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11.1 Introduction

On December 26, 1951, Godel delivered the 25th J. W. Gibbs Lecture at a Meeting of the
American Mathematical Association at Brown University. In the lecture, he formulated a
disjunctive thesis concerning the limits of mathematical reasoning and the possibility of
the existence of mathematical truths that are inaccessible to the human mind. This thesis,
known as Godel’s disjunction, is introduced as a direct consequence of the incompleteness
theorems [Gédel 1951, p. 310]:

Either ... the human mind (even within the realm of pure mathematics) infinitely
surpasses the powers of any finite machine, or else there exist absolutely unsolv-
able diophantine problems [henceforth, absolutely undecidable mathematical sentences |
... (where the case that both terms of the disjunction are true is not excluded, so that
there are, strictly speaking, three alternatives).

That is, either the output of the human mathematical mind exceeds the output of a Turing
machine (called the anti-mechanist thesis) or there are true mathematical sentences that are
undecidable “not just within some particular axiomatic system, but by any mathematical
proof the human mind can conceive.” The latter are called absolutely undecidable mathemat-
ical sentences, i.e. mathematical sentences that cannot be either absolutely proved or refuted
[Godel 1951].

According to Gédel, the fact that the disjunctive thesis above holds is a “mathematic-
ally established fact" of great philosophical interest which follows from the incompleteness
theorems, and as such, it is “entirely independent from the standpoint taken toward the
foundation of mathematics” [Godel 1951]. Indeed, most commentators agree that Godel’s
arguments for this disjunctive thesis are compelling,

Since Godel’s disjunction was first formulated in 195 1, much effort has gone into finding
equally compelling arguments for or against either of the disjuncts. In particular, attempts
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were made to establish tl'ie first disjunct by arguing on a priori grounds that the capacities
of the human mathematical mind exceed the output of any Turing machine as a conse-
quence of the incompleteness theorems (see chiefly [Lucas 1961], [Penrose 1989], and
[Penrose 1994]). These attempts have sparked a lively debate, but there is wide consensus
that they have so far turned out to be inconclusive. Fewer efforts have been concentrated
on shedding light on the second disjunct, and, at present, no conclusive argument that
decides either of the disjuncts has been found.! In this chapter, we focus on the second
disjunct.

We make use of the framework of Epistemic Arithmetic proposed by Shapiro in the mid
1980s. In this framework, an absolute or informal notion of provability is taken as primitive
and axiomatically investigated. Since this framework can also express classical (and con-
structive) mathematical propositions, it constitutes a good setting for the investigation of
the concept of absolute undecidability. In this framework, a variant of the Church-Turing
thesis can be formulated: this variant has been labelled ECT (“Epistemic Church’s Thesis”)
in the literature. While there are strong reasons to think that this variant is not a very faith-
ful approximation of the content of the original Church-Turing thesis, we will show that
an analogue of Godel’s disjunction can be established which states that either ECT fails, or
there are absolutely undecidable propositions (or both).

In analogy with Godel’s disjunction, this raises the question of what the truth value of
each of the disjuncts is. While it can be shown that ECT implies the existence of absolutely
undecidable non-contingent propositions (of low arithmetical complexity), we will see that
it seems hard to argue convincingly that ECT is true. Consequently, it is not easy to see
how the analogue of Godel’s disjunction can be used to show that there are absolutely un-
decidable propositions. Thus we conclude that the truth value of the disjuncts is not easy to

ascertain,

11.2 Absolute Undecidability

11.2.1 Absolute Undecidability in Epistemic Arithmetic

], the notion of informal or absolute provability, and

owability of mathematical propositions, can be in-
the investigation can be carried out within the

framework of epistemic arithmetic developed in [Shapiro 1985b]. T.his i; the afra}rlneworl;
that shall be adopted throughout the chapter. Since its background is 3 form t eorfy }?
arithmetic, the propositions that contain set-theoretic concepts fall outside the scope of the
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S4 contains the necessitation rule and the axiom O¢ — O0¢ (the so-called “4 axiom”),

so that O is indeed an iterable notion.
The absolute undecidability of a sentence ¢ can then be expressed as

This is the notion of absolute undecidability that will figure in the new disjunctive thesis

that will be investigated in Section 11.3.
One may wonder whether there are arithmetical sentences that are absolutely undecid-

able in this sense. This is a version of Gédel’s question whether there are absolutely
undecidable mathematical propositions. But one may also ask in this framework whether
there are sentences ¢p € Ly that are undecidable. This question is of course closely related
to Godel's question. But it is not identical to it, for Lga not only contains mathematical
concepts, but also contains the concept of a priori knowability, which is not a mathemat-
ical concept. Both of these questions about absolute undecidability will be discussed in this
chapter.

11.2.2 Other Concepts of Absolute Undecidability

The notion of absolute undecidability in which we are interested here concerns statements
that are non-contingent, may contain the concept of absolute or informal provability, and
have a determinate truth value.

11.2.2.1 Fitch’s Undecidables
In [Fitch 1963], Fitch has argued for the following claim:

Thesis 1 (Fitch) If there are unknown truths, then there are unknowable truths.

The kinds of truths that Fitch adduces as witnesses of the consequent of Godel’s disjunction
are propositions of the form “p and it is not known that p”; Fitch’s argument of course does
not provide a concrete witness.

Some believe that Fitch’s argument is sound and that furthermore, since the antecedent
ofits conclusion is true, we must accept that there are unknowable truths. Others think that
Fitch’s argument is unsound.” In any case, Gédel would probably not have been satisfied
with Fitch’s cases of absolutely undecidable propositions as a way of sharpening Godel’s
disjunction (if Fitch’s propositions do indeed qualify as absolutely undecidable), for they
are contingent propositions. And they also fall outside the scope of our analogue of Godel's
disjunction because, using the notion of a priori knowability and arithmetical notions, only
non-contingent propositions can be formed in L.

11.2.2.2 Formally Undecidable Arithmetical Statements

As said earlier, in his discussion of his disjunctive thesis, Godel seems to have had math-
ematical undecidable statements in mind. Feferman and Solovay have produced instances
of arithmetical sentences of which they claimed that it is unlikely that they will ever be
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decided [Feferman and Solovay 1990, Remark 3, p. 292]. However, it is far from clear
that the reasons for thinking that such statements will presumably never be decided
go as far as establishing that they are in principle humanly undecidable, i.e. absolutely
undecidable.

Similarly, Boolos has shown that there are infinitely many what he calls extremely unprov-
able arithmetical sentences [Boolos 1982]. These are (true) arithmetical sentences that are
not only undecidable in Peano arithmetic, but that are such that Peano arithmetic can only
prove them to have properties characterisable in terms of “provability in Peano arithmetic”
that every arithmetical sentence can be proved (in Peano arithmetic) to have. But, again,
Boolos’ considerations do not establish that some such sentences cannot be proved in prin-
ciple rather than just in Peano arithmetic. The uncertainty in this area is caused by the fact
that we do not have a sufficiently strong grasp on what the right idealisations involved in the
notion of absolute undecidability are.®

Indeed, it seems that the only argument that we have for establishing of a given arithmet-
ical sentence that it is absolutely unprovable relies essentially on the connection between
absolute proof and truth. If we have a proof that ¢ is false (for ¢ arithmetical), then we
have a priori knowledge that it cannot be provable. Our tentative claim is that this line of
argument is the only way in which an arithmetical sentence can be shown to be absolutely

unprovable, In other words:*

. Thesis 2 Provable unprovability of an arithmetical fact supervenes on the provability of the
negation of that arithmetical fact.

The content of this principle can be expressed in the framework of EA:

Axiom 1 O-O¢ — DO—d, for ¢ any sentence of the language of arithmetic.
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[Horsten 1997]. In the following sections we will return to the questior.l whether it might
be provable in principle that there are absolutely undecidable sentences in L.

11.2.2.3 Truth-Indeterminate Undecidables

Another question is whether there are absolutely undecidable sentences that, in addition
to the arithmetical vocabulary, contain a primitive notion of provability. Reinhardt has ob-
served that absolutely undecidable sentences can be shown to exist if we have a provably
sound absolute provability predicate [Reinhardt 1986]:

Proposition 2 Suppose that P(x) is any formula with x free, and let S 2 EA be such that
S O(P(T¢p7) — ¢). Then there is a sentence Gs such that S = DGs A O-P("Gg).

If P(«) is an absolute provability predicate satisfying the condition of the proposition, then
G is an absolutely undecidable sentence.’

The sentence Gg is produced by diagonalisation (the fixed-point lemma). Intuitively, G
is a sentence which says of itself that it is absolutely unprovable. It is not purely arithmetical,
due to the predicate P, which figures in the instance of the diagonal lemma that is used to
produce Gg.

In contrast to Fitch’s propositions, G is not contingent: if it is true (or false), then it is
so necessarily. So Reinhardt’s proposition might be taken to be more relevant to the sec-
ond disjunct of Godel's disjunction. However, Gg is the so-called “knower sentence”, see
[Anderson 1983]. It is a paradoxical sentence: intuitively, it lacks a truth value just like the
liar sentence does, and for similar reasons. And if Gg lacks a truth value, then it is not even
a candidate for being proven or refuted, so it does not seem very relevant to the assessment
of Godel’s disjunction.

There is arich literature about purely mathematical sentences—mostly set-theoretical—
that may be truth-indeterminate.® The continuum hypothesis is perhaps the most famous
candidate for this category. Since such propositions are purely mathematical, and at least
not trivially truth-indeterminate, they are more relevant to the question of the second
disjunct of Godel’s disjunction as understood by Godel than is the Knower sentence.
However, there are at present no arguably absolutely undecidable mathematical sentences
that are uncontroversially truth-determinate. Indeed, the question of whether there are
truth-indeterminate set-theoretic propositions turns on deep and unresolved foundational

questions. In any case, as mentioned earlier, set-theoretic statements fall outside the scope
of the present chapter.

11.3 A New Disjunction

In this section, we introduce a variant of Godel’s disjunction in the language of EA that
will be investigated in the remainder of the chapter. In order to do so, §11.3.1 will present
the principle that has been called in the literature Epistemic Church’s Thesis, and §11.3.2 will

explore the connection between such a principle and Gédel’s disjunction. Finally, §11.4 will
test ECT in a class of models which embed certain idealisations.
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11.3.1 Epistemic Church’s Thesis

Since functions are infinite abstract objects, human subjects—even in the idealised sense—
do not have epistemic access to functions independently of the interpreted linguistic
expressions that denote them (call these function presentations). According to a thesis pro-
posed in [Shapiro 1985b], a function presentation F is calculable if and only if there is an
algorithm A such that it is a priori knowable that A represents F, where calculability is a
“pragmatic counterpart” of the notion of computability and directly involves the human
ability of computing a function [Shapiro 1985b, pp. 42-43]
This leads Shapiro to define calculability as follows:

Thesis 3 A function f is calculable if and only if, recognisably, for every number m given in

canonical notation, a canonically given number n exists such that the statement f(m) =nis
absolutely provable.

Using Shapiro’s notion of calculability, we can express in Lz, a variant of the Church-
Turing thesis [Shapiro 1985b, p. 31]:

Thesis 4 (ECT)
OVxIyOep(x,y) — e [eis a Turing machine A Vx : ¢(x,e(x))],”

for ¢ ranging over formulae of the language of epistemic arithmetic.®

This principle is called Epistemic Church’s Thesis (ECT) in the literature. Note that in
order for the antecedent to ensure that ¢(«, y) expresses a function, a choice principle is im-
plicitin ECT. However, the choice principle can be eliminated by prefixing the functionality
of @(x,y) as a condition on ECT, so that it assumes the form

#(x, y) is functional — ECT.

Shapiro considers ECT “a weaker version of CT [in the standard foma'}isaﬁonJ Whlch is
closer to Church’s thesis [than the intuitionistic version of the la.tter‘] . [S‘ha.plro ?985‘5”
P-31] That ECT is closer to the Church-Turing thesis than the mtumom'stlc el antof
Church’s thesis is due to the fact that, as in the Church-Turing thesis, t'he existential quan-
tifier in the consequent of ECT is classical. Thus, ECT does not require t.hat :lmy S,ie:i.ic
Turing machine can be shown to compute the effectively computable function descrived in
the antecedent, -

Nonetheless, there are strong reasons to be sceptical that ECT app r?mmlatest}tii;?:;;rﬁ
of the Church-Turing thesis in EA. The antecedent of ECT does nf(gé‘;’:s"e ressing that
Notiop ofalgorithm, so it is implausible to consider the anteceden(ti ? . ;I; e quantiy
9(x)is algorithmically computable. Indeed, there is no way t0_41;e]c I{He};fher reagon why
over algorithms in the language of EA [Shapiro 198Sb.’ o 41- i h t the converse of the
ECT does not capture the content of the Church-Turing thesxg jlssCtTais not obviously true

ul'Ch—Turing thesis is obviously true, whereas e

Black 2000, § 2,10
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11.3.2 ECT and Absolute Undecidability

The truth of ECT (or even ECT restricted to arithmetical relations) would have a signifi-
cant consequence, for it entails that there are absolutely undecidable propositions in the
language of EA:

Proposition 3 IfECT is true, then there are absolutely undecidable propositions expressible in
L.

Proof Suppose that there were no such absolutely undecidable propositions. Then for such
sentences, a priori demonstrability would coincide with truth. All such occurrences
of ECT could therefore be erased without changing the truth values of these sen-
tences. But for any non-computable functional predicate ¢(x,), the corresponding
instance of ECT would be false. So, contrapositively, if ECT is true, then there must be
absolutely undecidable propositions. (2

In other words, we have arrived at a new disjunctive thesis (henceforth, ND) that is
somewhat reminiscent of Godel’s disjunction:

Thesis S (ND) Either ECT fails, or there are absolutely undecidable statements (expressible in
Lra), or both.

The antecedent of ECT does not express the notion that the human mathematical mind is,
or is not, a Turing machine. Therefore, the content of the new disjunctive thesis ND is not
the same as that of Godel’s disjunction. In fact, it is consistent for ECT to hold and for the
following to fail:

JeVx € Lga : T(TOx") <> “xis enumerated by the Turing machine ¢”,

where T is a truth predicate for L.
Proposition 3 can be sharpened by weakening its assumption and strengthening its
conclusion:

Theorem 1 If ECT restricted to T1, arithmetical relations ¢(x,y) holds, then there are
absolutely undecidable I1; sentences of L.

Proof We prove the contrapositive, that is: If there are no IT; absolutely undecidable
sentences of Lz, then ECT restricted to I, arithmetical relations is false.
Suppose that there are no absolutely undecidable IT; sentences in Lga:

OW < W forall IT; sentences W € Lp,.

Choose a Turing-uncomputable total functional IT; arithmetical relation ¢ (x, y); from
elementary recursion theory we know that such ¢ (w, y) exist.

Then, Yx3y$(x, y). But then we also have that Va3yClgp(x, y). The reason is that
IT, € I3, so for every m and n, ¢(m,n), being a I1, statement, entails Cgp(m, n).
However, Yx3y[¢(x,y) is now a [T, statement of L, so again from our assumption
it follows that OVxJyOe (x, ).
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Therefore, for the chosen ¢(w,y), the antecedent of ECT is true whereas its
consequent is false. Therefore, for the chosen ¢ (x,y), ECT is false. ®

From the existence of absolutely undecidable propositions, certain consequences can be

derived.
Recall McKinsey’s axiom (the $4.1 axiom) for propositional modal logic, which states

(rOughly) that there are no provably absolutely undecidable statements:
Axiom 2 (McKinsey) —0(=0¢ A =0-¢).

Corollary 1 From the absolute provability of ECT restricted to T1; relations, it follows that
McKinsey'’s axiom for absolute provability fails.

Proof The proof of Theorem 3 produces a concrete absolutely undecidable sentence from
instances of ECT. If these instances can be “necessitated,” then the proof yields a
provably undecidable sentence, which contradicts McKinsey’s axiom. =

In the antecedent of this corollary, ECT is taken as an axiom scheme, the instances of which
fall within the scope of the necessitation axiom.!! So the corollary says that if ECT can be
established by a priori means, then even though we probably cannot establish that there are
arithmetical absolutely undecidable sentences (Section 11.2.2.2), we will have a proof of
the existence of absolutely undecidable sentences in the language of EA. Or, in other words,
in this situation, the S4.1 axiom may well hold for arithmetical sentences, but not for all
sentences of Lgy.

Corollary 2 IfECT holds, then the converse of ECT fails.

Proof Suppose that ECT holds; then there are absolutely undecidable propositions. Let i/
be an absolutely undecidable proposition. Define ¢(x, y) as

[(x=xAy=1) o Y]A[(x=xAy=0) & Y]

Then ¢ (x, y) defines either the constant 1 function or the constant 0 function, whereby
JeVxp(x, e(x)). But since ¥ is absolutely undecidable, we have that

—'DanyD¢(x:}’)- 3

Earlier we observed that in contrast to the converse of the Church-Turing thesis, the con-
verse of ECT is not obviously true. Now we see that the situation is in fact worse: if ECT
is true, then its converse is plainly false. This brings in sharper relief the fact that ECT does
not have the same content as the Church-Turing thesis.

Note that the proof of Corollary 2 also entails that there are coextensive functional re-
lations ¢ (x,y) and 1 (x, y) expressible in L, such that OVx3yOg(x, y) is true, whereas
Dvxa}'DW(x, y) is false. That is, it also follows as a corollary that Shapiro’s notion of

calculability is an intensional notion:

Corollary 3 IfECT holds, then the antecedent of ECT is intensional.
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Proof Suppose that ECT holds; then there are absolutely undecidable propositions, Let yr
be an absolutely undecidable true proposition. Let g be defined and calculable. Then
we can define a function f in terms of g and ¥/:

Ve f(3) 1= g i
Vaf(x) := g(x) + Lif =)

Then we have that f is co-extensional with g:

Vaf (x) = g(x)

because v is true. Thus, f is not calculable because in order to compute f we have to
know whether ¥ is true. 2

Notice that f is not provably coextensive with g, because if we could prove that Vx : f(x) =
g(x), then we would be able to prove that ¥ is true.

11.4 Models for ECT

In this section, we will discuss the status of ECT. In §11.4.1, we will briefly survey some
mathematical facts about ECT and we will discuss whether it is possible to have a conclusive

a priori argument for the truth of ECT. In §11.4.2 and §11.4.3 we will evaluate ECT in
models for Lg,.

11.4.1 Is ECT True?

Some key metamathematical facts are known about ECT. The principle ECT was shown to
be consistent with EA in [Flagg 1985], so it must have models. The proof of the consistency
of ECT with EA was simplified in [Goodman 1986], and then further in [Horsten 1997].
In [Halbach and Horsten 2000] it was shown that from instances of ECT as hypothesis, no
arithmetical theorems can be proved that are not already theorems of Peano arithmetic. As
far as we are aware, the question of whether when ECT is added as an axiom to EA this
yields an arithmetically conservative extension of Peano arithmetic is still open. It is also
known that EA + ECT has the disjunction property and the numerical existence property
[Halbach and Horsten 2000].

The disjunctive principle ND that was argued for in §11.3.2 bears witness to the fact that
the truth of ECT has significant philosophical consequences. If ECT is true, then there are
non-contingent absolutely undecidable propositions that are perfectly truth-determinate.
However, the most important question that is still open is whether ECT is a true principle
(despite the fact that it is not a faithful formalisation of the Church-Turing thesis).

In the discussion about the Church-Turing thesis, a distinction is often made between
quasi-empirical (a posteriori) and conceptual (a priori) evidence for the thesis. For a long
time it was thought that the Church-Turing thesis cannot be proved, and that all our evi-
dence for its truth is quasi-empirical. In particular, it has been argued that all reasonable
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attempts that have been proposed to capture the notion of algorithmically computable
function have turned out to be extensionally provably equivalent, and that therefore we
have strong inductive grounds for thinking that we have mathematically captured the
notion of algorithm.

In recent decades, however, most scholars have come to believe that it is rather Turing’s
[1936) conceptual analysis of the notion of algorithm that gives us conclusive a priori evi-
dence for the Church-Turing thesis.'* Similar questions to those about evidence for the
Church-Turing thesis can be asked about our evidence for ECT. More specifically, one can
ask whether a convincing a priori argument for ECT can be found, or whether only weaker
(and perhaps quasi-empirical, a posteriori) forms of evidence can be found for it, or whether
we could construct putative counterexamples to ECT.

One might try to use the Church-Turing thesis to argue that ECT is true. In

[Horsten 1998, §4, p. 15] the following argument was formulated. Suppose that the
following thesis holds:

Thesis 6 The only way in which a statement of the form Vx3yO¢(x,y) can be proved is by
giving an algorithm for computing ¢.

It follows from the Church-Turing thesis that the function expressed by ¢(x, y) is Turing-
computable. Given Turing’s a priori evidence for the Church-Turing thesis, it then follows
that ifwe have good a priori evidence for Thesis 6, we will have an a priori argument for ECT.

Unfortunately, evidence for Thesis 6 is lacking. We have at present no way of excluding
that for some functional relation ¢ (x, y), it is absolutely provable in a non-constructive way
that ¥x3yO(x, ). Such a proof would not involve an algorithm for generating, for every
%,aproof of ¢(x, y) for some . In sum, the argument of [Horsten 1998, §4] does not carry
conviction,'® and thus the prospects for having strong a priori arguments for ECT are not
promising.

11.4.2 Simple Machines

We can try to test ECT in some models that incorporate reasonable-looking idealisations
on the notion of a priori knowability: it is possible that ECT will hold (or will fail to hold)
ina variety of models that embody reasonable idealisations, 14 and if this is the case, then we
would have some evidence in support of (or against) ECT. To this task we now turn.

Theories formulated in Lz can themselves be regarded as models. Givena theory S, we
define truth in S (S |= ... ) as follows:

* The interpretation of the arithmetical vocabulary is standard.

* Theinterpretation of the classical Boolean connectives is as usual.
*SEDp & pest

This will be called the theory-as-model perspective. We have argued that EA is sound for
4 priori knowability or absolute provability; on this grounds, it is reasonable to assume of
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theories-as-models S that EA € S. More generally, we will be interested in theories that are

sound in the following precise sense:

Definition 1 A theory S is called sound if S |= S.

Using Shapiro’s adaptation of the Kleene slash [Shapiro 1981.§b, p. 18], which we shall not
rehearse here, it can easily be seen that EA is a sound theory:

Theorem2 EA |= EA.

For obvious reasons, we will say that EA is the minimal model for EA.
EA also makes ECT true. In order to show this, we first recall that EA has the epistemic

analogue of the numerical existence property (henceforth, NEP) [Shapiro 1985a, pp. 19-20]:
Theorem3 (NEP) EA b 3x0¢(x) = thereisann € Nsuchthat EA - o(n),

with ¢ () being a formula with only x free. It should be noted that the antecedent does not
simply express that it is a priori knowable that the extension of ¢ is not empty (0(3xg(x)),
but it expresses the stronger statement that there is a particular number x such that it is
knowable that x has the property ¢. So the theorem tells us that if EA proves the exist-
ence of a number x of which it is a priori knowable that it has the property ¢, then there
is a particular number x such that EA proves that it is a priori knowable that x satisfies the
property @.
We can now show that EA makes ECT true:

Theorem4 EA |= ECT.

Proof EA |= OVadyOe(x,y) = (T)
EA F Vx3yOg(x,y) = (NEP)
Vm3n : EA - ¢(m, 7).
Now let e be the Turing machine that successively for each m finds the shortest EA-
proof of ¢(m, 1) for some minimal 1, and outputs n. Then by the soundness of EA we
have that

EA |= 3eV¥x3z3v : T(e,x,2) A U(z,v) A ¢(x,v),
where T is Kleene’s T-predicate and U is Kleene’s U-function. B

So EA, seen as a model, is also the simplest model for ECT. In [Halbach and Horsten 2000]
it is shown that EA + ECT |= NEP. Generalising from this, we can see the following:

Theorem § Forallr.e. sound S 2 EA that have NEP,
S |= ECT.

Hence, there are many simple models of ECT that assign a recursively enumerable exten-

sion to [, Note that because of the independence of ECT from EA (see [Flagg 1985] and
[Carlson 2015]), we have that

EA | OECT.
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Indeed, it is known that models that also make OECT true are necessarily somewhat com-
plicated [Carlson 2015]. However, this need not unduly concern us here,

o , because, as we
have seen, it is anyway somewhat difficult to see how we can a priori come t

o know ECT.

11.4.3 More Realistic Models?

In this section, we will construct somewhat more realistic models for the behaviour of an
idealised mathematical community. The aim is to construct simple models for ECT that
do not necessarily assign a recursively enumerable extension to the ] operator in order to
allow for the possible non-systematicity of the cumulation of knowledge over time, and to
test whether ECT is true in a wide class of such models.

We start by defining possible worlds models for £,. We base our models on a branching
time framework. The informal idea behind this is as follows. A possible world, or possible
space-time, might be seen as a linear sequence of moments at which new proofs are gener-
ated. These linear structures may be taken to partially overlap in such a way that the union

of all the possible space-time moments form a tree (partial ordering) under the earlier-than
relation.

Definition2 A frame F = (7, <) is a partial ordering relation.

The elements of 7" can be seen as possible moments in idealised branching time. Instead of
writingt; < t; for t;, t; € T, we will often simply write i < j.

Definition 3 A possible worlds model M is a structure of the form (F, f), with F a frame and
f:T > P(Lea).

Informally, (t;) specifies the theory that is known at moment £;.
Even though we have defined truth in a theory-as-model, we have not yet defined truth
ina possible worlds model. Let us do that now:

« The interpretation of the arithmetical vocabulary is standard.

« The interpretation of the classical Boolean connectives is as usual.

« M FD¢<:>¢G Uif(t‘)'
Then we immediately see:

Proposition4 M |= 0¢ < U.f(t) E D¢

ot -as-model per-
This proposition connects the possible worlds perspective with the theory-as-model pe

Spective, . pgiicd
To ensure that the appropriate degree of ideahsatl‘ofl »
worlds models meet the following conditions for all i, j:

satisfied, we require that possible

: f EA.
L (Closure) f(t,) is closed under logic and contains the theorems o

Il (Cumulativity) ¢ € f(t) = Yk > i: ¥ € f(t).
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11l (Positive Introspection) ¢ € f(t;) => Vj > i: O¢ € f(t).
IV. (Soundness) ¢ € f(t) = f(t) = ¢ and Uf) E .

V. (Finiteness) f(#) is recursively enumerable.

The requirement of soundness (IV) entails that each f(;) has the numerical existence

property (NEP).

The requirements of closure (I) and cumu
that the mathematical community deduces the logical consequences of what it knows, and
it is assumed that the mathematical community has a perfect memory. The requirement
of positive introspection (III) is a reflective property. If a subject knows ¢ a priori, then
they can, in the following moment in time, reflect on their grounds for believing ¢ a priori
and conclude (a priori) that they are strong enough to warrant a priori knowledge that ¢.
In other words, they know a priori that they know ¢ a priori. The soundness requirement
(IV) might be argued for from the definition of the concept of knowability: a subject can
only come to know a priori at a certain moment in time that ¢ if ¢ is true, for it is analytic
of the concept of knowledge that it entails the truth of what is known. Condition (V) is
a finiteness requirement since any r.e. theory is finitely axiomatisable in a language exten-
sion. Tt is motivated by the fact that since the human mind (even the mind of an idealised
mathematical community) is finite at every given moment in time, the content of whatis a
priori implicitly known (given closure under logical consequence) is contained in a Turing
machine.

We now see that for such M the following holds:

lativity (II) are idealisations. It is assumed

Theorem 6

1. M |= EA except for the K-axiom.
2. M [z ECT.

Proof

(1.) In order to show that M |= EA, we show that M |= 4, T. (We already know
that M models the necessitations of these principles, by the closure condition
on the f(t;)’s.) That M |= 4 follows from positive introspection; the fact that
M = T follows from the soundness condition.

(2.) M |= OVaIyOp(x,y) = (T)

3i : f(t;) F VaTyOg(x,y) = (NEP)
3iVm3n : f(t;,) - ¢(m, 7).

Now let e be the Turing machine that successively for each m finds the shortest f (t)-
proof of ¢ (7, ) for some minimal , and outputs n. Then by the soundness condition
(see IV above) on M we have that

M [= 3eVadz3v : T(e x,2) A U(z,v) A ¢(x,v). u

Note that if the frame of M is a total ordering, then also the K-axiom holds (by cumulativ-
ity), and then M |= EA.
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The.orem 6 SFIOWS that t‘here' are many possible worlds models of EA that make ECT true.
A gamcularly sm.mple and intuitive subclass of possible worlds models consists of those in
which the frame is an. w-sequence; le.t us call these models -sequence models.”” This may
be taker_1 to be‘a pamFularly rfatural idealised scenario insofar as it depicts discrete linear
time going on indefinitely, which seems the appropriate idealisation of the actual structure
of time.

Even though it is‘assumed that each f(t;) is recursively enumerable, it is not assumed that
the extension of [ in the model as a whole (i.e. \U,f(t)) is recursively enumerable: there
are many intuitive branching time models according to which there is a non-recursively
enumerable collection of a priori knowable sentences of £y, in which ECT is nonetheless
true. Indeed, requirement (V) is no restriction at all on the complexity of the content of
what is a priori knowable. Let (¢;); be an enumeration of the set of true sentences of the
language of arithmetic; then, if we let the extension of a priori knowledge at time i be the
logical closure of {¢y, . .., ¢}, the constraint is satisfied, while this entails that the extension
of a priori knowability over time is the collection of all arithmetical truths.

The possible worlds models that we have discussed above seem to incorporate reason-
able idealisations on a priori knowability. There is, however, a worry about the justification
of one part of the soundness requirement (IV). The statement ¢ € f(t) = |J,f(t) = ¢
is indeed supported by the fact that a subject can only come to know a priori at a certain
moment in time that ¢, if ¢ is true from a timeless perspective. However, it is unclear how we
can justify that ¢ € f(t;) = f(t) |= ¢. The concern here goes back to the worries that we
expressed about Thesis 6 in §11.4.1. Might it not be the case that at some stage the math-
ematical community has proved in a non-constructive manner that JxO¢(x), that is, that it
has proved this existential statement without producing a witness? However, we have seen
that the doubtful part of the soundness requirement is needed to ensure that each £(i) has
the numerical existence property, which is in turn used in the proof of Theorem 6. Thus,
the class of models which we have proved to validate ECT is perhaps not as broad as one
might wish. :

Asspecific class of models that one can consider is the class of models in which the exte-n-
sion of absolute provability is given by a systematic transfinite progression of formal theories

in the sense of [Feferman 1962]. Here subsequent systems are generated from earlier ones

by adding uniform reflection principles to what has already been obtained. These systems

were the focus of [Kreisel 1972], in which Kreisel tried to determine the truth value of
principles in the vicinity of (but probably not quite identical to) ECT. We have reserve.d
a detailed discussion of these models for another occasion; let it suffice to say here that in

all such models, ECT holds (as does EA)."®

11.5 Conclusion
Godel’s disjunction is generally taken to have been shown to be true. But until now we have

no compelling evidence for or against any of its two dlsl‘fn“s' : B ik sithicr
Inthis chapter, we have investigated a related disjunctive thesis accorcing

Epistemic Church’s Thesis (ECT) is false, or there are absolutely undecidable propositions

expressible in the language of epistemic arithmetic.
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It has emerged that this new disjunctive thesis is in the same boat as Gédel’s disjunction,
The new disjunction is unassailable, but we have no convincing philosophical arguments
for or against each of its disjuncts taken individually. In particular, at present we have no
convincing a priori argument for ECT. And in the absence of such an argument, it also seems
difficult to find an a priori argument for the thesis that there are absolutely undecidable
propositions. So it is not immediately obvious how the new disjunctive thesis can be seen
as a stepping stone to a priori knowledge about the limits of the extension of the notion of a
priori knowability.

We therefore went on to “test” ECT in models for the language of epistemic arithmetic,
It turns out that in a wide class of such models, ECT holds. However, the significance of
this finding is limited by the fact that it is built into these models that there are no non-
constructive ways of proving statements of the form YaTyCl¢p(x, y); we have seen that it is
difficult to argue convincingly for (or against) this assumption. In the end, we must there-
fore conclude that it would be premature to claim that there is quasi-empirical evidence
for the truth (or for the falsity) of ECT. At present we therefore also lack evidence for the
existence of absolutely undecidable propositions expressible in the language of epistemic
arithmetic.
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Notes

1. For an extended discussion of the implications and non-implications of Gédel’s theorems, see
[Franzen 2005].

For a discussion of the different viewpoints, see [Williamson 2000, chapter 12].

See [Antonutti Marfori and Horsten subm] and [Kreisel 1972].

For a discussion, see [Horsten 1997, p. 640].

Of course, a provability predicate with the properties assumed in Proposition 2 cannot be proven

s

to exist in EA.

See e.g. the debate in The Bulletin of Symbolic Logic 6(4), 2000.

The notion of being a Turing machine can be formalised in the background language of

arithmetic in the standard way in terms of Kleene’s T-predicate and the U function symbol.

8. This is not necessary, thoughj it suffices for the purposes of this paper that functional predicates
range over formulas in the language of arithmetic, or even over a fragment of this language.

9, For a discussion of the intuitionistic version of Church’s thesis, see
[Troelstra and van Dalen 1988].

N o



13.
14,

15.
16.

17.

18

[Antonutti Marfori and Horsten subm] Antonutti Marfori, M. and Horsten,
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Note that the converse of the Church-Turing thesi .
: e g thesis entails that if

functional ¢ € Lga: if ¢ is calculable, then the graph of ¢ ?s alE._)cndt'h};?-ldsﬁ then for every
(Thanks to Jan Heylen for pointing this out.) g ically computable.

. IfECT isinstead treated as a hypothesis, then the conclusion of this corollary does not follow. F
.For

a more extensive discussion of the treatment of ECT .
] as an axiom sche :
ahypothesis, see [Halbach and Horsten 2000] and [Horsten 2006] me versus its treatment as

. For an extended discussion, see [Sieg 1994] and [Soare 1996]. Actually, it was Gandy who first

Elcl;l ai;;t39;;?ed that Turing had given an a priori proof of the Church-Turing thesis: see

For a discussion of this argument, see [Horsten 2006].

See [Anton‘utﬁ Mar.fori 201.0] and [Antonutti Marfori 2013] for discussions of what might be

;:sfvr:/ﬁ;iz:h;t;o;ﬁ :uﬂlllitsl‘r:;;)utlh:notion of provability in principle. For a contrasting view,

Sin'ce we are quantifying into the context of 0, what will be said below must be relativised to

assignments: see [Alexander 2013] and [Heylen 2013]. For ease of reading, we will ignore this

complication in what follows.

Carlson denotes this by saying that EA is a machine [ Carlson 2000].

E]o :l)l-rsequence models, the cumulativity condition follows from positive introspection and
e.

See [Antonutti Marfori and Horsten subm].

References

[Alexander 2013] Alexander, S.A. A machine which knows its own code.
Studia Logica 102, pp. 567-576, 2014.
[Anderson 1983] Anderson, C.A. The paradox of the knower. Journal of
Philosophy 80, pp. 338-355, 1983.
[Antonutti Marfori 2010] Antonutti Marfori, M- Informal provability and mathemat-
ical rigour. Studia Logica 96, pp. 261-272, 2010
[Antonutti Marfori 2013] Antonutti Marfori, M. Theories of Absolute Provability. Ph.D.
Thesis, University of Bristol, 2013.
L. Human effective
computability. Submitted, 2015.
[Black 2000] Black, R. Proving Church’s Thesis. Philosophia Mathematica
8, pp. 244258, 2000.
[Boolos 1982] Boolos, G- Extremely undecidable sentences. Journal of
Symbolic Logic 47, PP: 191-196, 1982. '
[Carlson 2000] Carlson, T Knowledge, machines, and the consistency of
Reinhardt’s strong mechanistic thesis. Annals of Pure and

Applied Logic 105: pp- 51-82,2000. . .
[Carlson 2015] Carlson, T. Can a machine know that itisa machine? This
volume,

[Enderton 2001] Enderton, HB. A
Second Edition. San

2001.

Mathematical Introduction to Logic,
Diego, California, Academic Press,



270 | MARIANNA ANTONUTTI MARFORI AND LEON HORSTEN

[Feferman 1962]

[Referman and Solovay 1990]

[Fitch 1963]
[Flagg 1985]
[Folina 1998]
[Franzen 2005]

[Gandy 1988]

[Godel 1951]

[Goodman 1986]

[Halbach and Horsten 2000]

[Heylen 2013]

[Horsten 1997]

[Horsten 1998]

[Horsten 2006]

[Kreisel 1972]

[Lucas 1961]
[Myhill 1960]

[Penrose 1989]

Feferman, S. Transfinite recursive progressions of formal
theories. Journal of Symbolic Logic 27, pp. 259-316, 1962,
Feferman, S. and Solovay, R. Introductory note to 1972a,
In: S. Feferman et al. (eds.) Kurt Godel. Collected Works.
Volume 1I: Publications 1938-1974, pp. 281-304, Oxford:
Oxford University Press, 1990.

Fitch, F. A logical analysis of some value concepts, Journal
of Symbolic Logic 28, pp. 135-142, 1963,

Flagg, R. Church’s Thesis is consistent with Epistemic
Arithmetic. In [Shapiro 1985a, pp. 121-172].

Folina, J. Church’s Thesis: prelude to a proof. Philosophia
Mathematica 6, pp. 302-323, 1998.

Franzen, T. Godel’s Theorem: An Incomplete Guide to its Use
and Abuse. AK. Peters, Wellesley, MA, 2005.

Gandy, R. The confluence of ideas in 1936. In: R. Herken
(ed.) The Universal Turing Machine: A Half Century Survey,
pp. 55-111, New York: Oxford University Press, 1988.
Gédel, K. Some basic theorems on the foundations of math-
ematics and their implications. [1951] In: S, Feferman
et al. (eds) Kurt Godel. Collected Works. Volume III:
Unpublished Essays and Lectures, pp. 304-323, Oxford:
Oxford University Press, 1995.

Goodman, N., Flagg realizability in Epistemic Arithmetic.
Journal of Symbolic Logic 51, pp. 387-392, 1986.

Halbach, V. and Horsten, L. Two proof-theoretic re-
marks about EA + ECT. Mathematical Logic Quarterly 46,
pp. 461-465, 2000.

Heylen, J. Modal-epistemic arithmetic and the problem of
quantifying in. Synthese 190, pp. 89-111, 2013,

Horsten, L., Provability in principle and controversial con-
structivistic principles. Journal of Philosophical Logic 26,
pp. 635-660, 1997.

Horsten, L. In defense of Epistemic Arithmetic. Synthese
116, pp. 1-25, 1998,

Horsten, L. Formalizing Church’s Thesis. In: A. Olszewski
et al. (eds.) Church’s Thesis after 70 years. Heusenstamm:
Ontos Verlag, 2006.

Kreisel, G. Which number theoretic problems can be solved
in recursive progressions on I1{-paths through O? Journal of
Symbolic Logic 37, pp. 311-334, 1972,

Lucas, J.R. Minds, machines and Gédel. Philosophy 96,
pp. 112-127,1961.

Myhill, J. Some remarks on the notion of proof. Journal of
Philosophy 57, pp. 461-471, 1960.

Penrose, R. The Emperor's New Mind: Concerning
Computers, Minds, and the Laws of Physics. Oxford:
Oxford University Press, 1989,



EPISTEMIC CHURCH’S THESIS AND ABSOLUTE UNDECIDABILITY | 271

[Penrose 1994]

[Reinhardt 1986]

[Shapiro 1985a]
[Shapiro 1985b]

[Sieg 1994]

[Soare 1996]

[Troelstra and van Dalen 1988]

[Turing 1936]

[Turing 1939]

[Williamson 2000]

[Williamson 2015]

Penrose, R. Shadows of the Mind. A Search for the Missing
Science of Consciousness. Oxford: Oxford University Press,
1994,

Reinhardt, W. Epistemic theories and the interpretation of
Godel’s incompleteness theorems. Journal of Philosophical
Logic 15, pp. 427-474, 1986.

Shapiro, S. Intensional Mathematics. Amsterdam: North-
Holland, 1985.

Shapiro, S. Epistemic and intuitionistic arithmetic. In:
[Shapiro 1985a, pp. 11-46].

Sieg, W. Mechanical procedures and mathematical experi-
ence. In A. George (ed.), Mathematics and Mind, New York:
Oxford University Press, 1994.

Soare, R. L. Computability and recursion. Bulletin of
Symbolic Logic 2, pp. 284-321, 1996.

Troelstra, A. and van Dalen, D. Constructivism in
Mathematics. An Introduction. Volume 1 Amsterdam:
North-Holland, 1988.

Turing, A.M. On computable numbers, with an application
to the Entscheidungsproblem. Proceedings of the London
Mathematical Society 42, pp. 230-265, 1936.

Turing, AM. Systems of logic defined by ordinals.
Proceedings of the London Mathematical Society Ser. 2, 45:
pp- 161-228, 1939.

Williamson, T. Knowledge and its Limits. Oxford: Oxford
University Press, 2000.

Williamson, T. Absolute provability and safe knowledge of
axioms, This volume.



