .
Stage 0
The class C0 consists of all

for x ∈ V  . This is to ensure that the ultrafilter that will be built from C is fine. We 
know that C0 has the finite intersection property.
Limit stages
For limit stages � , we simply set C𝜆 ≡

⋃
𝛽<𝜆 C𝛽.

Successor stages
Given fineness, we may, and will, ignore the elements of V� . At stage 𝛼 > 𝜔 , 

where � is a successor ordinal, we consider the sets of V��V�−1 and ensure that the 
power set condition eventually holds for all these sets and their power sets, by add-
ing families of finite sets to C�−1 in such a way that the finite intersection property is 
preserved.

As an illustrative and indeed representative example we do the case where 
� = � + 1.

Let there be given an enumeration {A1,B1},… , {A� ,B�},… of the pairs of ele-
ments of V�+1�V�.

For the induction, we assume that, by having added appropriate sets of finite sets 
to C0 , the power set condition holds for {A1,B1},… , {A� ,B�} and their power sets, 
and that in the process the finite intersection property has been preserved. The aim 
is now to extend this so that it also holds for {A�+1,B�+1} . In other words, we have 
constructed C�

1
 , and we want to obtain C�+1

1
 , where C0

1
≡ C0.

Definition 17 

Definition 18 

Claim
Either C𝛽

1
∪ {CA𝛽<B𝛽

} has the finite intersection property, or C�
1
∪ {CA�≥B�

} has the 
finite intersection property (or both).

Proof  Suppose not. Then there is a finite intersection F of elements of C�
1
 such that 

F ∩ CA𝛽<A𝛽
= � , and there is a finite intersection F′ of elements of C�

1
 such that 

F� ∩ CA�≥B�
= � . But then (F ∩ F�) ∩ CA𝛽<B𝛽

= � and (F ∩ F�) ∩ CA�≥B�
= � . But 

Ax ≡ {a ∈ [V]<𝜔 ∶ x ∈ a},

CA<B ≡

{
D ∈ [V]<𝜔 ∶

|A ∩ D|
|D| <

|B ∩ D|
|D|

}
.

CA≥B ≡

{
D ∈ [V]<𝜔 ∶

|A ∩ D|
|D| ≥

|B ∩ D|
|D|

}
.

19  A pre-filter is a non-empty set with the finite intersection property.
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CA𝛽<B𝛽
∪ CA𝛽≥B𝛽

= [V]<𝜔. So then (F ∩ F�) = � . But this contradicts the inductive 
assumption that C�

1
 has the finite intersection property.

Thus define C�+1
1

 to be C𝛽
1
∪ {CA𝛽<B𝛽

} if this has the finite intersection property, or 
C
�

1
∪ {CA�≥B�

} otherwise, and by the claim, C�+1
1

 has the finite intersection property. 
Now setting C−

1
≡
⋃

� C
�

1
, we may conclude that C−

1
 has the finite intersection 

property.
At this point we must extend C−

1
 by adding to C−

1
:

•	 every set of the form CP(A)<P(B) such that CA<B ∈ C
−
1
;

•	 every set of the form CP(A)≥P(B) such that CA≥B ∈ C
−
1
.

Call the resulting set C1 . Our aim is to prove that C1 has the finite intersection 
property.

Consider an arbitrary non-empty finite family F ⊆ C1 . Without loss of gen-
erality we may assume that the ‘judgements’ in F  of the form CP(A)<P(B) or 
CP(A)≥P(B) , taken together, describe a finite total pre-ordering relation R on some 
set {P(A1),… ,P(Ak)} . Further, we may also assume that for sets A and B from 
V�+1�V� , CP(A)<P(B) ∈ F  if and only if CA<B ∈ F  , and CP(A)≥P(B) iff CA≥B ∈ F  . Thus 
F  contains witnesses for all the relevant judgements we may be interested in.

Let F− = F ∩ C
−
1
 , so F− consists only of judgements about sets in V�+1�V� . Then 

we know from the foregoing that 
⋂

F
−
≠ � . So take some F− ∈

⋂
F

− . Our plan is 
inductively to extend F− , using the pre-order R, to a finite set F ∈

⋂
F .

We will add to F− elements that ensure that the constraints of R are satisfied. 
Moreover, by choosing the elements to be added to F− from V�+1�V�,20 we ensure 
that the constraints imposed by F− remain satisfied. As a result, F will satisfy all 
constraints from F  , so 

⋂
F ≠ ∅ and hence C1 has the finite intersection property.

As an example, suppose that R says that

(1)	 We start by ensuring that ||P(A1)
|| < ||P(A2)

|| is satisfied.
	   Suppose that F− already contains n elements of P(A1) . Since CA1<A2

∈ F  , 
there must be an element x− ∈ A2�A1 . This implies that there are infinitely many 
infinite sets x in P(A2)�P(A1) such that x− ∈ x : we add n + 1 such elements to 
F− , and call the resulting finite set F−

1
.

(2)	 We proceed in similar fashion to ensure that ||P(A2)
|| < ||P(A3)

|| is satisfied:
	   Suppose that F−

1
 already contains m elements from P(A2) , observing that it 

may be the case that m > n + 1 , for there may already be a finite number of ele-
ments of P(A2) in F− . Since CA2<A3

∈ F  , there must be an element y−
1
∈ A3�A2 , 

and since CA1<A3
∈ F  , there must be an element y−

2
∈ A3�A1 . So there are infi-

nitely many infinite sets y in P(A3) such that y−
1
, y−

2
∈ y : add m + 1 such elements 

to F−
1
 , and call the resulting set F−

2
.

||P(A1)
|| < ||P(A2)

|| < ||P(A3)
|| = ||P(A4)

||.

20  For later stages we will take these sets from V�+1�V� , i.e. sets of rank �.
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(3)	 Now suppose that there are m1 elements of P(A3) in F−
2
 , and m2 elements of P(A4) 

in F−
2
 . Moreover, suppose that m2 < m1 . (The case where m1 < m2 is similar.) 

Since CA3≥A4
,CA4≥A3

∈ F  , but also A3 ≠ A4 , there must be some x1 ∈ A3�A4 
and some x2 ∈ A4�A3 . Moreover, since CA1<A4

,CA2<A4
∈ F  , there are elements 

x3 ∈ A4�A1, x4 ∈ A4�A2 . So P(A4) contains infinitely many infinite sets x such 
that {x2, x3, x4} ⊂ x . Similarly, P(A3) contains infinitely many infinite sets x that 
are outside P(A1),P(A2),P(A4) . So we add a sufficient number of such elements 
to F−

2
 so that there are an equal number p of “witnesses” for P(A3) as for P(A4) 

but where p is larger than the number of witnesses for P(A2) . Call the resulting 
set F−

3
.

(4)	 To conclude, we set F ≡ F−
3
 . It is clear that F ∈

⋂
F .

	   This procedure of extending F− easily generalises to any finite total pre-order-
ing on {P(A1),… ,P(Ak)} . Thus we have shown that C1 has the finite intersection 
property.

This procedure for extending C0 to C1 while preserving the finite intersec-
tion property also works for larger successor ordinals: at level V�+1 (stage � + 1 
with � = � + � ) we can extend the corresponding F− using subsets of rank � . As 
we have said above, at limit stages we can simply take unions. Ultimately we set 
C ≡

⋃
�∈On C�.

The class C will then have the finite intersection property, so it can be extended 
to a filter and then to an ultrafilter U . The probability function based on U will make 
the power set condition true for all A,B ∈ V  , and this concludes the proof of theo-
rem 2. 	�  ◻

With a minimal amount of extra work, our proof can be seen to show something 
slightly stronger: for all A, B with |A|, |B| ≥ � , we have

The reason is that in enlarging the set F− we always have infinitely many elements to 
choose from.

For any probability measure ��U that satisfies power set condition we also have that 
∀A,B ∈ V ,∀n ∈ �:

where Pn(A) = P(P(…P(A)… )) . An easy argument shows this cannot extend to 
infinite applications of the power set operation: if B = P(A) then P�(B) = P

�(A).
One might wonder whether the motivations behind the power set condition should 

not also support imposing the following restricted power set condition on ��U:21

Question 1  Are there probability measures such that

𝖯𝗋U(𝜃 ∈ A) < 𝖯𝗋U(𝜃 ∈ B) ⇔ 𝖯𝗋U(𝜃 ∈ P(A)) ≪ 𝖯𝗋U(𝜃 ∈ P(B)).

𝖯𝗋U(𝜃 ∈ A) < 𝖯𝗋U(𝜃 ∈ B) ⇔ 𝖯𝗋U(𝜃 ∈ P
n(A)) < 𝖯𝗋U(𝜃 ∈ P

n(B))

21  This question was suggested to us by Philip Welch.
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3.4 � The Ordinals

For � ≥ �, in each level V�+1 ⧵ V� of the iterative hierarchy one finds only one ordi-
nal, but infinitely many sets that are not ordinals. This might lead one to believe that 
a probability function on V should satisfy

where ‘On’ is the class of ordinals.
Just as it seems reasonable to require that the probability of choosing an even nat-

ural number from the set of natural numbers must be equal to or infinitesimally close 
to 1

2
 (see Wenmackers et al 2013, section 6.2), it seems reasonable to require that

where ‘Even’ is the class of even ordinals, which is defined in the obvious way.
Moreover, between any two limit ordinals there are infinitely many successor 

ordinals, so one might expect

where ‘Lim’ is the class of limit ordinals.
We will sketch how probability functions can be constructed that meet these 

expectations. Indeed, we will see that there are probability functions that meet these 
‘ordinal expectations’ and in addition meet the size constraint of super-regularity.

Theorem 3  There is a super-regular probability function PrU such that: 

1.	 ��U(� ∈ On) ≈ 0;

2.	 ��U(� ∈ Even ∣ � ∈ On) ≈ 2−1;

3.	 ��U(� ∈ Lim ∣ � ∈ On) ≈ 0.

Proof  As before, the aim is to choose wisely the ultrafilter U on which ��U is based. 
We want U to be such that for all k, l,m ∈ ℕ:

•	 ��U(�∈A)

��U(�∈B)
≤ k−1 if 𝜔 ≤ |A| < |B|;

•	 ��U(� ∈ Even ∣ � ∈ On) − ��U(� ∈ Odd ∣ � ∈ On) ≤ l−1 and 
��U(� ∈ Lim ∣ � ∈ On) ≤ l−1;

•	 ��U(� ∈ On) ≤ m−1.

Now we define:

∀A,B ∈ V ∶ 𝖯𝗋U(𝜃 ∈ A) < 𝖯𝗋U(𝜃 ∈ B) ⇔ 𝖯𝗋U(𝜃 ∈ [A]<𝜔) < 𝖯𝗋U(𝜃 ∈ [B]<𝜔)?

��U(� ∈ On) ≈ 0,

��U(� ∈ Even ∣ � ∈ On) ≈
1

2
,

��U(� ∈ Lim ∣ � ∈ On) ≈ 0,
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•	 Ax ≡ {D ∈ [V]<𝜔 ∶ x ∈ D};

•	 Ck
AB

≡ {D ∈ [V]<𝜔 ∶
��[A∣D]

��[B∣D]
≤ k−1};

•	 Il ≡ {D ∈ [V]<𝜔 ∶ ∀𝛼 ∈ D ∩ On∃𝛽(𝛼 ∈ [𝛽, 𝛽 + l] ⊆ D)};

•	 Wm ≡ {D ∈ [V]<𝜔 ∶ ��[On ∣ D] ≤ m−1}.

And now we set:

The inclusions of the sets Ax in F0 will ensure the resulting filter is fine, the inclu-
sion of the sets Ck

AB
 ensures super-regularity, the inclusion of the sets Wm ensures 

property 1. of the theorem holds. The inclusion of the sets Il will give us property 
3. as the ratio of limit ordinals to sucessor ordinals in any element of Il is less than 
or equal to l−1 , but these sets also give us property 2. as any D ∈ Il can have at most 
one extra odd or even ordinal for every l elements it contains, so the ratio of odd to 
even ordinals must tend towards 1.

Claim: F0 has the finite intersection property.
Take any finite F ⊂ F0 . Let some x1,… , xn be the indices corresponding to the Ax 

type elements of F . Now 
⋂

i≤n I
li = Ilmax where lmax = max{li ∶ i < n} , and similarly 

for 
⋂

i≤n W
mi , so as before in Theorem 1, it suffices to consider the maximum values 

of k, l, m represented as indices of, respectively, the C, I, and W type sets in F. 

(1)	 A ∈
⋂

i≤n Axi
⇔ {x1,… , xn} ⊆ A. So we start with the finite set A0 ≡ {x1,… , xn}, 

and will extend it.
(2)	 Again we concentrate on one pair ⟨A,B⟩ such that 𝜔 ≤ |A| < |B| ; we leave out 

further cases as they are similar. There are arbitrarily large finite subsets C ⊆ B 
that are l-isolated from elements of A, meaning that each ordinal in C is more 
than l ordinals removed from any ordinal in A. We choose any such C ⊆ B that 
is of size at least k ⋅ n , and we set A1 ≡ A0 ∪ C.

(3)	 Now we extend A1 to ensure that all ordinal intervals are of length ≥ l : for each 
� ∈ A1 , we add � + 1,… , � + l . Call the resulting finite collection A2 . Note 
that by our choice of l-isolated elements in (2), for any � ∈ A1 ⧵ A0 , none of 
� + 1,… , � + l are elements of A, and thus the ration of elements in A to ele-
ments in B remains below 1 : k.

(4)	 Let ||A2
|| = j . Then we add j ⋅ m elements of V ⧵ (A ∪ B ∪ On) to A2 and call the 

resulting set A3.

It is now routine to verify that A3 ∈
⋂

i≤n Axi
∩ Ck

AB
∩ Il ∩Wm . The case including 

further sets Ck
A′B′ is similar, thus the claim is verified. So F0 indeed has the finite 

intersection property, whereby it can be extended to a filter and then further to an 
ultrafilter U . By design, the resulting probability function ��U has the required prop-
erties. 	�  ◻

F0 ≡ {Ax,C
k
AB
, Il,Wm ∶ x ∈ V , k, l,m ∈ ℕ and 𝜔 ≤ |A| < |B|}
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4 � The bootstrapping approach

The probability ��U(� ∈ A) is obtained by ‘summing up’ the probabilities 
��(� ∈ A ∣ � ∈ S) , where � is the identity random variable, for all ‘small’ parts S of V; 
such ��(� ∈ A ∣ � ∈ S) are seen as approximations of ��U(� ∈ A).

In the finite snapshot approach, ‘small’ in this context means ‘finite’. But from 
a conceptual point of view, ‘finite’ might be taken to be too small as far as the test 
sets (or snapshots) are concerned. Compared to V, all sets —and not just the finite 
sets— are small. So to determine ��U(� ∈ A) , we should take the ‘limit’ of the values 
��(� ∈ A ∣ � ∈ S) , where S is a set of any size. Then if S is infinite, ��(� ∈ A ∣ � ∈ S) 
cannot just be taken to be given by the ratio formula but needs to be defined.

In the approach to which we now turn (the bootstrapping approach), a prob-
ability ��U(� ∈ A) is determined by the probabilities ��U(� ∈ A ∣ � ∈ S) , where 
��U(� ∈ A ∣ � ∈ S) , for S a large set, is then in turn determined by probabilities 
��U(� ∈ A ∣ � ∈ S�) for S′ being smaller ‘snapshots’ than S, and so on, until we reach 
the finite snapshots and can appeal to the probability functions that were discussed 
in the previous sections. Thus the bootstrapping account can be seen as a generalisa-
tion of the finite snapshot approach.

4.1 � The Rough Idea

In general terms, this is how we will proceed: 

(1)	 By the construction from the previous section, a fine ultrafilter on [S]<𝜔 yields a 
notion of probability on all sets S ∈ V  with |S| < 𝜔1 . In other words, this yields 
a suitable notion of probability, call it ��S , for every countable set S.

(2)	 The notion of ��S for all S ∈ V  with |S| < 𝜔2 is determined using the notion of 
probability on countable sets: the probability of A on such an S is determined 
by the class of probabilities of A on the countable ‘snapshots’ of S. Using these 
countable probability functions, a fine ultrafilter on [S]<𝜔1 gives us a notion of 
probability on sets S with |S| < 𝜔2.

Again the resulting functions ��S are essentially NAP-functions as defined in (Benci 
et al., 2013). They are total, regular, etc.

⋮

(� ) A fine ultrafilter on [S]<𝜔𝛼 , together with probability functions ��S for all S 
such that |S| < 𝜔𝛼 , yields a notion of probability on all sets S with |S| < 𝜔𝛼+1.

⋮

Limit stages of course do not present a problem. So by transfinite recursion on 
cardinality this yields for every set S a notion ��S of probability on S.

Then a fine ultrafilter U  on V = [V]<Card yields, using the general notion ��S 
for S ∈ V  , a notion ��V that is a total (class) function from properties A and ran-
dom variables � to values ��V (� ∈ A) in a non-Archimedean class field. This prob-
ability function again satisfies the principles of the theory NAP in (Benci et al., 
2013).
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For this construction, we need suitable (fine) ultrafilters on increasingly larger 
and larger sets, and a fine ultrafilter U  on [V]<Card . But we will see that all the 
set ultrafilters used in the construction can be uniformly obtained as restrictions 
to sets S of the given fine ultrafilter on [V]<Card . So ��V is determined by one ini-
tial choice of U  , whereby ��V can be seen as the ‘limit’ of its set-restrictions ��S , 
where the functions ��S can in turn be seen as ‘limits’ of restrictions to their small 
subsets. This uniform construction has the advantage that the resulting probabil-
ity functions are all coherent, in the sense that for a set T, ��S(� ∈ A|� ∈ T) is (up 
to a canonical embedding, as is explained in detail in the first part of the proof of 
Proposition 7 below) the same for all S ⊇ T  and hence also for V.

Now it is time to look at details of the construction.

4.2 � Details 1: Restrictions of Fine Ultrafilters

Since our construction involves ultrafilters on sets [S]<𝜅 with 𝜅 > 𝜔 , we make the 
following definition, which accords with the usual definition of fineness on [S]<𝜔.

Definition 19  For any infinite cardinal � , an ultrafilter U on [S]<𝜅 is fine iff for 
every x ∈ S ∶

Moreover, an ultrafilter U on [V]<Card is fine iff for every x ∈ V ∶

We first show that appropriate restrictions of ultrafilters to smaller sets can be 
obtained in a uniform fashion.

Definition 20  Suppose S ∈ V  , |S| = � , and U a fine ultrafilter on [S]<𝜅 , and S′ ⊆ S 
with |S�| = 𝛼 < 𝜅 . Then we define the restriction US′ of U to S′ as follows.

For any X ∈ P([S]<𝜅) , let

Then US� ≡ {XS� ∣ X ∈ U}.

Proposition 6  For any S ∈ V  with |S| = � , there are fine ultrafilters U on [S]<𝜅 that 
restrict to a fine ultrafilter on every S′ ⊆ S with |S�| = � , and 𝜔 ≤ 𝛼 < 𝜅.

Further, such ultrafilters are coherent in that if T ⊂ S′ with 𝜔 ≤ |T| < |S′| , then 
(US� )T = UT.

Proof  We build the ultrafilter from a pre-filter F0 , which can then be extended to a 
filter and then to an ultrafilter.

For each x ∈ S , let

{T ∈ [S]<𝜅 ∶ x ∈ T} ∈ U.

{T ∈ [V]<Card ∶ x ∈ T} ∈ U.

XS� ≡ {y ∣ ∃z ∈ X ∶ y = z ∩ S� and |y| < 𝛼}.
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And let for each S′ with |S�| = 𝛼 < 𝜅 and S′ ⊆ S:

Now set

It is easy to see that F0 has the finite intersection property and so can be extended to 
an ultrafilter U . And by design, U is fine.

Clearly US� ⊆ P([S�]<𝛼). We must check the fine ultrafilter properties for US′ : 

(1)	 Fine. This follows from the fact that U is fine: for x ∈ S� this is witnessed by 
(Ax)S�.

(2)	 Finite intersection. Let X, Y ∈ US� . Then there are X,Y ∈ U such that X = XS� 
and Y = YS� . By the finite intersection property of U , we know that X ∩ Y ∈ U. 
But X ∩ Y ⊇ (X ∩ Y)S� . So X ∩ Y ∈ US�.

(3)	 U l t ra .  Ta k e  a n y  X ⊆ [S�]<𝛼  ,  a n d  l e t  Xc ≡ [S�]<𝛼�X.  L e t 
X ≡ {x ∈ [S]<𝜅 ∣ x ∩ S� ∈ X} and let Xc ≡ {x ∈ [S]<𝜅 ∣ x ∩ S� ∉ X}. Then 
Xc = [S]<𝜅�X. By the ultra property for U  , we have X ∈ U  or Xc ∈ U  . But 
X = XS� and Xc = Xc

S� . So X ∈ US� or Xc ∈ US� .

(4)	 Non-principality. This is implied by fineness.
(5)	 Empty set property: We have to show that � ∉ US� . It suffices to show that for each 

X ∈ U , XS′ ≠ ∅ . Since RS� ∈ U , X ∩ RS� ≠ � . But for any set x in this intersection, 
x ∩ S� ∈ [S�]<𝛼 . So x ∩ S� ∈ XS� ≠ �.

For coherence, take T ⊂ S′ ⊂ S with |T| < |S′| < |S| and let X ∈ U  . 
As RS� ∈ U  , and restrictions of subsets are subsets of restric-
tions, it is enough to show that ((X ∩ RS� )S� )T = (X ∩ RS� )T . Now 
((X ∩ RS� )S� )T = {y ∣ ∃z ∈ X ∩ RS� ∶ y = z ∩ T , |y| < |T| and |z ∩ S�| < |S�|}   , 
but by definition, for any z ∈ RS� we have |z ∩ S�| < |S�| . Thus 
((X ∩ RS� )S� )T = {y ∣ ∃z ∈ X ∩ RS� ∶ y = z ∩ T and |y| < |T|} = (X ∩ RS� )T . 	�  ◻

It can then be seen that this property must also hold for fine ultrafilters on 
[V]<Card ∶

Consequence 1  There are fine ultrafilters U on [V]<Card , such that for every set S 
with |S| = � , US is a fine ultrafilter on [S]<𝛼 and the coherence property holds.

Proof  By the same reasoning as in the previous proposition. 	�  ◻

Ax ≡ {X ∈ [S]<𝜅 ∶ x ∈ X}.

RS� ≡ {X ∈ [S]<𝜅 ∶ X ∩ S� ∈ [S�]<𝛼}.

F0 ≡ {Ax ∶ x ∈ S} ∪ {RS� ∶ S� ⊆ S and ||S�|| < 𝜅}.
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4.3 � Details 2: Defining Probability Functions

Now we show how for every set, a probability function on that set can be defined. 
The same procedure can then be used to define a probability function on V, and 
these probability functions are coherent.

The key is to spell out what is involved in the �-th step of the recursive procedure 
for defining probabilities on sets:

(� ) A fine ultrafilter U on [S]<𝜔𝛽 (with �� = |S| ), together with probability func-
tions ��T for all T such that |T| < 𝜔𝛽 , yields a notion of probability ��S on S.

As in Sect. 2, we define a function f�∈A such that for all T ∈ [S]<𝜔𝛽:

Similarly, we define a function f�∈A∧�∈B such that for all T ∈ [S]<𝜔𝛽:

Then ��S(� ∈ A) is defined as [f�∈A]U , and ��S(� ∈ A ∣ � ∈ B) is defined as

This function ��S will then be an NAP probability function in the sense of (Benci 
et al., 2013).

Now in an exactly similar way, we define a class probability function ��+
U
 on 

V, using the probability functions on ‘small’ classes (i.e., sets) and ultrafilters on 
‘small’ classes which (given proposition 6) we can now assume to have been defined 
on the basis of an ultrafilter U on [V]<Card with which we start. The function ��+

U
 is 

total, regular, and uniform for the same reasons as why its ‘smaller cousin’ ��U has 
these properties.

We now check coherence. We will do this only for probabilities of the identity 
random variable rather than random variables in general, as although coherence 
holds for all random variables, it is more technical to prove. Below we use ��(A) to 
denote ��(� ∈ A) , ��(A|T) for ��(� ∈ A|� ∈ T) , and fA(T) for f�∈A(T) , where � is the 
identity random variable.

Proposition 7  For any class A and sets T ⊂ S with |T| < |S| we have22

Proof  We show by induction on |T| that that the above holds for all S ⊃ T  with 
|S| > |T| . This is trivial for finite T as on both sides we are just using the ratio for-
mula. For infinite T, strictly speaking, the range of ��T may be a non-Archimedean 
field that is different from the range of ��S , but there is a natural embedding of the 

f�∈A(T) ≡ ��T (� ∈ A ∣ � ∈ T) ≡ ��T ({s ∈ T ∶ �(s) ∈ A}).

f�∈A∧�∈B(T) ≡ ��T (� ∈ A ∧ � ∈ B ∣ � ∈ T) ≡ ��T ({s ∈ T ∶ �(s) ∈ A ∧ �(s) ∈ B}).

[f�∈A∧�∈B]U

[f�∈B]U
.

��T (A) = ��S(A|T).

22  Coherence for an arbitrary random variable would be:

��T (� ∈ A) = ��S(� ∈ A|� ∈ T).
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former into the latter defined by i([f ]UT
) = [f̄ ]US

 where for X ∈ S<|S| , f̄ (X) = f (X ∩ T) 
where the latter is defined and zero otherwise. The embedding is well-defined as 
{X ∈ S<|S| ∶ |X ∩ T| < |T|} = (RT )S ∈ US , so if g ∈ [f ]UT

 , so g agrees with f on a 
set Y in UT , then f̄  agrees with ḡ on (RT )S ∩ Ȳ  , where Ȳ  is any set in US with ȲT = Y  . 
Such a Ȳ  exists by cohernce.

For a given infinite T we assume the property holds for any T ′ with |T ′| < |T| , and 
show it holds for T. Let S be arbitrary with |S| > |T|.

Using the embedding we have i(��T (A)) = i([fA]UT
) = [f̄A]US

 . Now for 
X ∈ (RT )S (∈ US) we have:

As X ∈ (RT )S we have |X ∩ T| < |T| so by our inductive hypothesis

But by definition, 
[ fA∩T

fT

]
US

= ��S(A|T) , so [f̄A]US
= ��S(A|T) and we’re done. 	�  ◻

4.4 � Comparison of the Finite Snapshot Approach and the Bootstrapping 
Approach

In our definition of the probability of a set theoretic property, the probability 
��+

U
(� ∈ A) of � having the property A is determined by the probabilities PrS(� ∈ A) 

of A on large ‘snapshots’ S, where a probability PrS(� ∈ A) (for S a large set) is then 
in turn determined by the probabilities PrS� (� ∈ A) for S′ being smaller ‘snapshots’ 
than S, and so on. Conceptually, the definition in Sect. 4.3 is superior to the simpler 
definition suggested from Sect. 2: we want to take the behaviour of the property on 
as many and as large ‘snapshots‘ as possible into account.

It is not straightforward to compare the simple and the more involved definition: 
the simple method is based on an ultrafilter on [V]<𝜔 whereas the more involved 
method is based on an ultrafilter on V = [V]<Card.

The obvious suggestion is to base the comparison on the relation between a prob-
ability function determined by an ultrafilter U on [V]<Card and its restriction23 to 
[V]<𝜔 defined as U ↾ 𝜔 = {X ∩ [V]<𝜔|X ∈ U} . But:

Proposition 8  Not all ultrafilters on [V]<Card restrict to ultrafilters on to [V]<𝜔.

Proof  Consider A ∪ [V]<𝜔 , where A is the collection of sets of the form Ax for vari-
ous x as used throughout the paper (guaranteeing fine-ness) and [V]<𝜔 is the rela-
tive complement of [V]<𝜔 in [V]<Card . Then A ∪ [V]<𝜔 has the finite intersection 

f̄A(X) = fA(X ∩ T) = fA∩T (X ∩ T) = ��X∩T (A ∩ T).

��X∩T (A ∩ T) = ��X(A ∩ T|T) =
fA∩T (X)

fT (X)
.

23  This is a different notion of restriction to that defined in the previous section as here we are only 
restricting Card, while the underlying class V remains the same.
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property and so can be extended to a fine ultrafilter U on [V]<Card . But � ∈ U ↾ � . So 
U does not restrict to an ultrafilter on [V]<𝜔 . 	� ◻

On the other hand, every fine ultrafilter on [V]<Card restricting to an ultrafilter on 
[V]<𝜔 essentially is an ultrafilter on [V]<𝜔:

Proposition 9  Suppose U is a fine ultrafilter on [V]<Card restricting to an ultrafilter 
U ↾ � on [V]<𝜔 . Then [V]<𝜔 ∈ U.

Proof  Since U is ultra, we have [V]<𝜔 ∈ U or [V]<𝜔 ∈ U . But if [V]<𝜔 ∈ U , then 
� ∈ U ↾ � , so that U does not restrict, contradicting the assumption. So [V]<𝜔 ∈ U . 	
� ◻

This means that the probability functions on V generated by the bootstrapping 
method cannot be reduced to ‘simple’ probability functions on V that were discussed 
in the previous section.

In sum, in the preceding sections we have explored two methods for modelling, 
by means of non-Archimedean probability functions, the properties of random vari-
ables ranging over the set theoretic universe. Concerning the finite snapshot method, 
we found that many of the probabilistic properties that seem intuitively plausible can 
be satisfied. The bootstrapping method is more satisfying from a conceptual point 
of view. But we have only been able to show that the resulting probability functions 
satisfy minimal requirements. Much work on the bootstrapping method therefore 
remains to be done.

5 � Concluding Remarks

The real numbers are in a sense close to our physical world: we routinely use them 
to model physical phenomena and processes. For that reason, throwing a dart ran-
domly at the real unit interval appears to be probabilistically meaningful,24 even 
though, due to our finite powers of discrimination, this scenario cannot be experi-
mentally realised.25 In contrast with this, throwing a dart randomly at V seems much 
further removed from what probability theory is about. Therefore one might wonder 
whether the notion of random variable on V is a probabilistically meaningful con-
cept at all.26

In response to this, one might argue that if the abstract notions of random graph 
and random space are probabilistically meaningful, then why is the notion of ran-
dom set not equally meaningful? But even those who are, for the reasons given in 
the previous paragraph, sceptical about attempts to apply probabilistic notions to the 

24  This is witnessed, for instance, by (Freiling, 1986) and the reactions in the literature to that article.
25  For a discussion about whether infinite fair lotteries, of which the scenario under consideration is an 
instance, can be physically realised, see (Norton, 2018) and (Norton, 2020).
26  Thanks to an anonymous referee for voicing this concern.
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mathematical universe as a whole, might find implications of our results for gener-
alised probability functions on the real numbers meaningful, as we shall now argue.

Consider the scenario of throwing a dart randomly at the real unit interval from 
the perspective of Kolmogorov probability. From that perspective, this is a probabil-
istically coherent scenario. It is then easy to see that not only all point events must 
have probability 0, but it must also be the case (because of �-additivity) that for each 
countably infinite set A ∈ [0, 1] , the probability that the random dart lands on a num-
ber in A must be 0.

If we consider this scenario from the perspective of the framework of the present 
article, the picture changes. Already according to the notion of probability described 
in the framework of (Benci et  al., 2013), the dart landing in any given countably 
infinite subset of [0, 1] is “more probable” than it landing in any finite subset of the 
unit interval.

This seems natural, but the intuition takes us further: shouldn’t it be the case 
that in general, for any sets A,B ⊆ [0, 1] with |A| < |B| , the probability that the dart 
lands in B is higher than the probability that it lands in A? Theorem 1 shows that 
there exist generalised probability functions that satisfy this condition, so that in the 
framework of (Benci et al., 2013) this intuition can be fulfilled. This goes beyond 
the results in (Benci et al., 2013), where this was only shown for A finite: Theorem 1 
implies that any uncountable subset can be given higher probability than any count-
able subset. The phenomenon becomes even more dramatic when the Continuum 
Hypothesis fails:27 we may require, for any two infinite sets A,B ⊆ [0, 1] such that 
|A| < |B| < |ℝ| (and there will then be such pairs of sets), the probability that the 
dart lands in B is higher than the probability that the dart lands in A.

This can then be seen as a natural strengthening of the phenomenon (i.e., the 
above for A finite) that was already known to hold in the framework of (Benci et al., 
2013). Since we are still only talking about the real unit interval, this is a result that 
has concrete probabilistic content. The bootstrapping method can also be applied 
to generalised probability on the real interval [0, 1], so the conceptual refinement 
gained is equally relevant to this more concrete situation.
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