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LEON HORSTEN 

ON THE QUANTITATIVE SCALAR OR-IMPLICATURE 

ABSTRACT. Two simple generalized conversational implicatures are investigated: (1) 

the quantitative scalar implicature associated with 'or', and (2) the 'not-and'-implicature, 

which is the dual to (1). It is argued that it is more fruitful to consider these implicatures 
as rules of interpretation and to model them in an algebraic fashion than to consider them 

as nonmonotonic rules of inference and to model them in a proof-theoretic way. 

1. AN IMPLICATURE CONCERNING 'OR' 

The aim of this paper is to formalize one of the Gricean Generalized Con 

versational Implicatures (GCfs). This is a particular instance of a larger 

program of attempting to 'formalize pragmatics'. 
Levinson in his book cites certain general distinctive properties of 

GCIs. The following of these are of particular relevance for our purposes 

(Levinson 2000, 15): 

1. Cancellability. 
2. Nondetachability. 
3. Calculability. 

The first of these is connected with the nonmonotonic aspects of GCIs. The 

second property means that "any expression with the same coded content 

will tend to carry the same implicatures".1 It implies that we can restrict 

our attention to what is linguistically given and do not have to look at 

aspects of the nonlinguistic context in which the relevant assertions are 

made. The third property means that natural language users must possess 

something like an algorithm that allows them to determine in a given 

(knowledge) context which implicatures he/she may legitimately (albeit 

defeasibly) draw. 

A problem with GCIs is that many of them are very open-ended (Levin 
son 2000,49) and that it is not always clear how they ought to be applied in 

particular contexts. But perhaps a particularly clean and simple test-case 

would be the following GCI associated with the logical connective 'or' 

(Levinson 2000, 18):2 

If a speaker says Av?, then it is implicated that --(A A B). 
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112 LEON HORSTEN 

Let us from now on pretend that this is the only implicature associated 

with 'or', and call it the v-implicature. This implicature is an instance of 

the general species of GCIs associated with scalar expressions (Levinson 

2002, 35-37). For instance, there is an analogous implicature concerning 
3: 

If a speaker says 3x A (x), then it is implicated that -Wx A (x). 

An advantage of the implicature concerning 'or' is that it can be inves 

tigated within a logically particularly simple context, i.e., the context of 

propositional logic. 
The aim of GCIs in general, and of the v-implicature in particular, is 

that they increase the informational content of what is communicated.3 It 

is thought that in general, information production (primarily by speech) 
is much slower than speech comprehension. GCIs attempt to narrow this 

discrepancy by increasing the communicative content of what is said. 

There is a discussion in the literature about whether these implicatures 
contain an epistemic component, and, if so, how this epistemic component 
should be expressed (Levinson 2000, 75-79).4 Defenders of the epis 
temic reading of the v-implicature would take issue with the way it was 

expressed above. They would express the implicature as 

If a speaker says Av B, then it is implicated that the speaker 
believes ?> 

(A A B). 

or perhaps as: 

If a speaker says A v B, then it is implicated that the speaker 
does not believe A A B. 

In this paper, we opt for a nonepistemic reading of the V-implicature, 
and therefore adhere to the original formulation. We take it that when a 

speaker asserts A v B, he implicates that A A B is not the case in the 

world. This implicature then triggers a second implicature, namely that 

the speaker believes the first implicature, but that is another matter. It falls 

outside the scope of the present paper to defend the non-epistemic position 
at length.5 Instead, we want to see where it takes us and how it can best be 

made mathematically precise. 
We will start by making various simplifying assumptions. Some of 

these are later removed; others are left in place throughout the paper. 

Hopefully this will eventually lead us to a fairly satisfactory mathematical 

treatment of the implicature. But we are not under the illusion that this 
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paper is more than a first step in this direction. The upshot of this paper is 

that the logical modeling of even the simplest of the GCIs is a complicated 
task. 

2. THE IMPLICATURE AS A NONMONOTONIC RULE 

Levinson suggests that GCIs should be modelled as nonmonotonic in 

ference rules (Levinson 1970, 45-49). Let us try to see how this would 

go 

We work in the Fitch-style natural deduction formulation CPL of clas 

sical propositional logic.6 A ? B is to be read simply as an abbreviation 

of 
- 

A v B. In this paper we will not address the difficult question of the 

proper treatment of the conditional expressions in natural language and the 

interplay between conditionals and disjunction.7 
A first proposal would be to express the v-implicature as a default rule 

in the context of Reiter's default logic* This would amount to adding to 

CPL the following default rule: 

(A v B : -(A AB) /-. (A A B)). 

In words: if one has found that Ay B, then if it is consistent with what has 

been obtained that ->(?A?), one may conclude to -> 
(A A B). One can 

straightforwardly reformulate this rule as a natural deduction rule with a 

consistency condition. 

But there is a problem with this proposal. The default rule should be 

restricted to asserted sentences. We need to avoid that for every sentence 

of the form A v B, language users are allowed to conclude -> 
(A A B), 

for this is not intended by the Gricean implicature concerning 'or'. For 

instance, when a sentence A v B is hypothetically uttered, the implicature 
is not in force.9 Therefore we must ensure that in hypothetical subproofs 
the default rule cannot be applied. 

The following rule of inference, which we call Cv, takes this caveat 

into account. We formulate it straightaway in natural deduction format: 

Ai Premise 

A2 Premise 

n. An Premise 

k.AvB 

k+l.-?(A Afi) 1-k, Cv. 
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The following two restrictions apply to applications of Cv: 

1. Cv may only be applied to formulas in the main proof not to 

hypothetical statements, i.e. formulas in subproofs. 
2. Let l\,..., lm be an enumeration of all formulas in the main proof from 

line 1 to m. Then Cv may only be applied to A v B in case 

/i,..., lm ̂ cpl A A B. 

Condition 1 restricts Cv to asserted sentences. Condition 2 embod 

ies the defeasible or nonmonotonic character of the implicature Cv. One 

is only permitted to apply the implicature if the result does not conflict 

with previously obtained information. It involves a consistency check. In 

the propositional case, this condition is effectively computable, whereby 
Levinson's calculability requirement on GCIs is satisfied.10 But for the cor 

responding consistency check for the analogous GCI for 3, in a (polyadic) 

quantificational setting, undecidability would creep in. For this reason, 

Batens and Meheus in their Adaptive Logics11 'unwind' such consistency 
checks: roughly, one is only prevented from applying an adaptive rule to 

infer A if 
- 

A has not actually been derived earlier in the proof. This makes 

their adaptive inference rules computationally tractable. Their logics allow 

agents to reason in an (implicitly) inconsistent way for a while, until the 

inconsistency comes to the surface. The proofs of our system CPL + Cv 

then roughly correspond to the subclass of consistent adaptive proofs. 
It must be conceded that Batens' and Meheus' adaptive systems more 

accurately reflect the way in which people actually reason. The strong 

consistency check incorporated in Condition 2 on the application of Cv 

must therefore be seen as a simplifying idealization. 

3. ELEMENTARY PROPERTIES OF THE RULE 

The first thing we can note is that the rule C v gives rise to some completely 

trivial, but peculiar dualities. First, we have: 

Ay^A 

- (A A -A) 

by an immediate application of Cv. Second, if we suppose for a moment 

that ? is a primitive connective of our language governed by the usual 

classical natural deduction rules, we have: 

A-> B 

B -> A 
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These inferences are again allowed only in the main proof, and under the 

condition that the inference does not introduce an inconsistency. 
Let us concentrate for a moment on the second of the above default 

rules: call it C ->.12 In fact, Cv and C ?> are equivalent implicatures: 

PROPOSITION 1. Cv ?= C - . 

And indeed, in linguistic practice conditional statements are often read as 

biconditionals. 

According to what can be called the Gricean Master Scheme (GMS), all 

pre-theoretical intuitions concerning correctness of reasoning with logical 

expressions must be explained by means of a combination of: 

Classical Logic (Part I) + Conversational Implicatures (Part II). 

In particular, according to GMS the so-called paradoxes of the material 

implication should be explained in terms of breach of implicatures. 
GMS of course goes back to the work of Grice.13 But variants of it have 

been defended by several influential linguists, philosophers of language 
and pychologists. For example, David Lewis for a long time thought that 

the meaning of conditionals in natural parlance is given by the mater 

ial implication.14 Johnson-Laird and Byrne also defend a variant of this 

position.15 
An alternative explanatory strategy just postulates that there are sev 

eral different meanings of expressions like 'or' and 'if ... then' in natural 

language, and that it depends on the particular context of use which one is 

intended. One may wonder how one could ever empirically decide between 

these two different general approaches. 
But note that in the light of the Proposition 1, GMS comes one step 

closer to being empirically testable. The idea is this. It is empirically ob 

servable in language use whether and how strong an implicature holds. In 

this sense, C v and C ? are independently testable. But since A -> J5 is in 

virtue of Part I of GMS equivalent to ->A v ?, there is a logical connection 

between Cv and C ?>. In other words, from the empirical fact Cv, C -> 

is predicted. Specifically, in a context where the implicature Cv is justified 
for a formula Ay B, one would expect that the implicature C -> can with 

equal justification be applied to -?A ?> B. I hasten to add to this that I am 

not under the illusion that it would be a simple matter to implement such 

an empirical test. Also, I am aware that few neo-Griceans would today be 

willing to defend GMS in the naive form in which it was presented here.16 

Let us understand the notion of a proof in CPL + Cv in the obvious 

way. Then we can define a weak notion of consequence: 
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DEFINITION 2. Ai, ..., An h?v A = there is a proof in CPL + Cv of A 

from Ai,..., An. 

Let us call a proof consistent if no contradiction can be derived from it 

(considered as a set of sentences) by means of CPL alone. 

PROPOSITION 3. If {Ai,..., An] is consistent, then every CPL + Cv 

proof from A\,..., An is consistent. 

Proof We only need to show that Cv is consistency-preserving. But 

this follows immediately from condition 2 on Cv. D 

Note that we do not have, in general, that if iB2?33\ are proofs in CPL+C v 

(from the same premises), then ?2 o <Si is a proof in CPL + Cv. For ?B\ 

may contain conditions blocking some of the ̂ -inferences. As a simple 

example, suppose ?2 is: 

1. A Premise 

2. A v B Premise 

3. A v -"B Premise 

4. -.(Aa?) 1-2, Cv 

And let <S2 be: 

1. A Premise 

2. A v 5 Premise 

3. A v ?"J5 Premise 

4. -.(AA-itf) 1-3, Cv 

Then ?2 ? <?i is not a CPL + Cv-proof: its second application of Cv vio 

lates the associated consistency requirement. This phenomenon illustrates 

a nonmonotonic feature of the or-implicature. 
From now on, when we speak of proofs, we mean CPL + Cv-proofs. 

We can formulate a strong notion of consequence. 

DEFINITION 4. Au ..., An hsCv A = for every proof <? from Au...,An, 
there is a proof ?B' 2 <S which proves A. 

This allows us to define the strong consequence set ?C(A\,..., An) of a 

set of premises A1,... An : 

DEFINITION 5. SC (Au ..., An) 
= 

{A \ Au .. -, An KCv A}. 

PROPOSITION 6. (Conservativeness of Cv over classical propositional 

logic) JC (Ai,..., A?) 
= CPL + Ai, ..., An. 
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Proof. By a reductio ad absurdum. Suppose A\,..., An I^cpl B. Let T 

be an arbitrary propositional tautology. And let 33 be the following proof: 

Ai 

n. An 

n + 1. T tautology 
n + 2. T V B v-Introduction 

n + 3. -*(T A?) Cv, 1 -rc + 2 

n + 4. --? 

The step from n+2 to n+3 is justified, since A\, ...An Y-cpl T A ?, for 

otherwise A\,... An \~cpl B, contradicting our assumption. Now no proof 
<S' proves B: otherwise <?' would be an inconsistent proof. By the previous 

proposition its set A\, ..., An of premises would have to be inconsistent. 

But by the supposition of the present proof they must be consistent. So we 

are done. D 

This shows that as a rule, Cv is in the context of classical propositional 

logic essentially defeasible: there can always be background information 

in the context of which it cannot be applied. 
The argument for our last proposition indicates that there is something 

wrong with our treatment of the implicature as a nonmonotonic rule. For it 

shows how given a list of premises Ai, ..., Anj any B which is consistent 

with Ai,..., An can be derived from it using Cv. This accords ill with the 

way in which the implicature is used in ordinary communication. 

The argument for our last proposition highlights the crucial role of the 

propositional rule of y-Introduction in the present setting. It shows that 

problematic applications of Cv arise when a language user first weakens 

the semantic information content that is given to him, and subsequently 

applies C V to obtain highly informative propositions. 
One can of course try to eliminate the undesirable consequences by 

imposing further restrictions on applications of Cv. But this would make 

the nonmonotonic rule rather complicated, compared to the apparent sim 

plicity of the rule as it is used in daily communication. So let us try to 

model the implicature in another way. 

4. AN ALGEBRAIC APPROACH 

In this section, we try to model the v-implicature as an operator which 

acts on a simple algebraic structure. We will try to show that an algebraic 
treatment allows us to capture more of the subtle aspects of the implicature. 
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Our algebraic structure is a partial ordering (F, <). The elements of F 

are the propositional formulas in the alphabet p\,..., pn,_The relation 
< orders the elements of F by information content: 

A< B = \= B -> A. 

With each A e F, we can then associate an information level i [A] of 

A: 

DEFINITION 7. i [A] is the equivalence class of all logical equivalents of 

A in the alphabet /?i,..., pn,_And we say that / [A] < / [A] iff A < B. 

The idea now is that the v-implicature acts as an operator & on (F, <), 
such that typically, for an A G F which is of disjunctive form, the 

implicated result A! = A A O (A) is informationally stronger than A itself: 

i [A] < / [A'\ 

This would mean that the v-implicature indeed increases informational 

content. 

A couple of remarks are in order here. First, note that in our partial 

ordering (p.o.), 
< is the inverse of the usual ordering of propositions in 

the atomic boolean algebra generated by p\, ..., pn. In the p.o. (F, <), T 

(verum) is a bottom element and J_ (falsum) is a top element. Second, we 

do not follow the usual practice of taking equivalence classes (induced by 

logical equivalence) as elements of our p.o. The reason for this is that the 

v-implicature of two logically equivalent formulas can be quite different: 

EXAMPLE 8. Trivially, 

\= py q o (p A^q)y q. 

When the v-implicature is applied to p v q we obtain -? 
(p A q)\ when the 

implicature is applied to (p A ->#) y q we obtain -> 
((/? A -^q) A q), i.e. T. 

But evidently: 

^((pV?)An(pA q)) ?* 
([(p A ~^q) yq]A T). 

DEFINITION 9. The communicated content of an expression A is defined 

as the semantic content of A plus the implicature(s) of A.17 

In other words, the communicated content ofpyq differs from that of 

(p A--q)y q. 
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The previous example then shows in effect that there are formulas A, 
B which are logically equivalent but which have respective communicative 

contents A', B' such that / [Af] 
< i [#']. 

The following example shows that even difference in the position of 

brackets in a purely disjunctive formula can yield different immediate v 

implicatures: 

EXAMPLE 10. Suppose D = p\ v p2 v p^. If we formulate 

D as (p\ y P2) y P3, then we can apply the implicature to obtain 
-" 

[(Pi v Pi) A 
Pi\ If we formulate D as p\ v (p2 v p^), then the im 

plicature yields 
-? 

\p\ 
A (p2 v 

773)]. 
If we formulate D as (p\ v p^) v p2, 

then the implicature yields 
- 

[(p\ 
v p3) a 

p2]. 
These three implicatures 

are nonequivalent. 

This last example illustrates a more general phenomenon. There is a 

tendency to say that in common discourse, all these applications of the 

implicature are admissible when a speaker assertively utters "p\ v p2 v 773", 
i.e. ?oi/z disjuncts tend to be read exclusively. This gives us a compact 

way of conveying information which otherwise would take a long sentence 

to express in terms of negation and (inclusive) disjunction. Nevertheless, 
the empirical evidence for this construal of the v-implicature is admit 

tedly limited - we hardly ever reason with disjunctions of more than 

three disjuncts. But if we accept this, then we want to define & (D) as 

the conjunction of D with applications of the implicature to all of these 

equivalent ways of formulating D. Of course, this is again an idealization: 

actual language users apply one implicature at a time. Eventually one will 

want a more fine-grained approach, which unwinds 0 in its individual 

applications of the 'or'-implicature. 
To define O formally involves some terminology but is basically 

straightforward. 

DEFINITION 11. Let Fn be the collection of all the (2n 
- 

2) functions / : 

{1,..., n] f> {0, 1} without the (for our purposes degenerate) constant 

functions. 

The functions f e !Fn correspond to the different ways in which a 

disjunctive formula D consisting of n disjuncts can be formulated: 

Suppose D is a disjunctive formula. Then for any /Gf?, let 

D/ 
= 

(D/lv...vD/i)v(D;1v...vDA), 

with / (?,) 
= ... = 

/ (ik) 
= 1 and / 0,) 

= = 
/ (;0 

= 0. 
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Now we can define the local action of the implicature on a particular 
formulation of D: 

DEFINITION 13. Again suppose D is a disjunctive formula. For any / e 

Fn, let 

&P (Df) 
s - 

[(A, 
v - - v Dik) A (Dh v ... v 

Dyz)] 

In terms of these particular implicatures, we can finally define the global 
effect of the implicature on a disjunctive formula D: 

DEFINITION 14. 0 (D) 
= 

/\ 0P (Df). 
feFn 

0 (D) is then our proposed algebraic interpretation of the y-implicature 
of D. Then the communicative content C (A) of an assertion A can pro 

visionally be expressed in terms of the operator 0. Let A [g (D) /Z)] be 
the result of uniformly substituting every disjunctive subformula D of A 

(which is not a subformula of a larger disjunctive subformula of A) by 

g (D). Then a provisional definition of the communicative content of A is: 

DEFINITION 15. Cv (A) 
= A [D a 0 (D) /D]. 

In contrast to our way of proceeding in Section 2, we do not here build into 

the definition that the v-implicature is not drawn (or drawn but retracted) 
from an asserted sentence A if A [D 

a 0 (D) /?>] is inconsistent outright 
or inconsistent with background knowledge of the hearer. For it seems to us 

that this is not part of the task of the algebraic model of the v-implicature 

per se but falls within the provinces of the discipline belief revision. We 

will see that nevertheless, the algebraic behavior of the v-implicature still 

features non-monotonic behavior. 

Let us briefly look at some properties of C. 

As a first elementary observation, we have the following fact: 

PROPOSITION 16 (idempotence of Cv). For every A, Cv (A) = 

ev(ev(A)). 
Proof C (A) does not have the form of a disjunction. D 

This means that the v-implicature is in a sense a non-iterative operation. 
In connection with this, observe that the following form of iterated 

application of the v-implicature is excluded by our provisional definition: 

pv-*(qvr)=? 
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- 0? A - (4 V r)) ̂  

- 
(p A -?-. 

(q A r)) 

O - 
(p A q A r) . 

One might be inclined to allow the second application of the v-implicature, 
since in 

- 
(p A -> 

(q v r)) the subformula qy r actually occurs positively. 

Nevertheless, it is not completely clear whether our intuitions sanction 

such iterations of the implicature. It seems that sentences with the required 

logical complexity for this question to arise are hardly ever asserted in 

natural language. So we will leave this question open in this paper. 

Next, we have: 

PROPOSITION 17. Cv is an inclusive, nonmonotonic operator on (F, <). 

Proof. That Cv is inclusive is immediate since Cv (A) 1= A. To see that 

Cv is not monotone, let p, q be two proposition letters. Then (p v q) 
< q, 

but 

Cv (p y q) = (p A ^q) y (^p Aq)iev(q) 
= q. D 

COROLLARY 18. For every D, / [D] < i [Cv (?>)]. 
Proof. By the inclusiveness of Cv. D 

Now let D be a formula. Then the content of D can in a familiar way be 

represented by means of a Venn diagram: the points in the Venn diagram 

represent the 'worlds in which D is true'. If D has the form of a disjunc 
tion consisting of n disjuncts, then the content of D is represented as the 

union of the Venn diagram-representations of the disjuncts. A moment's 

reflection shows that /\ 0P 
(Df) 

is then represented as the complement 
fzFn 

of the overlapping regions of the representations of the disjuncts ?>,- of 

D. In other words, Cv (D) is the union of the non-overlapping regions of 

the representations of the disjuncts of D. The present algebraic proposal 
takes the implicature to operate on the algebra of sentences, and not on 

the algebra of propositions expressed. Therefore the operator Cv divides 

the set of sentences into equivalence classes smaller than the relation of 

logical equivalence does. The question then arises whether this partition 
can somehow be informatively characterized. This question, which was 

raised by Hannes Leitgeb, is left open in this paper. 
But there is the following complication. Given any asserted formula A, 

the v-implicature affects all and only the positively occurring disjunctive 
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subformulas of A.18 For instance, when a speaker asserts a sentence of the 

form 

P A (q y r), 

or of the form 

p -> (q y r), 

then we also tend to interpret the occurrence of 'v' in this formula exclu 

sively. The fact that the or-implicature only applies to positively occurring 

disjunctive subformulas is emphasized in Noveck and Chierchia (2002).19 
In that article it is also emphasized that the or-implicature does not ap 

ply to interrogative sentences. And that, in our opinion, is in turn related 

to the fact that the implicature does not apply to hypothetically asserted 

sentences: hypothetical assertion-context can in a sense be regarded as 

negative contexts. 

This suggests a revision of our definition of Cv. Let us indicate a posi 
tive occurrence of a disjunctive formula D in A as D+. Then the suggested 
revised definition is: 

DEFINITION 19. Cv (A) 
= A [D 

a 0 (D) /D+\ 

5. THE V-IMPLICATURE AND THE A-IMPLICATURE 

Neo-Gricean theories predict that if (jci,..., xn) is a Horn scale on which 

a quantitative scalar implicature is based, then so is the dual (jc^", ..., x?~) 
of the scale (where x is the complement of jc).20 Now the v-implicature is 

based on the scale (v, a). Therefore neo-Gricean theories predict a dual 

do the v-implicature, based on the scale 
(X, v). 

This 7\-implicature, as we 

will call it, can roughly and informally be expressed as follows: 

If a speaker asserts -> 
(A A B), then it is implicated that A v B. 

Here is a simple proposal for the way in which the X-implicature can be 

modeled. 

Let C be a conjunctive formula Ci A A Cn with n > 2. Then we 

define: 

DEFINITION 20. A (-C) 
= 

Ci v v Cn. 

DEFINITION 21. Cx (A) 
= A [-C A A (-C) / (-C)+]. 
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Note that the definition of A (-"C) is a bit simpler than the definition of 

0 (D). The reason is that the way in which the brackets are placed in C do 

not matter here. 

PROPOSITION 22. In general, we have: 

a. ?0 (A (A)) <+ A. 
b. |= A (0 (A)) ?> A 

Proof The proposition generalizes from the following argument: 

- 
(Pl A P2 A p3) 4 

Pl V P2 y P3 => 

" 
(Pl A (p2 V P3? 

-1 
(P2 A (pi V p3)) 

-- 
(/?3 A (p! V p2)) 

Pl y P2 y P3 

Pl V P2 y P3 

k Pl V P2 V /73 

^PlV/72Vp3. D 

This means that eA is a kind of /e/f adjoint of 0 (in the algebraic sense) but 

0 is not a left adjoint of A. 

To conclude, here is a simple-minded proposal for how the v 

implicature and the X-implicature act together: 

DEFINITION 23. G (A) 
= A [D a 0 (D) /?>+; -C A A (-C) / (-C)+]. 

Of course interaction with other implicatures deserves to be investigated 
as well. But this task again is deferred to future research. 

6. INFERENCE OR INTERPRETATION? 

On the algebraic way of modeling the v-implicature, it appears as a defea 

sible rule of interpretation of asserted linguistic utterances rather than as a 

nonmonotonic rule of inference. One aim of the present paper was to cast 

some doubt on the fruitfulness of exclusively proof-theoretic modeling of 
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this implicature.21 Indeed, it seems that language users do not apply the 

implicature much in extended nonmonotonic arguments 
- 

categorical or 

hypothetical. Rather, they use them as a tool of semantical interpretation 
of information that is conveyed to them. 

We have shown how an algebraic representation of the v-implicature 
does exhibit synchronie nonmonotonic features. When the language user 

subsequently reasons deductively on the basis of the interpreted informa 

tion, the implicature no longer plays a role. 

As said before, the dynamical nonmonotonic character of the v 

implicature comes into play when after applying the implicature, new 

information is obtained which contradicts the information that the lan 

guage user has come to accept on the basis of the implicature. In such 

situations, language users revise their conclusions by canceling (some of) 
the implicature(s) which they have applied. A full account of the implica 
ture ought to encompass not only the interaction of the v-implicature with 

other implicatures, but also the interaction with background knowledge. It 

seems likely that to model such logical behavior, systems of nonmonotonic 

reasoning (such as default logics, systems of belief revision, logical pro 

gramming) will prove useful. But the issues that come up here are subtle. 

The following example shows that there are assertions for which it is con 

sistent to apply the v-implicature to some positive subformulas of A, but 

not to all: 

EXAMPLE 24. Suppose a speaker asserts 

[(/? V q) A (q y 
r)] 

A [(p A q) V (q A r)]. 
We have 0 (p V q) 

= -- 
(p A q) and 0 (q V r) 

= 
-^(^A r). Their 

conjunction 

0 (p y q) A 0 (q y r) 

then contradicts the second conjunct of the assertion. 

In cases such as this example, the rule Cv predicts that we suspend all 

applications of the v-implicature. 
And here (as at some places before) one more simplification of our 

account comes to the fore. In natural language, logically complicated 
sentences such as 

[(P A q) y (q A r)] A [(p V q) A (q V r)] 
(which we considered in an earlier example) are hardly every asserted. 

They are usually broken up into several less complicated sentences. In 

stead of uttering this complicated sentence, the speaker might first assert 
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(p A q) y (q A r), and then goes on to assert (p V q) and (q V r). So at the 

moment when the third assertion is made, the first and the second asser 

tion belong to the background knowledge. In such a situation the speaker 

perhaps does not apply the v-implicature to the third assertion. However 

this may be, this shows that our rules Cv and CA are still simplifications. 
We have left the 'diachronic' complications mostly aside here because of 

our restricted aim of describing how the v-implicature applies to single 

free-standing assertions - this already proved to be complicated enough. 
It would be unwarranted to conclude from the account that was pre 

sented here that interpreting an assertion temporally precedes deducing 
information from it. Determining the communicative content of an asser 

tion involves taking implicatures into account. And to know, e.g., whether 

a particular v-implicature is in force involves carrying out a consistency 
check, which is an inferential task, it may well be that in practice language 
users continually go back and forth between interpreting and deducing.22 

So I conclude that even the simplest of the implicatures display a be 

havior that is from a logical point of view actually quite intricate and 

interesting, and which is not easily modeled in a satisfactory manner. It 

seems that in order to achieve such a satisfactory treatment, several ap 

proaches need to be combined. It is of central importance in this context to 

arrive at a suitable division of labor. 
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NOTES 

This distinguishes GCIs from the so-called Particular Conversational Implicatures 

(PCh). The so-called Relevance Theory of Sperber and Wilson (1986) does not accept 
this distinction. 
2 See also Levinson (2000, 45-49). 
3 See Levinson (2000, 27-29). 
4 

This discussion to some extent mirrors the debate in the AI community between the 

proponents of auto-epistemic logic on the one hand, and the defenders of default and 

circumscription logics on the other hand. 
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For a more extensive defense of the approach taken here, the reader is referred to Atlas 

(1990). 
6 

See, e.g., Thomason (1970, Chap. 4.) 

Nevertheless, this would be an important subject for further research. We make some 

remarks about this issue in the following section and in the concluding section. 
8 

See, e.g., Horty (2001, 343-350). 
9 

Noveck and Chierchia note that also when A v B is uttered as a question, the or 

implicature does not apply. See Noveck and Chierchia (2002). We come back to this issue 

in Section 4. 
10 

Nevertheless, it ought to be mentioned that carrying out consistency checks for propo 

sitional logic is an NP -complete and therefore in the general case computationally 
intractable task. 
11 See Batens (2001). 
2 

Joke Meheus pointed this duality out to me. 

13 See Grice (1989, 77ff). 
14 See Lewis (1976, 303-304). 
15 

See Johnson-Laird and Byrne (2002). 
16 

For a typically cautious neo-Gricean attitude towards conditionals, see Levinson (2000, 

204-210). 
17 

The distinction between implicature and communicated content is emphasized in 

Levinson (2000, 120-121). 
8 

For a definition of positive versus negative occurrences of subformulas in a formula, 

see, e.g., Buss (1998, 15). 
19 

Cf. Section 2. 
20, ' 

See, e.g., Levinson (2000, 64). 

This is however by far the most 

inferential approach advocated, e.g., in Levinson (2000, 42-54). 
22 

Van Lambalgen 

(2001, Section 9). 

21 
This is however by far the most popular approach to date. One finds the proof-theoretic, 

22 
Van Lambalgen and Stenning emphasize this point in their Van Lambalgen and Stenning 
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