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LEON HORSTEN 

IN DEFENSE OF EPISTEMIC ARITHMETIC* 

ABSTRACT. This paper presents a defense of Epistemic Arithmetic as used for a for 

malization of intuitionistic arithmetic and of certain informal mathematical principles. 

First, objections by Allen Hazen and Craig Smorynski against Epistemic Arithmetic are 

discussed and found wanting. Second, positive support is given for the research program 

by showing that Epistemic Arithmetic can give interesting formulations of Church's Thesis. 

1. INTRODUCTION 

This paper presents a defense of Epistemic Arithmetic as used for a for 

malization of intuitionistic arithmetic and of certain informal mathematical 

principles such as Church's Thesis. 

First, I discuss an objection by Craig Smorynski to the effect that Epis 
temic Arithmetic is unable to capture the full flavor of talk about effective 

methods, which plays an essential role in the interpretation of intuitionistic 

mathematics and in the expression of Church's Thesis. This amounts to 

the objection that the content of Church's Thesis and the meaning of con 

structivistic arithmetic are insufficiently analysed in Epistemic Arithmetic. 

Second, I discuss an objection by Alan Hazen to the effect that Epistemic 
Arithmetic does not respect the anti-realist spirit of intuitionism. 

The objections by Smorynski and by Hazen are found wanting, but 

there is a third objection which poses a real difficulty for the project 
- 

viz., that the epistemic systems are not given a sufficiently determinate 

interpretation to enable us to evaluate proposed formalizations, e.g., of 

Church's Thesis. But I show that some recent developments of Epistemic 
Arithmetic mitigate this problem to a certain extent. Also, a direction for 

further progress is proposed in the form of a theory of presentations of 

mathematical objects. 
In the final section I turn to a detailed scrutiny of this objection as it 

bears on Church's Thesis. I find that some formalizations proposed so far 

are indeed defective, not because they are not sufficiently fine-structured, 
but because they can already be convincingly shown to be incorrect. I 

refine a version due to Flagg and observe that the question as to its ad 

equacy is not settled by any philosophical or technical results known at 
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2 LEON HORSTEN 

present. I thus conclude generally that the possibility of a successful use 

of (extensions of) Epistemic Arithmetic to analyse intuitionistic arithmetic 

and Church's Thesis is still open and promising. 
The objections to be discussed turn on general methodological ques 

tions about the adequacy of proposed formalizations. So I begin with some 

rather abstract considerations about such matters before turning to the de 

tailed discussion. The criteria for the evaluation of formalizations I urge are 

necessarily somewhat imprecise, but no more so than analogous things as 

they are currently understood in application to the evaluation of scientific 

theories. 

Although I have tried to keep this paper self-contained, I found it at 

times necessary to enter into the intricacies of some of the existing formal 

systems of Epistemic Arithmetic. For detailed descriptions of these sys 

tems, the reader is referred to the original papers in which these systems 
were proposed. 

2. EVALUATING FORMALIZATIONS 

2.1. What is a Formalization ? 

A na?ve way of thinking about formalizations is the following. Suppose 
one wants to formalize an informal notion and principles concerning it. A 

formal language is constructed. This formal language may contain special 

primitive symbols, as in the case when one wants to formalize classical 

arithmetic (one will choose, e.g., a name 0 for the number 0, and a function 

constant s for the successor function). Subsequently one tries to represent 
the concepts and principles to be formalized in the formal language. Some 

times the representation of the concepts involved will simply involve the 

addition of new primitive predicates or constants, as when one formalizes 

the notion of truth by adding a new primitive predicate (7\ say) to a formal 

language. But sometimes this is not so straightforward, for instance when 

it was attempted to represent the notion of a real number in the language 
of set theory. 

George Boolos has, in a somewhat specific context, emphasized that 

representation in a formal language in itself is not enough to even raise the 

question of adequacy of formalizations. As long as the formal language 
has not been given a fairly definite interpretation, there is no formalization 

(Boolos 1975, 519-20). This does not mean that there has to be given a 

formal semantics of the language of the formalization in order to speak 
of a formalization: the formalization of set theory in the beginning of the 

century by Zermelo and others was already then a good formalization, long 
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before the Tarskian notion of model. It only means that the formal language 
has to be an interpreted language, i.e., that a fairly definite meaning (in 
the intuitive sense of the word) has to be assigned to all symbols of the 

language. Sometimes a formal semantics can actually help, for instance 

when there is doubt whether the notions and principles to be formalized 

are coherent, or when a formal semantics can somehow clarify the intended 

interpretations of the formal language (the inductive technique for building 
fixed point models for languages containing a truth predicate is an inge 
nious way of trying to do this). Often an interesting class of models can be 

isolated by writing down axioms concerning the 'new' primitive symbols 
that the formal language contains, axioms for which it can be argued that 

they are valid on the intended interpretations (even if the class of intended 

interpretations is not yet very clearly circumscribed). 
What then is a formalization? A formalization of a concept is a rep 

resentation of that concept and of statements concerning that concept in 

an interpreted formal language, considered in the context of a theory that 

is formulated in that formal language. In the case of epistemic theories 

of arithmetic, which we will consider in Sections 2 and 3, the interpreted 

languages will be ordinary formal languages of arithmetic to which an 

absolute provability operator is added. And the background theories will 

be familiar axiomatic formalizations of arithmetic in which the absolute 

provability operator is governed by S4-like principles. The informal con 

cepts to be formalized will be 'constructive provability' and 'effective 

computability'.1 
Formalizations serve epistemological goals. They yield theories of the 

informal notions in question. These theories should add to the existing 

knowledge of the informal notions in question. In this respect, a formal 

ization of a notion may be said to be a special kind of analysis of that 

notion.2 

Formalizations need not be meaning-preserving. The formalization of 

the notion of a function as a set of ordered pairs, for instance, is in all like 

lihood not completely faithful to the original meaning of the concept. Yet 

it is a very good formalization. Formalizations also need not be unique.3 
The formalization of the function-concept in the untyped ?-calculus is 

also a good formalization of the concept of a function, even though it is 

very different from the ordered pairs-formalization. Another illustration 

is given by modal logic. The S4-formalization, interpreted in a Kripkean 

possible worlds-semantics, is a good formalization of the notion of pos 

sibility. But so is the S5-formalization, interpreted in a Kripkean possible 
worlds-semantics. Formalizations may to some extent be said to "create" 

concepts, in the sense of making them more definite, and this can often be 
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done in different ways. This is not to say that any way of doing so is as 

good as any other. There are positive criteria that a formalization has to 

satisfy in order to be a good formalization. To these criteria we now turn. 

2.2. Proving Truths and Refuting Falsehoods 

One requirement that a formalization has to satisfy in order to be a good 
formalization is that the formal theory has to prove (representations of) 
truths about the informal notion and refute (representations of) falsehoods 

about the informal notion. To the extent that the formal theory succeeds in 

doing this, the claim that the formalization is a good one receives confirma 

tion. It would be a difficult task to formulate a quantitative theory about the 

degree of confirmation (or disconfirmation) that a formalization receives 

in this way. But this is a problem that is not particular to the measurement 

of goodness of formalizations, it is a problem of confirmation theory in 

general. 
In order to find out whether the theory, formulated in the formal lan 

guage, proves only truths of the concepts and principles to be formalized, 
the 'received wisdom' concerning the informal concepts or principles must 

be consulted. If there is a concensus about the truth (falsehood) of certain 

properties of the concept or principle to be formalized, then an adequate 
formalization ought to respect this - or there have to be very good reasons 

to believe that the literature on the subject is simply mistaken. It may also 

happen that the formalization claims certain properties or principles about 

the concepts over which there is disagreement in the literature. That can 

be reason for concern. For if the intended semantics of the formal system 
does not make it clear why these principles have to be taken to be true, then 

this is reason to suspect that the formalization does more than describe 

the "core meaning" of the concepts involved. On the other hand, if the 

formalization does explain why these controversial principles have to be 

taken to be true, more power to the formalization! And there is always 
the further possibility, alluded to earlier, that the process of formalization 

reveals that where there seemed to be only one concept there really were 

two, so that what appeared to be controversy over a property of one concept 
is dissolved by pointing out that the concept is ambiguous: on one definite 

way of reading the ambiguous notion it indeed has the property in question, 
whereas on the other way of reading it it hasn't. 

2.3. Extending Expressive Power 

Suppose that the formalization only proves recognized truths, and only re 

futes recognized falsehoods. Then this is by no means sufficient to say that 

the formalization is a good one. It may just be due to a lack of expressive 
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power that the formalization does not prove certain falsehoods: evidence 

may be 'hidden' because of lack of expressive power.4 So, ideally, one 

ought to attempt to analyze all concepts as far as possible, write down all 

axioms about them which can be seen to be valid, relate (in the axioms) 
the concepts to as many other concepts as possible. And in the highly 

expressive formal language which one thus obtains, one should see if the 

formal theory does not prove falsehoods or dubious statements. 

This process of extending the expressive power of a formal system is 

potentially endless, and there is a legitimate question how far it should be 

taken. The answer to this question depends on the situation. First of all, 
there is Kreisel's law of diminishing returns (see Kreisel 1987). At some 

point in this process, the formal theories will become so complex that they 
are difficult to handle, without giving interesting new results in return. In 

such situations it is pointless to go further in the direction of increasing 

expressive power. Second, sometimes there are good reasons not to take 

a certain step which would increase expressive power, namely when one 

does not have a good idea how the resulting formal theory and its semantics 

should look. An illustration of this is when one resists treating necessity as 

a predicate because it would bring in the paradoxes and we do not have a 

reasonably satisfactory theory of them.5 

2.4. Theoretical Virtues 

The foregoing conditions are still not sufficient to speak of a good for 

malization. For consider the following situation. The aim is to formalize 

a certain concept, and principles involving that concept. So a new symbol 
is chosen, and it is specified that it ought to be interpreted as the concept 
in question. All established truths about the concept are translated, using 
this new symbol, in first-order logic (or second-order logic, or whatever), 
in the way that it is taught in elementary logic courses. And if there is 

reason to believe that the concept consists of component concepts, then 

one introduces symbols to represent them, stipulates that they have to stand 

for the component concepts, and so on. 

Such a formalization would be considered uninteresting. The reason 

is that the formalization does not tell us anything that we did not al 

ready know before: it does not meet the epistemological requirement that 

was formulated in Section 2.1. A formalization can only satisfy this re 

quirement if it relates the concept in question to other concepts, and to 

background theories concerning those other concepts. As a theory concern 

ing the informal concept to be formalized, it has to satisfy the same sorts 

of normative conditions (which in the philosophy of science are called the 

oretical virtues) which empirical theories have to satisfy:6 it has to clarify 



6 LEON HORSTEN 

conceptual relations that were not explicitly known before the formaliza 

tion took place; it has to disambiguate confusions in the literature, it has 

to unify theories which were previously thought to be unrelated, it has to 

make distinctions that had not been made before, it has to explain certain 

facts that were in need of explanation_ 
This explains why it is often more fruitful to try to approximate a con 

cept indirectly, using concepts that we have a better grip on, than to capture 
it explicitly. Take for instance the formalization of the theory of effectively 

computable functions on the natural numbers in the theory of recursive 

functions. Another possibility would have been to introduce a new symbol 
for the notion of 'algorithm', and then to formulate, using this new symbol, 
all the properties of algorithms one can think of. The road that was actu 

ally followed turned out to be more fruitful. The theory of algorithmically 

computable functions that was actually constructed in the 30's relates the 

notion of algorithm to other notions (such as the concept of definability), 

explicates the boundaries of the class of algorithmically computable func 

tions, distinguishes important subclasses of the class of algorithmically 

computable functions (e.g., the subclass of primitive recursive functions), 
and so on. 

These remarks (especially those of Sections 2.3 and 2.4) show that the 

goodness of formalizations is a matter of degree: there are bad and ex 

cellent formalizations, and there is usually a whole spectrum in between. 

Evaluating a formalization is in most cases a question of weighing positive 
and negative aspects. Let us now apply these observations to the case of 

epistemic formalizations of mathematical practice. 

3. FIRST APPLICATION: FORMALIZING CONSTRUCTIVISTIC 

MATHEMATICS 

Stewart Shapiro has proposed a formal theory in which both construc 

tive and nonconstructive aspects of arithmetic can be expressed. The 

main purpose of his theory is to "integrate" classical and intuitionistic 

arithmetic. 

He attempts to accomplish this by adding an epistemic operator (K) 
to the formal language of first-order arithmetic. S4 deduction principles 

(without the B arcan formula) are formulated for K: 

(1) K(A) -> A 

(2) K(A) -> K(K(A)) 

(3) K(A) -> (K(A 
- 

B) -> K(B)) 



IN DEFENSE OF EPISTEMIC ARITHMETIC 7 

(4) From A, infer to K{A). 

The theory that results from adding these to the axioms of first-order Peano 

arithmetic is called "Epistemic Arithmetic" (EA). The epistemic operator 
of EA is to be interpreted as: it is ideally\ or potentially know able that 

(Shapiro 1985b, 25). Principles (l)-(4) are easily seen to be intuitively 
valid for this interpretation of K as 'absolute provability'. 

Shapiro then constructs a translation V from formulas of the language 
of Heyting arithmetic (HA) to the language of EA (Shapiro 1985b, 25). If 
we agree to indicate by means of a subscript / that a formula belongs to 

the language of HA, then we can describe this translation V as follows: 

(1) for atomic formulas: 

V(Ai) = KAt 

(2) for complex formulas: 

V(AAB)i = K(V(Ai))AK(V(Bi)) 

V(A v B)i = K(V(At)) v K(V(Bi)) 

V(A -? B)i = K{K{V{Ai)) -> K(V(Bi)) 

V(A ?* B)i = K{K{V{Ai)) +> K{V(Bi))) 

V(-A),- = K(-*K(V(Ai))) 

V(WxA(x))i = K(VxV(A(x)i)) 

V(3xA(x))i = 3xK(V(A(x)i)) 

This translation is intended to bring about the integration of classical 

and intuitionistic arithmetic. In fact, Shapiro argues, EA is able to express 
forms of partial constructivity (of which examples can be found in mathe 

matical practice) that can be expressed neither in HA nor in classical Peano 

arithmetic (PA). For instance, take a statement which says that if an x with 

property A can be effectively found, then there must be a y (which perhaps 
cannot be effectively found) which has property B. This statement cannot 

be formalized PA, since its antecedent contains a constructive existential 

quantifier. And it cannot be formalized in HA, because its consequent 
contains a classical existential quantifier. Yet in EA it can be expressed 
as: 3jc?:(A(jc)) 

- 
3yB(y)J 
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Nicolas Goodman has shown that the translation V is faithful (Good 
man 1984), in the sense that: 

For every formula A? of the language of HA: 

hiA At O hEA V(Ai). 

This theorem says that an intuitionistic arithmetical sentence is provable in 

HA if and only if its translation is provable in EA.8 Goodman's proof of the 

faithfulness of V was later substantially improved upon by Robert Flagg 
and Harvey Friedman, who have developed a very elegant and flexible 

method for obtaining faithfulness theorems for EA and related systems 

(Flagg and Friedman 1986b). 
An intended interpretation of a formal system is an interpretation that 

respects all the restrictions on the meaning of the formal system, even 

those which are not expressed in the language of the formal system. Many 

people believe that PA, e.g., has exactly one intended interpretation: the 

natural number structure. The intended interpretation of EA is like the 

intended interpretation of PA, except that there now also is the operator 

K, which is to be interpreted as absolute provability. It is a controversial 

matter whether there is exactly one intended interpretation of HA: many 
constructivistic logicians feel that there is a rich variety of interpretations 
of intuitionistic logic and arithmetic, none of which can claim superior 

ity over all other interpretations.9 In any case, even if there is a unique 
intended interpretation of HA, Goodman's faithfulness theorem does not 

guarantee that the intended interpretation of an intuitionistic sentence 

A coincides with the intended interpretation of its epistemic translation 

V(A).10 Consider for instance the so-called negative translations from 

classical to intuitionistic languages.11 Even though there are faithfulness 

theorems for these translations, I am aware of no logician who claims that 

they are meaning-preserving. 
There are two objections that can be made to the claim that V is 

meaning-preserving, to which we will now turn. The first of these is not 

persuasive. But the second one is, and this is explicitly acknowledged by 

Shapiro. So Shapiro does not claim that V is meaning-preserving. 

First, if we look at the clauses of Heyting's proof interpretation, we see 

that they do not contain an overt modal component: instead of "it is prov 
able in principle that", these clauses contain occurrences of "I have a proof 
that".12 But here it seems that to the extent that they do not contain a modal 

component, Heyting's proof conditions fail to be faithful to the meanings 
of the intuitionistic connectives, at least as they are understood nowadays, 
rather than there being a semantic deficiency in Shapiro's translation func 

tions. Dummett for instance argues that the meanings of the intuitionistic 
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connectives implicitly contain a modal component (see Dummett 1982, 

118-19). 
A more telling objection to the thesis that V is meaning-preserving 

arises when we look at Heyting's clause for the intuitionistic implication.13 
This clause says (roughly): "I have a proof of A -> B iff I have a method 

which, given a proof of A, produces a proof of 5". Shapiro admits that 

the notion of "transformations of proofs" is not captured by V, and cannot 

be captured in the language of EA (Shapiro 1985b, 25). This observation 

also seems to be behind Smorynski's objection against V to the effect that 

it "does not capture the full flavor of talk about methods" (Smorynski 

1991, 1497). On the strength of this observation, he then passes a harsh 

judgement on epistemic mathematics: 

The justification of the study of "epistemic mathematics" as a joint codification of classical 

and intuitionistic mathematics is really nothing more than a pretense, a lip-service rather 

than a genuine 
- or even plausible 

- 
explanation. What one has emerges as an exercise 

in formalism - a nice system in which two initially incompatible formal systems can be 

both formally (and faithfully) interpreted. Just as institutions take on a lift of their own, so 

too do formal systems in logic. One forgets that formal systems are simply codifications 

of some portion of mathematical practice and begins to identify them with that practice. 

(Smorynski 1991, 1497)14 

But this does not follow from the fact (which I think should simply be 

conceded) that V is not completely meaning-preserving. Granting that V 

does not succeed in exactly expressing the meanings of the intuitionistic 

connectives and statements, one could argue that this translation comes 

more or less close to doing this. And even if it does not even come close 

it is possible that the proposed formalization of intuitionistic arithmetic 

fulfills the requirements for being a good formalization that were laid down 

in Section 2. We will now investigate to what extent that is so. 

It should be emphasized that the question of the existence of faith 

fulness theorems is relevant to the evaluation of Shapiro's formalization 

proposal. HA is a representation of the 'received wisdom' concerning the 

informal concept of constructive arithmetical provability. It is the common 

core of all (or at least most) constructivistic schools. Goodman's faithful 

ness theorem guarantees that EA confirms all (translations of) statements 

which are recognized to be true in HA, refutes all (translations of) state 

ments which are recognized to be false by HA, and remains neutral on the 

(translations of) statements on which HA remains neutral. 

But, as noted in Section 2.3, this is not nearly enough. If the epistemic 

approach is to give us a decent theory of the constructivistic enterprise, 
then we need faithfulness theorems also for stronger systems and more 

expressive languages. Some work has been done in this direction. Good 

man's theorem has been extended to higher-order arithmetic (Flagg 1986a) 
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and to set theory. There are a few faithfulness theorems for translations to 

epistemic systems of constructivistic systems containing principles about 

the so-called 'lawlike universe', such as intuitionistic versions of Church's 

thesis or Markov's principle (Horsten 1997). But many questions remain 

open. For instance, there exists at present no formalization in epistemic 
arithmetic of the intuitionistic theory of lawless sequences. In short, it 

would have to be established that all (or at least most) constructivistic theo 

ries can be faithfully translated into the epistemic framework.15 Otherwise 

there remains a suspicion that the faithfulness theorems are due only to an 

artificial restriction of the expressive power of the languages in question. 
In sum, so far the faithfulness theorem has proved to be reasonably sta 

ble under extension of expressive power and under strengthenings of the 

systems involved.16 But it remains to be seen whether this continues to be 

so. 

But we want more than just faithfulness theorems. Aside from the truths 

that are recognized by formal systems of constructivistic arithmetic, there 

are truths about constructive provability that are not recognized by these 

systems. Ideally, we want the epistemic formalizations to respect all in 

formal established truths about constructivistic truth. With respect to this 

requirement, Shapiro notes (Shapiro 1985b, 23-5) that the clauses of the 

definition of V closely resemble Heyting's explication of the meaning 
of the intuitionistic connectives in terms of proof conditions, which was 

constructed by him in tempore non suspectu, i.e., before variants of the 

translation V were first constructed by G?del.17 And here the situation is 

very different from the situation concerning the negative translations from 

classical to constructivistic systems. Reading the clauses of such transla 

tions as "giving the content of the classical connectives" (or coming close 

to doing that) amounts (very roughly) to the doctrine that what it means for 

a classical sentence to be true is that it is provably irrefutable (or, a little 

more precisely, that any proof of its falsehood can be transformed into a 

proof of an absurdity). But that explication of classical truth is considered 

by most classical logicians and mathematicians to be highly controversial 

at best. 

In Section 2 it was claimed that formalizations are theories. Interest 

ing formalizations have theoretical virtues, much like interesting empirical 
theories do. To conclude this section, let us then look at the theoretical 

virtues that epistemic formalizations of arithmetic have or lack. 

First of all, it seems fair to say that the epistemic framework has uni 

fying power. Epistemic arithmetic "integrates" classical and intuitionistic 

arithmetic (Flagg 1986a). 
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Secondly, the epistemic approach allows us to explicate distinctions 

which could not be formally expressed before. We have mentioned that in 

epistemic languages it is possible to express forms of partial constructivity, 
which cannot be expressed in the language of Peano arithmetic, nor in the 

language of Heyting arithmetic (Shapiro 1985a, 2; Shapiro 1985b, 40). 

Thirdly, it seems that epistemic formalizations can play a role in the 

unraveling of certain confusions in the literature. The following is an ex 

ample of this. Consider the following argument by Alan Hazen against the 

meaning-preservingness of V: 

Shapiro and Goodman are interested solely in recapturing within a classical context the 

distinctions intuitionistic mathematics makes; they are not sympathetic to the critical and 

anti-realist side of intuitionism as a philosophy of mathematics. It would be nice, however, 

if a technical explanation could give at least some suggestion of this side of things, if only 
to help understand why intuitionistic mathematics (including logic) should be thought of 
as congenial to intuitionistic philosophy. (Hazen 1990, 186) 

More specifically, what he takes to be the trouble with Shapiro's epistemic 

system of arithmetic is this: 

Shapiro and Goodman have, between them, shown that a sentence of first-order arithmetic 

is a theorem of Heyting Arithmetic if and only if its translation is a theorem of the modal 

system [i.e., EA]. A non-realist interpretation of the modal system is not possible, however, 

since the (non-modal) sentences saying, e.g., that the natural numbers are strictly linearly 
ordered by greater than and that for every natural number there is a greater, are provable: 

any model for the system must have an infinite domain ... (Hazen 1990, 188) 

But it is not clear what is objectionable about this. Since Shapiro and 

Goodman give a translation of the language of HA in a classical system 

of arithmetic,1* the theory in which HA is interpreted will assert the exis 

tence of an infinite structure. The intuitionist will believe only the provable 
sentences of EA which are translations of sentences of HA. And from the 

translations of the axioms of HA, using only translations of intuitionistic 

rules of inference, no actual infinity will be provable to exist. And in this 

sense, the translation V does appreciate the anti-realist side of intuitionism. 

But perhaps there is a more serious problem for Shapiro's translation V 

that Hazen's objection points to. Take the epistemic translation of the intu 

itionistic successor postulate: KVx3yK(y 
= 

s(x)). Since the operator K 

is governed by the S4 rules, it seems that it follows by classical (epistemic) 

logic alone that Vx3y(y 
= s(x)): in particular, we need two instances of 

the axiom K(A) -> A. Perhaps this should not be so: the intuitionistic 

successor postulate is usually taken to assert only the potential existence 

of a successor for each number; pure logic alone does not have the power 
of making mere potentialities actual! 

To show that even this objection is not convincing, let us consider the 

finer analysis of the absolute provability operator that was carried out in 
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Horsten (1994). In EA the sentential Operator K is a primitive or unana 

lyzed Operator. But the notion of provability in principle seems to contain 

both a modal component (provability) and an epistemic component (math 
ematical proof). Therefore it seems useful to attempt to construct a formal 

system in which Shapiro's operator K is regarded as a complex operator 

OP, where O is the familiar modal operator, and the operator P should be 

read as "some (not further specified) mathematician has a proof that... ". 

Some of the logical properties which Shapiro postulates for the notion of 

absolute provability (i.e., the axioms of S4) can then be derived from more 

basic logical properties of the notion of possibility and (having a) proof. 
This results in a modal-epistemic formalization of arithmetic, called 

MEA. The language of MEA contains a modal operator (O) and an 

epistemic operator (P), and the symbols of the first-order language of 

arithmetic. The system MEA is based on a standard formalization of clas 

sical first-order logic. The modal operator of MEA is governed by the S5 

axioms, plus the (platonistic) principle: 

(M) O A -> A for all sentences not containing any occurrences of 

O or P. 

The intended domain of MEA is the natural number structure. The prin 

ciple M asserts that all arithmetical truths are necessarily true, and all 

arithmetical falsehoods are necessarily false. 

MEA has the following two epistemic axioms: 

(PI) PA-> A 

(P2) PA->PPA,19 

and the following two modal-epistemic principles: 

(ME1) From A, infer OPA 

(ME2) (OPA A OP(A -> B)) -> OPB. 

As arithmetical axioms, we have as before the Peano axioms for elemen 

tary arithmetic. Again, arguments can be given to the effect that these 

principles are sound for the intended interpretation of MEA. 

Then a translation V* from the language of HA to the language of 

MEA is constructed which is just like V, except that all occurrences of 

K in y-translations of formulas are replaced by OP. It is shown that 

V* is also a faithful translation (Horsten 1994, 287). But more impor 
tant for our present purposes is the following. First, one can prove a 
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lemma which shows that for each formula A in which P only occurs 

when it is immediately preceded by an occurrence of O (such formulas 

are called OP-formulas), MEA proves O A -> A. Subsequently it can 

be shown that MEA proves OPA ?> A for all OP-formulas A (Horsten 

1994, 287).20 Since the complex operator OP can be taken as a gloss of 

Shapiro's absolute provability operator K, this principle is the counterpart 
of the principle KA -? A ("if a sentence is provable, then it is true"), 
which was used essentially in the supposedly objectionable deduction of 

Vx3y(y 
= s(x)) from KVx3yK(y 

= s(x)). The principle M is used 

essentially in the derivation in MEA of OPA -? A for OP -formulas A. 

Although M may very well be a true axiom (if a certain form of platonism 

concerning mathematical objects is true), it is not a logical truth. Therefore 

truths of the form OPA ? A are in general not logical truths. And this 

implies that the principle KA -> A is, on closer inspection, not a truth of 

epistemic logic. 
So the situation is as follows. On the one hand, it seems unreasonable 

to impose as a condition on formalizations of intuitionistic arithmetic that 

they use a theory that postulates no actual infinity as their background 

theory 
- 

just as it would be unreasonable to require that they use in 

their background theory only intuitionistic logic. On the other hand, we 

have found that the existence of a platonistic number structure can only 
be derived from constructivistic assumptions if certain platonistic princi 

ples are used in the process ("Platonism In, Platonism Out").21 In sum, 

then, I am unable to discover any for our purposes significant sense in 

which epistemic languages fail to respect the anti-realist motivations of 

intuitionism. 

4. SECOND APPLICATION: EXPRESSING CHURCH'S THESIS 

Church's Thesis (CT) is often expressed (somewhat loosely) as: "Every 

computable function is recursive".22 It is well-known that in Peano arith 

metic it is not possible to express CT. The consequent of CT can be 

expressed, using Kleene's P-predicate and U function symbol.23 But its 

antecedent contains the "informal" notion of an algorithm, and this cannot 

be expressed in the language of Peano arithmetic.24 One could attempt to 

introduce new primitives in the language to talk directly about algorithms, 
write down basic axioms concerning them, and attempt to prove CT from 

these axioms (Shapiro 1981, 384).25 But it appears that this proposal has 

so far not been worked out. 

It seems that epistemic arithmetical languages can do somewhat better. 

Several principles which seem to somehow approximate CT have been 
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proposed in the literature on epistemic arithmetic. I will now investigate 
these proposed formalizations, and argue that they are defective. But I am 

not ready to admit that this is due to an inherent impossibility of EA to 

give a good formalization of CT, although it does underscore the need for a 

more explicit semantics of EA (especially of the higher-order version of it) 
than has been given until now. I will propose a new putative formalization 

of CT, and argue that it is not vulnerable to the charges that I bring against 
the other candidates. 

4.1. First-Order Formalizations of Church's Thesis 

Let us start by making a few simplifying assumptions, to be relaxed later 

on. We consider CT for total functions, denoted as CTr. And to avoid 

for the time being quantification over functions, we content ourselves with 

approximating CTT by means of a first-order epistemic schema rather than 

by means of a second-order epistemic sentence. 

Now given that we can express "0(x, y) expresses a total recursive 

function" already in the language of Peano arithmetic in terms of the U 

function symbol and the T-predicate, John Myhill proposes the following 
formalization of CTr (Myhill 1985, 47): 

(M) Vx3yK(j)(x, y) -+ 3eix3y((?)(x, U(y)) A T(e, x, y)) 

Very roughly, (M) says that if for every x, it is possible to find a y which 

can be shown to stand in the relation 0 to x, then 0 determines a total 

recursive function. 

The first thing to notice is that the number y associated with any given 
number x ought to be unique (an algorithm yields a unique output value 

for each input value), otherwise (M) asserts something that is not implied 
in CTj. But this is easily fixed. One way in which it can be done is the 

following: 

(MO "0 determines a function" -> 

[Wx3yK(/)(x, y) -> 3eVx3y((/)(x, U(y)) A T(e, x, y))] 

There are strong reasons for doubting that the principle (M7) comes 

close to capturing the content of CT7. Take a nonrecursive total function 

i//(x, y), the halting function, say. It may well be that the following is 

the case: for every m, there is an n such that \//(m, n) can be proved; but 

this infinite collection of proofs cannot be "compressed" into one single 

algorithm. If such is the case, then the antecedent of (M') is true, whereas 

its consequent is false. For this to be a proof that (M;) is false it has to be 

shown that for every m, there is an n such that \?r(m,n) can be proved. It is 
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needless to say that I have no such proof to offer. But the situation I have 

sketched just now is not intended to be excluded by CTr. Myhill himself, 
in an earlier publication, said as much. If we take 0(jc, 1) to be true if x 

is the G?del number of a first-order logical validity, and 0(jc, 0) to be true 

for all other x, then Church's theorem, combined with the contraposition 
of (MO gives us 3xiy-^K(j)(x, y), i.e., there is a sentence of which it is 

absolutely undecidable whether it is valid. To this, Myhill replies: 

But there seems to be no reason to suppose that any particular problem in the theory of 

propositional functions will prove especially refractory, just as from each man's disability 
to see all women we could not infer that any one woman would be invisible to all men. 

"There is no technique that will test all (such) arguments" is true, while there is no special 
reason to suppose that there are (such) arguments that no techniques will test (even if that 

means anything). (Myhill 1952, 171). 

Let us then turn to a variant of a formalization of CTT that is discussed 

by Robert Flagg (Flagg 1985, 166):26 

(FI) "0 determines a function" -> 

[KVx3yK<t>(x, y) -> 3eWx3y((/>(x, U(y)) A T(e, x, y))] 

This principle differs from (MO only in that it has KWx3yK(/)(x, y) where 

(MO has Vx3yK(p(x, y). In other words, the antecedent now says that 

there is a single proof which demonstrates that for each x, there is a y 
which can be shown to stand in the relation 0 to x. It may be Flagg's 
intention to thereby exclude counterexamples of the kind that we have 

raised in response to Myhill's proposal. But (Fl) only succeeds in doing 
this if the absolute proof witnessing the initial occurrence of the provabil 

ity operator of KVx3yK(j)(x, y) somehow guarantees the existence of an 

algorithm computing 0. Perhaps the underlying philosophical thesis is that 

this absolute proof somehow gives an algorithm for computing 0. In other 

words: 

THESIS 1. The only way in which a statement of the form Vx3yK(/)(x, y) 
can be proved is by giving an algorithm for computing 0. 

It is not at all obvious that this thesis is true. One might wonder, e.g., 
whether there are statements of the form Vx3yK())(x, y) for which a proof 

by reductio ad absurdum can be found, but which do not admit of a con 

structive proof. Nevertheless, it seems very difficult to envisage a concrete 

candidate for such a counterexample. 
But even if Thesis 1 is true, there is a strong reason for doubting that 

(Fl) succeeds in capturing the content of CTr. We have noted earlier that 

sometimes CTY is taken as having the structure of a biconditional. And 
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even when CTj is formalized as a conditional statement, it is commonly 
assumed that the converse of this statement is true (Mendelson 1990, 228). 
But the converse of (Fl) seems implausible. Suppose that there is an ab 

solutely undecidable arithmetical sentence cp (i.e., an arithmetical cp such 

that ?*K<p and -*K-*(p). Then define a function 0 in the following way: 

For every x: 

9(x, 1) if cp\ 

0(jc,O)if-??>; 

->0(x, y) for all numbers y which are not identical to 1 or 0. 

9 denotes a recursive function; yet Wx3yK(/)(x, y) is false. Again, for this 

to be a refutation of the converse of (Fl), it has to be proved that there are 

absolutely undecidable arithmetical sentences. And there is no consensus 

about whether there are absolutely undecidable sentences, or even about 

whether the notion of absolute provability is sufficiently determinate for 

this question to have a determinate answer. Nonetheless, in the absence of a 

convincing argument that there are no such sentences, the converse of (Fl) 
is doubtful. And if the converse of CTT is "obviously true" (Mendelson 

1990, 232), then one should be wary about the claim that (Fl) comes close 

to capturing the content of CT7. 

4.2. Higher-Order Formalizations of Church's Thesis 

There are better epistemic candidates for a formalization of CTT. But 

these are essentially higher-order principles. So we have to look at higher 
order epistemic formalizations of epistemic arithmetic. In particular, I will 

briefly describe Flagg's system of epistemic type theory (see Flagg 1986a), 
and investigate the possibility of expressing Church's thesis in the (more 

expressive) language of this system. 

Flagg's system is based on a typed language. There are two basic 

types: N (the type of the natural numbers, which are the ground objects), 
and Q (the type of the formulas of the language). Furthermore, there are 

two operations for forming complex types out of simple ones: a product 

forming type operation (x) and a powerset-forming type operation (P). 
These operations are used, in the familiar way, to form complex types 
out of simple ones. Corresponding to this, the language of Flagg's system 
contains unique names for the numbers (obtained from 0 and the successor 

symbol s), variables of all types, a pairing symbol, an abstraction operator, 
an epsilon sign (e), and of course the absolute provability operator K. 
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Flagg's system then contains the usual rules and axioms of classical higher 
order logic27 (with the unrestricted comprehension axiom), the standard 

second-order formulation of the axioms of Peano Arithmetic, and the S4 

axioms governing the absolute provability operator. In sum, Flagg's system 
is almost exactly like EA, except that it is a higher-order system. 

Flagg is not very explicit about the intended interpretations of his 

system.28 In particular, it is not immediately obvious how the quantifiers 
should be interpreted.29 Nevertheless, the following is a sketch of a consis 

tent interpretation of Flagg's system. Quantifiers range over mathematical 

objects, given under a presentation. Or, equivalently, one can think of the 

quantifiers as ranging over ordered pairs of mathematical objects and pre 
sentations. Shapiro suggests that in general a presentation can be taken 

to be an interpreted linguistic expression (Shapiro 1985b, section 7). Cer 

tainly this is the most natural construal but there seems to be no compelling 
reason for such a restriction. I want to be as liberal as possible about what is 

allowed to count as a presentation of a mathematical object. Even the graph 
of a total function, for instance, is allowed to count as a presentation.30 But 

even the idealized mathematician is finite. If there are infinite presentations 

(such as the graph of a total function), the mathematician can only have 

finite access to them: she cannot have an entire graph of a total function 

before her consciousness at once. There is just one restriction that I do 

impose on what is allowed to count as a possible presentation:31 the first 
order variables range over the numbers, given in a canonical way (by 
a finite number of successor symbols prefixed to 0, say). So one cannot 

always substitute coextensive higher-order presentations for each other in 

epistemic contexts salva veritate - for first-order presentations there is no 

such problem. As an illustration of this, suppose one presents a function 

as "the function which is the constant /-function if Goldbach's conjecture 
is true, and the constant 0-function otherwise". If Goldbach's conjecture is 

true, then this presentation is coextensive with "the constant /-function". 

But if Goldbach's conjecture is in addition absolutely unprovable, then it 

cannot always be substituted salva veritate for "the constant /-function" 

in the context of the absolute provability operator. In sum, in extensional 

contexts the associated presentations do no real work, but in intensional 

contexts it can make all the difference in the world how a mathematical 

object is presented. 
These remarks determine an interpretation of the formulas of the 

language of Flagg's system. As an example, consider the expression 

3fKVx(f(x) 
= x), where / is a function variable. This expression is to 

be read as: there is a function, given under a certain presentation, such that 

it is provable of that function, under that presentation, that it is the identity 
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function. This way of reading higher-order formulas of Flagg's system can 

be straightforwardly extended to arbitrary arity and to arbitrary order. And 

it can be argued (although I will not do so here) that Flagg's system is 

sound for this interpretation. I realize that all this is still rather vague. To 

make it precise, a theory of presentations of mathematical objects would 

have to be constructed.32 But for present purposes, this will have to suffice 

by way of description of the suggested interpretation of Flagg's system. 
Given that we can express the notion of a total recursive function in 

the language of epistemic type theory, a variant of Flagg's second-order 

formulation of CIV can be formulated as follows:33 

(F2) Wvp^NxN) ("v determines a function" -> {KWxN3yNK({x, y) 

eii)-> "u expresses a total recursive function"}) 

The superscripts in this formula indicate to which type the variables in 

question belong. Roughly, (F2) can then be read as follows: If you can 

prove of a function /, given under a certain presentation (Q), that for every 
x, there is a y such that it can be shown that Q(x, y), then / is a total 

recursive function. 

Now the same objection that was made against (Fl) can be made against 

(F2): not all instances of the converse of (F2) are obviously true. Never 

theless, we will show how we can modify (F2) so that the converses of its 

instances are all obviously true. Let us first focus on CT for partial recur 

sive functions (CT/>). The analogue of (F2) for partial recursive functions 

is: 

(F2P) WvP{NxN) ("v determines a function" -> {KVxN(3yN((x, y) e 

v) -? 3yNK({x, y) e v)) -> "u expresses a partial recursive 

function"}) 

Again, not all instances of the converse of (F2P) are obviously true. But 

this is now easily remedied. Consider the following proposed formalization 

ofCTp: 

(CTP) VvPiNxN) ("v determines a function" -> {3wp(NxN)[VzNxN(z 
G v <* z e w) A KWxN(3yN((x, y) e w)-> 3yNK((x, y) e 

w))] -> "u expresses a partial recursive function"}) 

If we now replace the main occurrence of '-> 
' 

in the consequent of (CTP) 

by a reversed implication '<-', the result still is clearly true. So we might 
as well replace this nested occurrence of '->' by a biconditional. The re 

sulting principle would then say, roughly, that the class of partial recursive 

functions is identical with the class of partial functions having a relatively 
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accessible presentation, viz., they each have a presentation w such that 

KVxN(3yN((x, y) ew)-+ 3yNK((x, y) e w)). Obvious candidates for 

such accessible presentations would be codes of suitable Turing machines. 

Along the lines of (CTP) it is also possible to formalize CTT: 

(CTT) VvP(NxN) ("v determines a total function" -> 

{3wP{NxN)[VzNxN(z e v <+ z e w) a KVxN(3yN((x, y) e 

w) -* 3yNK({x, y) e w))] -> "v expresses a total recursive 

function"}) 

Here again, if we reverse the nested implication, the result is clearly true. 

Note that the following formalization proposal for CIV, which is closer 

in spirit to Flagg's (F2), is deficient:34 

(CTT*)VvP{NxN) ("v determines a function" -> {3wp(NxN)[VzNxN(z 
e v o z w) A KVxN3yNK((x, y) e w)] -> "v expresses a 

total recursive function"}) 

The reason is that the converse of (CTT*) is (again) not obviously true. 

For all we can tell, there may be total recursive functions v of which there 

exists no sufficiently accessible presentation w such that it is knowable of 

w that the recursive function it expresses is total. This is the reason why the 

antecedent of (CTT) does not entail that it is knowable that w determines 

a total function. 

Finally, there remains the analogue of the objection that was raised by 

Smorynski against the epistemic translations of constructivistic implica 
tions and quantifiers: "To say that a function is computable is to say that 

there exists an algorithm that computes it; algorithms are methods or sets 

of instructions; and epistemic languages 'do not capture the full flavor of 

talk about methods' ". Again, I think that this simply has to be conceded. 

Therefore even (CTP) and (CTT) do not capture the exact meaning of 

CTp, and CTT, respectively. But if a formalization need not aim at being 

meaning-preserving (see Section 2.1), then the fact that (CTP) and (CTT) 
are not meaning-preserving is not in itself cause for concern. 

The philosophical thesis behind the formalizations (CTP) and (CTT) is 
the following analogue of Thesis 1 of Section 4.1 : 

THESIS 2. The only way in which a statement of the form VxN(3yN((x, 

y) e w) -> 3yNK((x, y) e w)) can be proved is by giving an algorithm 
for computing w 

If Thesis 2 is true, then CTp is true if and only if (CTP) is true and CTr is 
true if and only if (CTT) is true. So whether Thesis 2 is true seems to be an 
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interesting question. And if it could be established that CTP is true if and 

only if (CTP) is true and CIV is true if and only if (CTT) is true, then this 
would be an advance in our overall theory of Church's Thesis. 

With respect to the question whether the formalization proposals of CT 

that we have reviewed satisfy the criteria of Sections 2.2 and 2.3, few solid 

results are known. Flagg proved that a variant of (Fl) is consistent with 

EA (Flagg, 1985),35 and he proved a variant of (F2) to be consistent with 

his epistemic type theory. But one wants to know much more. For instance, 
are (Fl), (F2) conservative over intuitionistic arithmetic (intuitionistic type 

theory) under the translation V, or even over classical arithmetic (classical 

type theory)? With respect to the requirements of Section 2.4, it seems that 

epistemic formalizations of CT fare relatively well. They relate notions 

that were previously not clearly perceived as related (namely the concept 
of algorithm and the concept of absolute provability). And they are of 

relevance to the philosophical literature on CT. To conclude this section, I 

now argue for this latter claim. 

4.3. Shapiro on Church's Thesis 

Let us turn briefly to Shapiro's views on Church's Thesis (see Shapiro 

1980; Shapiro 1985b, 41-3). Shapiro seems to believe that CT cannot be 

directly captured in terms of the absolute provability operator. CT concerns 

the notion of computability: a function is computable if there exists an 

algorithm that computes it. So computability is objective, extensional, and 

does "not involve reference to a knowing subject" (Shapiro 1985b, 41). But 

closely related to the notion of computability there is a pragmatic notion, 
which Shapiro calls calculability (or "effectiveness", in the terminology of 

Shapiro, 1980). Calculability is a property of presentations of algorithms: 
a function presentation F is calculable if there is an algorithm P such that 

it can be established that F represents P (Shapiro 1985b, 43). Shapiro 

suggests that his theory of epistemic arithmetic can be used to shed light 
on this latter notion. 

It will be clear from the foregoing that whereas I agree with Shapiro 
that computability is extensional and objective, I do think that the notion of 

computability involves reference to a knowing subject (since the notion of 

an algorithm does: an algorithm is a method that can be used by humans). 
And I do not believe it to be a foregone conclusion that CT (as opposed 
to its pragmatic counterpart) cannot be formalized using the notion of 

absolute provability. 



IN DEFENSE OF EPISTEMIC ARITHMETIC 21 

5. CONCLUDING REMARKS 

Our overall judgement about the success of attempts to formalize in Epis 
temic Arithmetic parts of informal mathematics (in particular constructive 

provability and algorithmic computability) must be a balanced one. 

The weakest aspect of Epistemic Arithmetic as a whole is the lack of 

an illuminating and precise model-theoretic semantics for epistemic sys 

tems, especially for higher-order epistemic theories.36 In particular, what 

is needed is an explicit theory of presentations of mathematical objects. 
With respect to faithfulness to the 'received wisdom', in the case of the 

formalizations of constructive provability it remains to be shown that con 

structivistic theories that extend Heyting Arithmetic (be it in the 'lawlike' 

direction or in the 'lawless' direction) can also be modeled in a natural 

way in classical Epistemic Arithmetic (to a large extent, the proof of the 

epistemic program is in the eating). In the case of the formalizations of 

CT, we have barely scratched the surface with respect to the conditions of 

Sections 1.2 and 1.3. On the positive side, the epistemic languages have so 

far withstood challenges to the claim that they verify only (representations 

of) truths and falsify only (representations of) falsehoods. In the case of the 

formalization of CT, it took some work to see how this can be done. We 

had to concede that Myhill and Flagg's epistemic formalizations of CT are 

defective. But it was also shown that variants of Flagg's proposals can be 

constructed which are immune against the criticism that was raised against 
the former formalization proposals. 

Moreover, at present there seem to be no convincing philosophical 

arguments for the thesis that the program of trying to find epistemic 

representations of constructive provability and of Church's Thesis is 

doomed to failure. Smorynski's argument is unconvincing because 

it imposes an unreasonable requirement on the formalizations 

in question. The epistemic program would indeed be hopeless if 

epistemic formalizations of constructive provability and of algorithmic 

computability would have to be meaning-preserving. But, granting 
that the proposed formalizations are not meaning-preserving, it can be 

maintained that they do give us interesting analyses or theories about 

the concepts in question. And that is all that we should require from 

a formalization anyway. Hazen's objection that epistemic arithmetic 

does not respect the anti-realist motivation of constructivistic logic and 

mathematics was shown to be unconvincing using a finer analysis of 

the concept of provability in principle. The formalization proposals 
of CT that were reviewed in this paper challenge Shapiro's thesis 

that the notion of computability does not involve reference to a knowing 
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subject.37 In any case, his thesis does not follow from the objectivity and 

the extensionality of the notion of computability. 

NOTES 

* 
I am indebted to Tony Anderson for suggestions for improvement and for valuable 

and pleasant discussions on the subject matter of this paper. Comments by Igor Douven, 

Herman Roelants, John Burgess, Tony Martin and an anonymous referee also lead to 

significant improvements. The research for this paper was financially supported by the 

Flemish Fund for Scientific Research, which is gratefully acknowledged. 

There may be more concepts of which interesting formalizations can be given in 

epistemic languages, e.g., epistemic notions of randomness. 
2 I draw much of my inspiration here from (Anderson 1993), to which the reader is 
referred for further discussion and argumentation. 
3 I am indebted to Igor Douven for this point. 
4 

As an example, consider the familiar propositional modal logics. Quine has argued that 

the notion of necessity is philosophically unsound, and that therefore no 'good' formaliza 

tion of the notion of necessity can exist. However, he believes that the problematic aspects 

of the notion of necessity only come to the surface when we consider quantified modal 

logic. So in his view, most of the problems related to modal logic remain hidden if we only 

consider the propositional logic of necessity. 
5 

This is the justification that was given by Richard Montague for representing necessity 

by means of a propositional operator, rather than by means of a predicate that takes names 

of sentences as arguments. For a discussion of these matters, see (Montague 1963). 
6 

Concerning the difference between analyses (of which formalizations form a particular 

case) and empirical theories, see (Anderson 1993, Section 5). 
7 

There is a question whether epistemic arithmetic allows the expression of all forms of 

partial constructivity (see Lifschitz 1985; and Horsten 1993). 
8 

The only-if-direction of the theorem is straightforward; the if-direction is nontrivial. 
9 See for instance (Troelstra and van Dalen 1988b, 839). 
10 This was emphasized by Alan Hazen (Hazen 1990, 179). 
1 

For a discussion of negative translations and accompanying faithfulness theorems, see 

(Troelstra and van Dalen 1988a). 
12 See for example (Heyting 1930). 
13 

Something analogous can be said for the clause for the intuitionistic universal quantifier. 
14 The last sentence of the quote by Smorynski, by the way, is less applicable to Shapiro 
than to Smorynski, who seems to have missed the philosophical point of EA. Smorynski 

thinks that Shapiro is arguing for the replacement of classical and intuitionistic languages 

by epistemic languages, and claims that this will never happen (Smorynski 1991, 1496 

1497). But surely Shapiro is not arguing for this (admittedly unreasonable) thesis. The 

point is simply this. Intuitionistic mathematics is a part of mathematics which is under 

standable for the classical mathematician. A formalization of mathematics which wants to 

be encompassing has to be able to account for this fact. The conjecture of Shapiro is that 

classical mathematicians, when they learn the meanings of the intuitionistic connectives, 

or do intuitionistic mathematics, implicitly use an "absolute" notion of provability, and a 

translation function which resembles V. Hence he incorporates these in his formalization. 
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15 
Also, one wants more information about the stability of the faithfulness theorems under 

relatively small modifications of the modal logic on which the epistemic formal systems 
are based. 
16 To some extent negative translations from classical to constructivistic languages also 

pass this test. Nevertheless, negative translations do not work well when one wants to 

translate theories about lawless sequences to a classical context. 
17 

There is a dispute in the literature about whether the logical connectives that occur 

in Heyting's explication of the meaning of the logical connectives can be taken to be 

constructive (see Hellman, 1989). 
18 

One could attempt to explicate the proof-conditions of HA in an intuitionistic theory, but 

this is another matter, and it is not what Hazen has in mind, since his favorite interpretation 
is an interpretation in a classical theory too. 
9 In Horsten (1994) I consider the possibility that the principle P2 should be weakened to 

PA-> OPPA. 

?The reason for the restriction to OP-formulas is (roughly) that one needs to exclude 

the cases where A is of the form PB for some B. The sentence <C>PP(5 + 7 = 
12)-> 

P(5 + 7 = 
12), for instance, makes an inadmissible inference from what is proved in some 

possible world to what is proved in the actual world. Even though OPP(5 + 7 = 12) is 

arguably logically valid (and provable in MEA), it is not logically valid that anything has 
been proved in the actual world. 
21 In Horsten (1994) it is also shown how V can be quite naturally modified into 
a translation from intuitionistic arithmetic to a formalization of Geoffrey Hellman's 

modal-structural interpretation of arithmetic, which is also anti-realist in spirit. 
22 

Sometimes it is also expressed as having the structure of a biconditional: "The class of 

computable functions coincides with the class of recursive functions". 
23 Kleene's T-predicate is true of a triple (e,x,y)if and only if e is the code of a Turing 

machine which, when started on an input with value x, yields a computation which is coded 

as the number y. U(y) is the number which is the output of the computation with code y. 

In the language of constructivistic arithmetic we can come closer to expressing CT (see 

Troelstra and van Dalen 1988a, chapter 4). But even there one cannot quite express it, 

because CT has the form of a classical implication. 
25 This possibility was apparently suggested by Harvey Friedman (Shapiro 1981, 364, 
footnote 3). 
26 

Flagg's actual formalization of CT^ is: 

(Fr) KVx3yK(p(x, y) -? "there Turing machine of which it can be proved that it 

computes 0" 

I have emphasized earlier the need to restrict the principle to functions. It is puzzling why 

Flagg takes the consequent of CT^ to be an epistemic sentence. Perhaps it is related to 

Shapiro's pragmatic version of CTj (cf. Section 4.3 below). 
27 The principle of substitution of identicals has to be restricted somewhat, but we can 

ignore this complication for our present purposes. 

This is to be deplored. We have emphasized in Section 2 the need for explicitation of 
the intended models of the epistemic systems that have been proposed in the literature. 
29 

Shapiro discusses the difficulties involved in higher-order quantification in epistemic 
contexts (Shapiro 1985b, Section 7). These difficulties are not confined to epistemic math 

ematics; one runs into the same problems when one sets out to do set-theoretical quantified 

provability logic (see Boolos, 1993, 226). 
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30 This guarantees that every function has a presentation, and that if / is a function variable 

formulas of the form V/<p quantify over all functions. 
31 

And some such restriction has to be made for the interpretation to be sound for Flagg's 

system. 
32 

The need for such a theory also becomes pressing when one attempts to construct a 

theory of highly intensional constructivistic objects such as lawless sequences. 
33 

Here I make similar modifications to Flagg's actual proposal as I have made in my 

statement of Flagg's first-order proposal. 
34 

This was pointed out to me by Tony Martin. 
35 This proof was subsequently simplified by Goodman (1986). 
36 

The situation here resembles that of modal logic during the 50's. There are all these sys 

tems, but in the absence of a clear and unifying semantic framework there is the suspicion 

(that was voiced, in the case of modal logic, most strongly by Quine) that we really don't 

know what we are talking about. I am indebted to Tony Anderson for this observation. 
37 

But of course, in line with what was said in Section 2.1, I do not want to exclude the 

possibility that another good formalization of CT might be proposed which makes no 

reference at all to a knowing subject. 
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