Chapter 8  On our Ability to Fix Intended Structures.'

Leon Horsten

! Introduction

In this paper I want to discuss the question to what extent we are able to
unequivocally fix, by the use of (scientific) language, structures that we want to
talk about. In recent times, arguments have been formulated which purport to
show that we are able to fix intended structures to a significantly lesser degree
than we are inclined to think. Here, I will focus on the so-called model-theoretic
argument that has been proposed by Putnam.? His argument purports to show that
we are incapable of absolutely fixing the interpretation of both the physical and
the mathematical vocabulary of our best scientific theories to a reasonable extent.

The structure of this paper to some extent mirrors the structure of Putnam
[1980]. First, Putnam’s model-theoretic argument is briefly reviewed. Subse-
quently I discuss the options that seem available for constraining the class of in-
tended models of our scientific theories. 1 will sketch how Putnam would or
should respond to these proposals for constraining the class of intended models. I
immediately add to this the usual disclaimer that the opinions that are ascribed to
Putnam in this paper may be incompatible with his present beliefs, which are
notoriously hard to keep track of. Towards the end of the paper, I will argue that
the issues raised by Putnam’s model-theoretic argument are more properly
situated in the philosophy of mathematics than in the philosophy of science. I am
unable to give all these issues the-attention they deserve and I try to navigate
though them by at times making assumptions which really deserve careful consi-
deration. I hope that I have at least marked the places where this is done.

I will be more concerned with the methodology implicit in the debate around
Putnam’s argument than with the metaphysical conclusions that we should ulti-
mately draw from it. Indeed, the reader will not be mistaken in reading between
the lines (or even, indeed, in these very lines) that I am somewhat sceptical that
there are deep metaphysical lessons to be drawn from Putnam’s argument.

' T am grateful to Michel Ghins, Stefan Rummens, Igor Douven, Lieven Decock and

Geoffrey Hellman for helpful comments on the subject matter of this paper.
2 See Putnam [1980].
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2 Putnam’s challenge

Putnam’s argument can be formulated as a challenge. It is based on an old theo-
rem in mathematical logic, the Léwenheim-Skolem theorem. In one of its crudest
forms,? this theorem says that if a theory formalized in first-order logic has any
model with an infinite domain at all, then for every infinite cardinal number x, it
has a model with a domain of size k.

As an example, suppose we want to formalize Newtonian mechanics in first-
order logic. There are several ways to go about doing this. But whichever way we
do it, we have to at some point write down axioms which postulate Euclidean
space and time. This entails that we have to postulate the existence of the field of
the real numbers.* Perhaps we will even want to postulate the set of functions on
the reals. The Léwenheim-Skolem theorem entails that the resulting theory has a
model which has a domain the size of the natural numbers. And this theory will
also have a model with a domain of a size much larger even than the collection of
functions on the reals.

Now we are inclined to say that only a small subset of these models can be
intended ones. Such intended models are also called standard models. The other
ones are unintended or nonstandard models of our formalized scientific theory. In
the example above, the models which have a domain the size of the natural num-
bers will definitely be unintended. It seems even that in the final limit, our best
scientific theories aim to zero in on a unique intended model: the world.

But how do we determine which among the models of our formalized scientific
theories is (are) the intended one(s)? How can we distinguish the intended models
from the unintended ones? This is the form which Putnam’s challenge takes.

Putnam himself believes that we are in the end unable to separate intended
from unintended models in an absolute, definitive way. If we are indeed unable to
distinguish in a definitive way between intended and nonintended models of any
given formalized scientific theory, then this is a blow to various versions of
scientific realism. Since models of different cardinalities cannot be isomorphic
and isomorphism is our standard criterion of structure-likeness,’ it then seems
that it would be a futile endeavor of science to aim at uniquely describing the
structure of the world.

Actually, Putnam himself sees this only as a blow to metaphysical realism, and
continues to see himself as a realist. Many philosophers disagree, and situate

3> In more recent times, theorems have been obtained which provide much more detailed
information about the structure of models of first-order theories. Moreover, Léwenheim-
Skolem-type theorems have been proved for languages other than the language of first-
order logic. See Barwise and Feferman [1985].

4 Or something having the structure of the field of the real numbers. I am thinking here
of the nominalistic formalization of the theory of the real numbers in Field [1980].

> Nevertheless, one might ask oneself whether isomorphism is not too narrow as a
criterion for structure-likeness. For a discussion of this question, see Shapiro [1989], p. 163.
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Putnam in the anti-realist camp, where there is gnashing of teeth and wailing of
souls. However this may be, metaphysical realism seems at least somewhat easier
to characterize, at least operationally, than scientific realism. A metaphysical
realist is a person who fails to understand the following joke:

Somebody once asked Motke Chabad, the legendary wit: ‘Tell me, Motke, you’re
a smart fellow. Why is kugel called kugel?’Motke lost no time in responding.
‘What kind of a silly question is that? It’s sweet like kugel, isn’t it? It’s thick like
kugel, isn’t it? And it tastes like kugel, doesn’t it? So why shouldn't it be called
kugel? (Novak and Waldoks [1990], p. 7)

At least, this appears to be implied by Putnam’s statement that ‘the metaphysical
realist further believes [...] that truth and the correspondence [between language
and the world] on which truth is based are totally non-epistemic’ (Putnam [2000],
p. 2). For if naming would involve convention, and con-vention is epistemic, then
truth and correspondence would #ot be totally non-epistemic. But presumably
one cannot take Putnam literally here. For he repeatedly refers to the meta-
physical realist as ‘his former self’, and it is hard to imagine that Putnam the
metaphysical realist would not get the joke. This leaves me a bit at a loss to
understand what metaphysical realism is. Nevertheless, it does seem that if it
does turn out that we cannot even come close to separating intended from unin-
tended models in an absolute way, then at least certain some kinds of scientific
realism (such as structural realism) are also in trouble.

3 The rules of the game

Recall what we are asked to do. We are asked to formalize our scientific theories
in first-order logic and to consider all and only those models which make this
formalized theory true. The notion of model intended here is not the informal no-
tion which for instance physicists use when they say that a certain system
‘models’ a physical situation or process. Rather, what is intended is the precise
but bloodless sense which is given to the notion ‘model’ in the branch of logic
which is called model theory, and which goes back to the work of the logician
Tarski. A model of a first-order language is any ordered pair consisting of a
domain and a collection of assignments of denotations to the nonlogical constants
and predicates of the language. Whereas the interpretation of the nonlogical
symbols can therefore vary wildly from model to model, the interpretation of the
first-order logical symbols (—, A, V, ~, ¥, 3, =) is held constant in all models.

One may ask why the reference of the first-order logical symbols is held
sacrosanct, while the reference of all other primitive symbols is up for grabs. It
seems to me that Putnam’s motivation for this is his conviction that only our
grasp of the meanings of the first-order logical symbols is sufficiently strong to
warrant keeping them fixed across models. Of course this conviction can be, and
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has been, challenged in two ways. First, one may argue that even our grasp of the
first-order logical symbols is not sufficiently strong to warrant keeping them
fixed. Indeed, constructivistic mathematicians, for instance, would object to the
classical interpretation of the first-order quantifiers, especially when one
quantifies over an infinite domain. Second, one may try to argue that more no-
tions than just the first-order logical ones need to be interpreted uniformly in all
models, or at least constrained more than just to the extent of ensuring that the
theory can be made true. Of course combinations of the first and the second
strategy are also possible.

4 Constraining the interpretation of non-first-order-logical notions

In the sequel I will grant, for the sake of argument, that the interpretation of the
first-order logical constants should be held fixed. I will concentrate instead on
ways in which the second strategy can be pursued. I will distinguish between
mathematical notions, logical notions and physical notions.

4.1  Mathematical intuition

Perhaps our intuitive mathematical faculties allow us at least to partially identify
the intended models among the class of all models that make the given for-
malized theory true. According to Gédel’s version of platonism in the philosophy
of mathematics, we stand in a quasi-causal, quasi-perceptual relation to mathe-
matical objects. This relation then allows us to intentionally pick out, among the
infinite number of structurally dissimilar models which make the theory true, the
ones which contain the intended mathematical objects (the ‘real’ natural numbers,
the ‘real’ reals). If this is the case, then we succeed in fixing at least the
interpretation of the mathematical vocabulary of our formalized scientific theory
completely.

This line of reasoning is dismissed by Putnam. He finds the quasi-causal,
quasi-perceptual relation that is postulated by Godelian platonism utterly myste-
rious. In this, he follows Benacerraf, who has argued at length against precisely
this aspect of Godel’s platonism.® Few of the commentators on Putnam’s model-
theoretic argument take issue with this assessment of the argument from
mathematical intuition.

4.2 More logical notions?

4.2.1  Denumerability and finiteness
Quine at one point suggests, in a discussion of the Léwenheim-Skolem theorem,

® The classical reference here is Benacerraf [1973].
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that we should perhaps treat ‘denumerable’ as an elementary concept.” We could
then formalize ‘denumerable’ as a primitive predicate of sets, and stipulate that it
should be uniformly interpreted as being true of denumerable sets and of nothing
else. Such a stipulation presupposes that we have a strong grasp of the notion of
denumerability. Otherwise the stipulation would just be a meaningless instruc-
tion. This amounts in effect to treating denumerability as a generalized quantifier,
in the technical sense of the word.® Our formalized scientific theory will then no
longer be a first-order theory and we can no longer appeal to the crude form of
the Lowenheim-Skolem theorem that we have given above to argue that our
formalized scientific theory will still have models of all infinite cardinalities.

But it is not at all clear that this solves the problem completely. The theory of
elementary arithmetic, Peano Arithmetic (PA), not only has nonstandard models
with uncountable domains, but also has denumerable models which are structur-
ally different from the standard natural numbers structure: it suffices to consider
any denumerable model for PA + the negation of the gédel sentence for PA. So
the notion of denumerability cannot be used to single out the indended model of
PA even up to isomorphism. For the theory of the real numbers the situation is
worse, in fact. For in a first-order context the notion of denumerability does not
even suffice to pin down the cardinality of the set of real numbers.

A somewhat more attractive option might be to concentrate on the notion
‘finite’. The property of finiteness of collections is not definable in first-order
logic. But we may contemplate viewing the notion of finiteness as a primitive
notion, to be formalized as a primitive predicate which in any given model is true
precisely of the finite collections in the domain of the model in question. After
all, it seems that we have a fairly strong grasp of the notion of finiteness.
Feferman and Hellman have shown how using the notion of finiteness as
primitive, a (predicative) theory of arithmetic can be constructed which is what is
called categorical: all its models are isomorphic to the ‘intended’ model.’

From the notion of finiteness, or from any other ‘generalized quantifier’ that
has been considered in the literature, more than categoricity for the natural
numbers cannot be obtained. For it is a basic fact of mode! theory that isomorphic
structures make exactly the same sentences of any given formal language true. In
technical terms, one says that isomorphic structures are elementary equivalent.
Many philosophers of mathematics believe nowadays that this remaining inde-
terminacy resulting from the fact that for logical and mathematical purposes, any
two isomorphic structures serve equally well, is simply a fact of life that we have
to learn to live with.'” Mathematical structures just are not determined sharper

7 See Quine [1952], p. 115. Lieven Decock has drawn my attention to this passage.

The standard reference for generalized quantifiers is Barwise and Feferman [1985].

?  See Feferman and Hellman [1995].

""" The classical reference here is Benacerraf [1 965]. For a recent, mature endorsement of
Benacerraf’s position, see e.g. McGee [1997], p.36-39.

R
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than up to isomorphism. In the sequel, I will assume that this is essentially
correct.

Despite this, it seems that the notion of finiteness will not be sufficient for our
purposes. Our formalized scientific theory will undoubtedly intend to postulate,
among other things, the real numbers. The notion of finiteness does not by itself
suffice to determine the structure of the real numbers up to isomorphism.
Nevertheless, it is not excluded out of hand that some other ‘reasonably clear’
generalized quantifier, or a combination of several ‘reasonably clear’ generalized
quantifiers, will be successful in pinning down the structure of the real numbers,
or even the structure of the functions on the reals.'' Alternatively, one can try to
reconstruct as much of scientifically applicable mathematics as possible accep-
ting only the natural numbers as given. Thus one is led to the program of pre-
dicative mathematics that was initiated by Poincaré and Hermann Weyl, and has
over the past decades been pursued by Feferman.

4.2.2. Tennenbaum’s theorem
Another way to argue that we are at least able to fix the structure of the natural
numbers, one that has so far not, as far as I know, been considered in the litera-
ture, is based on a theorem by Stanley Tennenbaum.'? This theorem says that in
any denumerable nonstandard model of the first-order theory of the natural num-
bers, if we take the domain to consist of the natural numbers (which we can,
without loss of generality), the addition and multplication relations of this model
are highly nonrecursive," i.e. highly noncomputable. In other words, the require-
ment that addition and multiplication should be computable functions narrows the
class of denumerable models of PA down to models isomorphic with the standard
model. d

But addition and multiplication are computable functions. As children, we
learn how to calculate the sum and the product of natural numbers. We are taught
an algorithm for calculating sums and products. Therefore we are entitled to
restrict the class of denumerable models of PA to those in which addition and
multiplication are recursive. On the other hand, computability does not even
make sense for uncountable sets. Therefore models with wuncountably large
domains are definitely ruled out as well. Combining these two facts, we see that
we are able to fix the natural numbers up to isomorphism. Of course this
argument relies on our having a good grasp of the notion of algorithm.

" Stefan Rummens has rightly pointed out in conversation that this nevertheless seems
doubtful, since the question of the intended models of the theory of the real numbers is
wrapped up with the question of the continuum hypothesis. See also the remarks related to
this in section 4.2.3.

12 For a clear discussion and an elegant proof of this theorem, see Boolos and Jeffrey
[1989], chapter 29.

'* These operations on the nonstandard domain are not even definable in the language of
first-order PA.
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Up to isomorphism is again the best we can get here. And, as with the strategy
of taking the notion of finiteness as primitive, it is again not at all clear how this
or a similar move could allow us to pin down the structure of the real numbers.

As far as I know, Putnam has not commented in print on the suggestions for
fixing the natural number structure using the notion of finiteness as a primitive or
using the notion of algorithm as basic. But it seems unlikely that Putnam would
find either of these arguments persuasive. The reason for this will be pointed out
in section 5.

4.2.3 Second-order logic

Second-order logic is like first-order logic except that beside the first-order
quantifiers, it also contains second-order quantifiers. Just as in first-order logic
the first-order quantifiers range over al/ objects of the domain, the second-order
quantifiers are in second-order logic taken to range over all subsets of the
domain. This is not the case if one considers so-called Henkin semantics for the
language of second-order logic. But one ought to insist that in that case one does
not work in second-order logic but in a two-sorted first-order logic. There is a
considerable amount of confusion about the distinction between first- and se-
cond-order logic in the literature. Most of it is a result of terminological ambi-
guities. Take for instance the title of Simpson’s recent book Subsystems of Se-
cond-Order Arithmetic, which deals exclusively with first-order systems! For
proof theorists this may be quite harmless, since they are usually able to sort out
the confusion when pressed to do so. But ambiguities like this hamper the com-
munication of results and ideas from mathematical logic to the philosophical
community.

The Léwenheim-Skolem theorém does not hold for second-order logic. In fact,
the structure of the natural numbers, the structure of the real numbers, and all
other mathematical structures one is likely to encounter in daily empirical science
can be defined up to isomorphism in second-order logic.

Putnam, and several eminent philosophers and logicians with him,'* would be
sceptical of the contention that the second-order quantifiers have been given a
clear interpretation. In their most lucid moments,"® critics of second-order logic
tend to reason along the following lines. In the explication of the interpretation of
the second-order quantifiers, mention is made of the set of all subsets of the
domain. For any finite set, the set of all its subsets is a perfectly determinate
object. But it is by no means clear that the collection of all subsets of an infinite
set is a well-determined object, and we have seen that the domain of the intended
interpretation of our formalized scientific theory will be of infinite size. In sum,

1 Qume is one of them.

* In their less lucid moments they formulate weaker arguments against second- order logic.
These arguments should either be passed over in silence, or be gracefully taken apart, as is
done in Boolos [1975].
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or so it is contended, second-order logic is inextricably wrapped up with
transfinite set theory, and transfinite set theory contains too much indeterminacy.

The question whether the set of all subsets of an infinite set is a well-
determined object is related to the status of Cantor’s continuum problem about
the size of the set of all sets of natural numbers. Many set theorists indeed think
that this question can only be settled by a convention. But a significant number of
set theorists think that Cantor’s question has a determinate answer.

Others, most notably Boolos, have tried to resist the critique on second-order
logic in another way. Boolos has devised an interpretation of second-order logic
which is equivalent to the usual interpretation and yet does not overtly involve
set-theoretic notions (such as the notion of arbitrary subset).'® His critics contend
that it covertly involves set-theoretic notions. The debate continues. I will not
pursue it here.

When beside scientifically applicable mathematics also set theory is taken into
account, then even accepting second-order logic does not by itself give a
complete solution to the fixing problem. The standard set theory is Zermelo-
Fraenkel set theory with the Axiom of Choice, ZFC? for short.'” ZFC? is not
categorical: not all its second-order models are isomorphic. But there is a so-
called quasi-categoricity result for ZFC?: if one takes any two non-isomorphic
second-order models of ZFC?, then one of them is isomorphic to an initial
segment of the other, or more precisely, one of them is isomorphic to a strongly
inaccessible ordinal rank of the other. Recently, McGee has shown in an intri-
guing piece of work that if an apparently reasonable axiom is added to ZFC? with
‘Urelemente’, then the collection of the pure sets of any two models of the
resulting theory are isomorphic to each other.'”® The ‘apparently reasonable’
axiom in question says that the collection of Urelemente form a set and not a
proper class, or, in other words, that in comparison with the amount of sets there
are, there are only ‘relatively few’ Urelemente.

4.3 Sense perception
Let us now concentrate on the physical vocabulary of our formalized scientific

theory. The argument from mathematical intuition was dismissed as an
implausible account of how the interpretation of the mathematical vocabulary is

16

See Boolos [1985]. See also the Appendix on Pairing by Burgess, Hazen and Lewis, in
Lewis [1990].

"7 The superscript indicates that we consider the second-order formalization of set theory,
which differs in certain points from the first-order formalization of set theory.

" See McGee [1997]. He shows that the same result obtains if one works not in second-
order logic but in the framework of schematic logic, which is just like first-order logic
except that the axiom schemes of the theories are interpreted as ranging over all expressions
of all extensions of the language in which the schematic theory is formulated. Schematic
logic can be seen as a fragment of full second-order logic.
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fixed (cfr. section 4.1 above). But perhaps the strategy behind this move is more
promising at least for a part of the physical vocabulary.

We stand in a perceptual relation to certain objects, properties and relations for
which we have names in our formalized scientific theory. Therefore at least these
reference relations ought to be kept constant across different models. It would be
a violation of common sense realism about the observable that appears to be
widely accepted both in analytic and in continental philosophy if the interpre-
tation of observable vocabulary would be allowed to vary.'

Putnam expresses some willingness to go along with this line of thought.° But
both the mathematical and the unobservable physical (and the mixed) vocabulary
remain unaffected by this concession. Putnam shows that because of this, we are
still left with a plethora of cardinally and structurally dissimilar models.

4.4 The causal theory of reference

But perhaps the strategy of the preceding subsection can be extended to the
unobservable. The causal theory of reference, due to Kripke and Putnam,?' tells
us (in a nutshell) that nonobservational physical vocabulary obtains its meaning
(at least in part) in acts of initial baptism, where such terms are stipulated to refer
to all the things that are of the same natural kind as what causes the relevant
sense impression present during the act of baptism. The notion of ‘belonging to
the same natural kind’ is then explicated in terms of structural similarity. In this
way, an explanation is given of the causal connection between the unobservable
structure of the world and the nonobservational vocabulary of our scientific
theories. Now it has been claimed that this causal link fixes the reference relation,
so that as with the observational \;ocabulary, we ought to keep the interpretation
of the nonobservational vocabulary constant across the models.

Putnam rejects this line of reasoning, for two reasons. First, there are signs that
Putnam has in recent times come to doubt the causal theory of reference. But I
must confess that it is not completely clear to me what his present position on this
matter precisely amounts to. Sometimes it seems that Putnam is only rejecting
physicalistic interpretations of the causal theory of reference. Second, he rejects
appeal to the causal theory of reference because it is ‘just more theory’. He
contends that the causal theory of reference must itself be formalized in first-
order logic and added to our given formalized scientific theory. Then the class of
models of the augmented formalized scientific theory must be considered. The
Lowenheim-Skolem theorem applies to this theory, even when interpretation of
the observational vocabulary is kept fixed, which leaves us just where we started

' Nevertheless, it ought to be kept in mind that Quine has toyed with indeterminacy of
reference-arguments that purport to undermine even this argument.

2 But cfr. infra, section 5.

?!' The classical reference here is Kripke [1980].
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from.

However, if Putnam rejects the causal theory of reference, then it is not clear
that he is expressing the majority opinion among philosophers of language. It is
certainly not the case that all philosophers of language have given up on the
causal theory of reference. Moreover, the thesis that the causal theory of refer-
ence is ‘just more theory’ in the sense explained above, has been widely rejected
as an unacceptable rethorical move.

5 Just more theory

I[gor Douven has recently reconstructed Putnam’s argument in such a way that the
just more theory-move is avoided.”? I cannot here go into the details of Douven’s
reconstruction.”® All I can do here is to express my scepticism that any such re-
construction can be carried out without introducing new, nontrivial premises -
thus generating a new argument. So [ will assume here, along with most of the
commentators on Putnam’s argument, that the just more theory-move is an essen-
tial ingredient in his line of reasoning.

I do not want to repeat here in detail the misgivings about the ‘just more
theory’-move that have been expressed in the literature. But note that if this move
is permissible at all, then it ought to be equally applicable to the argument from
mathematical intuition (see section 4.1), the argument from perception (see
section 4.3) or indeed against any attempt to narrow down the class of intended
models of our formalized scientific theory. Putnam appears to some extent to
welcome this conclusion, though at the same time he appears hesitant to apply it
at every juncture. More concretely, he expresses sympathy for its application to
the argument concerning sense perception (see section 4.3), but not to the argu-
ments concerning mathematical intuition (see section 4.1) nor to the arguments

22" See Douven [1999]. Putnam himself now endorses a version of Douven’s reconstruction.
See Putnam [2000].
** But I cannot resists making the following brief remarks. Avoiding the just more theory-
move has a price. In Douven’s reconstruction, this takes the form of an extra premise which
must be assumed to make the argument go through. This premise can roughly be expressed
as (Douven [1999], p. 482, my gloss): ‘If no naturalistic theory of reference is true, then a
theory is true if and only if it is satisfiable.’It is assumed that since this statement must be
taken to be a conceptual truth by the (metaphysical) realist, it must be necessarily true. But
I simply fail to see the conceptual connection between the antecedent and the consequent
of this thesis. I do not see why the realist must assume this to be a necessary truth. It must
immediately be added here that Douven expresses an awareness of the fact that the
assumption of the necessary truth of this statement is nontrivial.

Another debatable assumption of Douven’s argument is that the possibly infinite
disjunction of possible naturalistic theories of reference counts itself as a naturalistic theory
of reference. See Douven [1999], p. 488.
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concerning second-order logic (see section 4.2.3).

[ think that what is behind all this is the following. We have a strong command
or grasp of the meaning of some concepts, and a weaker command or grasp of the
meaning of other concepts. For instance, we may want to assume that we per-
fectly understand the Tarskian explication of the truth-conditions of conjunction,
whereas the notion of an arbitrary subset of an infinite set, perhaps, is less clear to
us and may even be inherently indeterminate. Such unclear or perhaps even
indeterminate notions ought not to be taken as understood in our explication of
how we fix the interpretation of our scientific theories. For the indeterminacy or
unclarity of these notions would carry over to the interpretation which is for-
mulated in terms of them, and in the end no clear interpretation is given.

Which notions are sufficiently clear or determinate to function in a philosoph-
ical account of the models intended by our theories should be the subject-matter
of careful case-by-case philosophical scrutiny. It was misleading for Putnam to
suggest that there is a blanket strategy (a logical trick) for refuting attempts to
restrict the class of intended models. Nevertheless, if a notion is to some extent
unclear or indeterminate, then perhaps the best thing we can do is to tie it to
notions of which we have a better understanding, for instance by writing down a
list of axioms concerning this notion. This list then indeed functions as ‘just more
theory’. Of course we may, over time, obtain a stronger grasp of some of these
notions. In this way, there may be notions which we previously regarded with
suspicion, but now: feel comfortable using in explications of how the intended
interpretations of our scientific theories are fixed.

So I suspect that Putnam should uitimately rest his case on the claim that the
notions that need to be used to limit the class of intended models of our
formalized scientific theory are not sufficiently clear. ‘Denumerable’ can for this
reason not serve the purpose for which Quine wants to use it, he should say.
Similarly, the notions ‘algorithm’ and ‘finite’ cannot be assumed to be under-
stood at the outset (he should say).* These evaluations are of course open to
philosophical debate. In the case of the notion of algorithm, we are then led to
Kripke’s interpretation of Wittgenstein, and of course to Wittgenstein himself on
following a rule.

The following picture emerges. We have very clear notions, the first-order
logical constants and the notion of a first-order model for instance, which allow
us to characterize every given finite set up to isomorphism. If perception and
perhaps even causality allow us to pin down reference further,” then we might
even be able to uniquely fix concrete finite structures. We also have notions
which are perhaps more complex, such as ‘finite’ and algorithm’. If our grasp of
them is nevertheless sufficiently strong, then we can fix the natural numbers

* Incidentally, it seems that the notion of algorithm presupposes the notion of finiteness.
* I believe that the two are tied together. Ultimately, the notion of causality seems to play
arole in our confidence in our ability to fix the meaning of observational expressions.
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structure up to isomorphism. And if even our explication of second-order logic is
definite, then we may be able to characterize all mathematical structures that are
needed in empirical science up to isomorphism.

6 Physical and mathematical theories

Even if second-order logic allows us to fix up to isomorphism all mathematical
structures needed in science, this provides us with no guarantee that the complete
state of our (four-dimensional, say) universe can in principle be described up to
isomorphism in second-order logic. Nor does it even guarantee that the class of
all models in which all the true fundamental laws of physics (if there are such
things) hold can be characterized up to isomorphism.

But it would give us some hope that something approaching the latter would
be the case. For one would assume that the fundamental laws of physics are
somehow smooth and in some sense simple. Otherwise, there would be an
inclination to conclude that there are no fundamental laws at all. It may be that in
the true fundamental laws constants occur, real numbers, say, which take on a
very specific value which is impossible to describe exactly even in second-order
logic. But in that case we might still be able to write down expressions in second-
order logic which give a good approximation of the exact true fundamental laws.
This is then the best we can hope for.

7 Methodological morals

To conclude this paper, I will attempt to draw some morals from the debate
concerning Putnam’s model-theoretic argument.

I have not discussed the bearings of Putnam’s model-theoretic argument on the
question of the viability of scientific realism. 1 have not discussed Putnam’s own
preferred solution to the philosophical paradox which he has created and which
led him to his internal realist position. As far as I can tell, all I have said in this
paper is compatible with Putnam’s overall metaphysical outlook - although it
does not entail that outlook either. The same holds, presumably, for other positive
solutions to Putnam’s paradox, such as the one advanced by van Fraassen.?* And
something similar can be said for most versions of scientific realism. All I have
done is to draw some methodological morals from the debate concerning
Putnam’s argument.

One moral of this paper is that while they are certainly relevant for the
investigation of our ability to refer unequivocally to structures, theorems from
mathematical logic do not by themselves determine the correct solution to the

* See van Fraassen [1997].
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problem. Benacerraf is in this context absolutely right when he stresses that
nontrivial philosophical premises are also needed.”” When these are made expli-
cit, they turn out to touch on many different areas of deep philosophical dispute.
For instance, we really have to sit down and conduct a philosophical inquiry into
the nature of causality. Such shifts of focus bring the realism discussion back to
where it had been located for decades, and where the battle should be fought: on
familiar philosophical territory, outside mathematical logic.

Another point is that, as I have attempted to show, many of the interesting
problems raised by Putnam’s model-theoretic argument are properly situated in
the philosophy of logic and of mathematics. Therefore it seems to me entirely
appropriate that Putnam’s article on the model-theoretic argument was soon after
its first appearance reprinted in Putnam and Benacerraf’s classical anthology on
the philosophy of mathematics. At the same time 1 am amazed at the large
amount of discussion that Putnam’s argument has generated in the philosophy of
science and in general metaphysics, compared to the much smaller amount of
discussion it has given rise to in philosophy of logic and mathematics.

Mathematics forms an integral part of our physical theories. But mathematical
logic studies in the first place logical aspects of mathematical theories. And I
cannot escape the feeling that the structure of the mathematical universe is not as
directly relevant for the realism debate in the philosophy of science as Putnam
appeared to think in his [1980]. It is not clear to me exactly how it would be
relevant for forms of scientific realism if mathematical structures turn out to be
significantly underdetermined.

It is regrettable that until now philosophers of science and philosophers of
mathematics have not had many interesting things to say to each other. But until
truly deep connections between the physical universe and the mathematical uni-
verse(s) are clearly explicated, I suggest that it is better to let these two fields
continue their separate lives. The time for contemplating a unified formalization
of scientific theory has not yet come.
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