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LEON HORSTEN 

PROVABILITY IN PRINCIPLE AND CONTROVERSIAL 
CONSTRUCTIVISTIC PRINCIPLES 

ABSTRACT. New epistemic principles are formulated in the language of Shapiro's sys- 
tem of Epistemic Arithmetic. It is argued that some plausibility can be attributed to 
these principles. The relations between these principles and variants of controversial 
constructivistic principles are investigated. Special attention is given to variants of the 
intuitionistic version of Church's thesis and to variants of Markov's principle. 

1. INTRODUCTION 

There has been a long discussion among constructivistic mathematicians 
about the acceptability of certain "controversial" constructivistic state- 
ments. Among these are Markov's principle, constructivistic variants of 
Church's thesis, and choice principles of various sorts. It seems that the 
debate will not soon come to an end. 

Extending a construction of G6del, Shapiro has formulated a system of 
Epistemic Arithmetic (EA).' EA is a formalization of arithmetic which 
contains axioms governing the notion of absolute knowability or abso- 
lute provability. Heyting Arithmetic (HA) can be faithfully translated 
into EA by means of an extension of Gidel's translation of intuitionistic 
propositional logic to modal logic. It seems to Shapiro that his trans- 
lation comes close to being meaning-preserving, and this leads him to 
claim that EA "integrates classical and intuitionistic arithmetic". Rough- 
ly, EA can be seen as expressing the theory of a classical mathematician 
who understands constructivistic arithmetic under something like G6del's 
translation. 

The present paper is an attempt to look at some of the controversial 
principles of constructivistic arithmetic from the framework of EA. Bor- 
rowing an expression of Kreisel, we can say that we perform an exercise 
of informal rigour.2 Although the term "informal rigour" was first used 
by Kreisel, it undoubtedly has its roots in the writings of Giodel. In [14], 
Godel emphasizes the open-endedness of current axiom systems: new 
axioms might be discovered by reflecting on the meaning of the basic 
concepts of a discipline ([14, pp. 260-261]). This method was used to 
formulate new putative axioms for constructivistic mathematical theories 
by Kreisel, Myhill, Troelstra and others.3 Kreisel tried to reflect on the 

Journal of Philosophical Logic 26: 635-660, 1997. 
c 1997 Kluwer Academic Publishers. Printed in the Netherlands. 



636 LEON HORSTEN 

notion of constructive proof, add notation concerning this notion to the 
language of constructive mathematics, and add new axioms concerning 
this notion to traditional constructive systems. But he is sceptical about 
the outcome of this program ("nothing rewarding has come of this" [21, 
p. 81]). We want to suggest that our chances of success are somewhat 
higher if we reflect on the informal notion of classical provability, in a 
classical context. 

We prove logical properties of (and relations between) variants of 
these controversial principles on the assumption of certain epistemic 
principles that are expressible in the language of EA, but not in the 
language of HA. It is suggested that these epistemic principles have 
an epistemological status similar to that of the controversial construc- 
tivistic principles. In other words, we claim some degree of plausibility 
for them. We look for extrinsic support for them in their consequences 
in the domain of constructive arithmetic. But we also claim a reason- 
able degree of intrinsic plausibility for them. One could even imagine 
a classical mathematician arguing that the intuitive support attaching to 
certain controversial constructivistic principles derives from the plausi- 
bility of nonconstructive epistemic principles from which they can be 
derived (in EA). In this scenario, the conflicting intuitions dividing con- 
structivists over the acceptability of certain constructivistic principles are 
ultimately intuitions about nonconstructive statements. 

The scope of the paper is modest. On a technical level, we restrict 
our attention to problematic constructivistic principles that have been 
proposed in the course of the investigation of the lawlike intuitionistic 
arithmetical universe (and the lawlike continuum). In particular, we are 
interested in intuitionistic versions of Church's thesis and in versions 
of Markov's principle. Since controversial principles of the lawlike uni- 
verse can usually be given a first-order expression, we restrict our discus- 
sion to first-order theories. Many controversial constructivistic principles 
have been proposed in the investigation of the intuitionistic continuum 
enriched with lawless objects (such as choice sequences). These princi- 
ples can only be given a higher-order or set-theoretic formulation, and 
are outside the scope of this paper.4 On a conceptual level, we have no 
illusion that all the epistemic principles that we propose "force them- 
selves upon us as being true" ([14, p. 268]). We do hope that they are 
no more dubious than the variants of the controversial constructivistic 
statements to which we relate them. 

The paper is organized in the following way. In the next section we 
briefly revisit the theory EA. Subsequently we formulate in the language 
of EA schematic epistemic principles for which we claim a reasonable 



PROVABILITY IN PRINCIPLE 637 

degree of plausibility (Section 3). We want to proceed carefully. There- 
fore we first formulate principles with parameters ranging over the lan- 
guage of Peano Arithmetic (Section 3.1). Then we investigate to which 
extent these schemes can be strengthened by allowing their parameters to 
range over the full language of EA (Section 3.2). In the main section of 
the paper (Section 4), the logical relations between these epistemic prin- 
ciples and versions of familiar constructivistic principles are described. 
From an epistemic principle of Section 3.1 and an intuitionistic version of 
Church's thesis we derive Markov's principle. From the same epistemic 
principle and an epistemic generalization of the intuitionistic version 
of Church's thesis we derive an epistemic generalization of Markov's 
principle. And from an epistemic principle of Section 3.2 we derive a 
generalization to the language of EA of a theorem of HA. For most 
of the extensions of EA that are discussed in this paper we also prove 
faithfulness theorems, to ensure that they do not prove sentences that 
are not merely controversial but outright false. In Section 5 it is shown 
that most of these extensions of EA have a version of the disjunction 
property and of the numerical existence property. We conclude the paper 
with some philosophical remarks and directions for further research. 

2. EPISTEMIC ARITHMETIC 

2.1. The Language of EA 

The language of EA (cEA) contains all the symbols of the formal lan- 
guage of classical first-order arithmetic (cPA), where we take -*, , 3 
and = as primitives, plus an epistemic sentential operator K. So the only 
nonlogical symbols are the individual constant 0, a one-place function 
symbol s (the successor function), and the two-place function symbols - 
and x. The identity predicate (-) is taken as a logical constant. We also 
assume that the language contains names for all total recursive functions. 

Terms, formulas and sentences of the language of EA (cEA) are 
defined in the usual manner. Expressions of IEA which contain no occur- 
rences of K are called arithmetical expressions. When we speak about 
sentences which (perhaps) do contain occurrences of K, we call them 
epistemic expressions. 

The intended interpretation of the sentential operator K is described 
in the literature as "is absolutely knowable", or "is provable in prin- 
ciple". These notions are notoriously vague, and we do not pretend to 
resolve this vagueness. Nevertheless, for the purposes of this paper we 
have to be a little more precise. First, we prefer to think of the intended 
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interpretation of K as "provability in principle" rather than as "abso- 
lute knowability", because we want only sentences that are the result of 
nonempirical arguments in the extension of K.5 These arguments are 
logical derivations from a priori principles (which may be synthetic, like 
the induction axiom, or somehow analytic, like "provability in principle 
entails truth"). This is not very precise, as long as it is not indicated 
what the necessary and sufficient conditions are for something to count 
as an a priori principle. In this paper, this vagueness is not removed. 
Second, the sort of idealization that we are intending is provability by 
a finite mathematician (finite memory, finite degree of complexity of 
calculations she can carry out, finite number of computations per time 
interval, . . .), where there are not intended to be fixed bounds on the 

capacities of this mathematician. The suggestion is that a sentence KA 
is true on the intended interpretation iff there might have been a math- 
ematician ("finite, but potentially unbounded") who has a proof(in the 
sense outlined above) of A. Again, this is only a partial characterization 
of the notion of provability in principle. A more detailed characterization 
goes beyond the scope of this paper. 

2.2. The Theory EA 

The theory EA contains the Peano axioms for elementary arithmetic 
(as defined in [2, p. 182]), with its recursive axioms for addition and 
multiplication. We define EA as the smallest theory which contains these 
axioms, in which the absolute provability operator K is governed by the 
(Barcan-free) S4 axioms and rules, and which is closed under (classical) 
first-order logic. We will assume that this theory is given a Hilbert-style 
formalization, with Modus Ponens and the Necessitation Rule ("from A, 
infer KA") as only rules of inference. To be a little more precise, we let 
the predicate logical basis be as in [24, p. 165] (except that we rewrite 
the axioms governing V in the obvious way in terms of 

- 
and 3), and 

let the modal axiom schemes be KA - A, KA -- KKA, KA 
(K(A -~ B) -+ KB). 

Let HA stand for the usual formalization of first-order Heyting Arith- 
metic, and let IHA be the language of this theory. 

Shapiro then inductively defines a translation V: HA EA. Indi- 
cating by means of a subscript i ("intuitionistic") that a formula belongs 
to cHA, we can express this definition as follows: 

DEFINITION 1 (the translation V). 
* For atomic formulas: 

V(Ai) = KA, 
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Sfor complex formulas: 

V(A A B)> = K(V(Ai)) A K(V(Bi)) 

V(A V B)i = K(V(Ai)) V K(V(Bi)) 

V(A -* B)i = K(K(V(Ai)) -~ K(V(Bi))) 

V(A - 

B)i = K(K(V(Ai)) 
*- K(V(Bi))) 

V(--A)i 
= K(-K(V(Ai))) 

V(VxzA(x))i = KVxV(A(x))i 

V(3zA(x))i = 3xKV(A(x))i 

The fact that this definition of the translation V closely mirrors Heyt- 
ing's proof interpretation of the intuitionistic logical connectives is the 
strongest confirmation of the thesis that the meanings of the intuition- 
istic arithmetical sentences can at least in part be expressed in cEA. 
But a necessary condition for having any confidence in this thesis is the 
existence of a faithfulness theorem for V: 

THEOREM 1 (Shapiro, Goodman, Mints). For al A1,..., An, A E cHA: 

A1,..., An -HA A V(AI),..., V(An7) F-EA V(A). 

Proof [34, 26, 15] o 

By far the most elegant proof of this theorem was given by Flagg and 
Friedman ([8]). 

Shapiro showed that EA has the disjunction property and the numer- 
ical existence property: ([34, pp. 17-19]): 

THEOREM 2 (disjunction property). For all A E 
L-EA, 

if HEA KA V 
KB, then either F-EA KA or F-EA KB. 

THEOREM 3 (numerical existence property). For all A E cEA, if t-EA 

3xKA(x), then -EA KA(n) for some natural number n. 

3. EPISTEMIC PRINCIPLES 

Shapiro argued that the S4 principles are sound for the interpretation 
of K as provability in principle.6 On the other hand, it is easy to see 
that axioms that are in some sense much stronger than S4 (such as 
the S5 scheme OOA --, OA, or the S4.2 scheme OOA -c OOLA) are 
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unsound for the intended interpretation of K. But the question whether 
there exist nevertheless epistemic principles which are independent of EA, 
but sound for the intended interpretation of cEA, has not been given seri- 
ous consideration. In this section some candidates for such principles are 
proposed. We will do our best to motivate them as well as possible. 
But it must be stressed that since they are to be taken as putative basic 
principles, the force of these motivations will be limited. 

The natural inclination is to look straight-away for principles with 
schematic letters ranging over cEA. But since the exact mathematical 
content of such principles is often hard to judge (due to the expressive 
power of LEA), we will be more cautious. First epistemic principles 
about sentences of LPA are formulated. Subsequently we investigate to 
what extent these principles can be generalized to epistemic principles 
about sentences of cEA. 

3.1. Epistemic Principles about Arithmetical Sentences 

Let & stand for a finite sequence of variables, and let Q5c stand for a 
finite string of quantifiers (the variable of the ith quantifier being the ith 
variable of the string i). Then the strongest epistemic axiom concerning 
arithmetical sentences that we propose is the following: 

AXIOM 1 (S). For all Al(i),... An(F),A(c) E cPA: 

KQc(-nKAI(Q) A... A -, KAn(Z)) 

-- 
QMiK(-AI(c) 

A 
... 

A -An(Z)). 

Its motivation is the main concern of this section. 
On an abstract level, it is motivated by the following (strong) thesis: 

THESIS 1 (superthesis). The negative epistemic properties that can 
be established of arithmetical sentences supervene on the nonepistemic 
properties that can be established of them. 

This thesis can be seen as a closure principle, somewhat analogous to 
the reflexivity principle KA -+ A. The problem with the superthesis is 
that it is very abstract and somewhat vague, and that its motivation is not 
clear. But the underlying idea is this. Suppose we have an arithmetical 
sentence A. Then there are epistemic properties that can be established 
of A and that are not dependent on nonepistemic properties that can be 
established of A. For instance, we can prove K(KA -* A) purely on 
the basis of epistemic logic, even if A is neither provable nor refutable 
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in principle. The claim of Thesis 1 is that this is not so for negative 
epistemic properties of A, such as 

--KA. 
To prove -KA, one would have 

to in one way or another, refute A. Now it is not clear from Thesis 1 how 
this class of negative epistemic properties is to be characterized, whether 
in these negative epistemic properties iterations of K are allowed to 
occur, and exactly on which establishable nonepistemic properties these 
establishable epistemic properties of A supervene. Axiom S is a way of 
(partially) answering these questions, and thereby of giving content to 
Thesis 1. 

Let us illustrate this on the basis of a special case (it is not hard to see 
how this illustration generalizes to all instances of axiom S). Suppose 
that the antecedent of an instance of axiom S, with Qc = Vx3y, and 
i = 2 holds. Then an epistemic property of Al (x, y), A2(x, y) can be 
established, namely: 

Vx3y(-KA (x, y) A -KA2(x, y)). 

Since -KA1 (x, y) and 
--KA2(x, y) are negative epistemic properties 

of A (x, y), A2(x, y), respectively, -KAI(x, y) A KA2(x, y) is also a 
negative epistemic property, and presumably so is Vxz3y(-KAl (x, y) A 
-KA2(x, y)). Thesis 1 says that in such a situation, nonepistemic prop- 
erties of the arithmetical sentences Al (x,y), A2(x,y) must be prov- 
able in principle. But this is exactly what axiom S entails: for every 
natural number a, there is a natural number b such that -Al (a, b) A 
-A2(a, b) can be established. In this sense, the provability in princi- 
ple of Vx3y(-KAl (x, y) A -KA2(x, y)) supervenes on the fact that for 
every natural number a, there is a natural number b such that -A1 (a, b) A 
-A2 (ga, b) is provable in principle.7 

We produce additional motivation for S, and for the thesis that moti- 
vates it, in an indirect way. We look at some consequences of S, and try 
to give a more precise motivation for them (this more precise motiva- 
tion is intended also to provide support for the superthesis). Of course, 
having "nice" consequences is no guarantee for the validity of an axiom. 
So we also look at consistency and faithfulness properties of S. First 
of all, it seems that the principle ought to be consistent with EA. It is 
easily seen that S satisfies this requirement. For if we had a proof of I 
(falsum) in EA + S, then deleting all occurrences of K would result in a 
proof of I in PA. Another question is whether the new principle allows 
one to prove, in the context of EA, translations in EA of constructivis- 
tic sentences that one cannot prove in EA alone. If the answer to this 
question would be affirmative, then there are two possibilities. Either 
these "new" constructivistic theorems are sound, or they are (obviously 
or not so obviously) unsound. In the former case it is likely that they 
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have already come up in the literature about constructivistic mathematics. 
In the latter case the new epistemic principle should be rejected. If the 
answer to the question of conservativeness over HA is affirmative, then 
this is an indication that the principle may be not too strong. But it is 
not a guarantee: the principle may have undesirable consequences about 
epistemic sentences that are not translations of constructivistic sentences. 
Later in this section we show that the principle S, when added to EA, 
does not allow us to derive new constructivistic statements (even though 
in the context of constructivistic versions of Church's thesis, it does). 

Let us first turn to consequences of S. A principle that is weaker than 
S says that the only way that a sentence of cPA can be shown to be 
unprovable in principle is by refuting it. Its content can be approximated 
in LEA by the following axiom: 

AXIOM 2 (T). For all A E IPA: K-KA - K-A. 

It is easily seen that T can be proved in EA + S. 
T is motivated by the following considerations. If one were to reject T, 

it would have to be either on empirical grounds, or on the basis of a 
nonempirical argument.8 On the empirical side, the only relevant consid- 
erations would have to be finiteness considerations (time may be finite, 
our memory may be finite, there may be an upper limit on the com- 
plexity of the problems we can solve, ...), or knowledge of the future 

development of the universe (we might know that within a few decades 
all people will forever lose all interest in mathematical problems). But 
these considerations are made irrelevant by the aspect of absoluteness 
of the intended interpretation of K (see Section 2.1). So the reasons for 
rejecting T would have to be of a nonempirical nature. Then the claim 
made by T is that only an essentially mathematical argument is available 
to us to show that an arithmetical sentence A is absolutely unprovable. 
Namely, one would have to refute A, and then using some epistemic 
principles of EA to arrive at K-KA. One might worry that there are 
essentially epistemic arguments (not involving a mathematical refutation 
of A) showing that A is absolutely unprovable, based on sound and 
somehow very basic principles concerning K itself. In reply we might 
challenge the objector to produce these principles and the accompanying 
derivation of the counterexample, and we might feel that the content of 
the principle T is so clear that such a counterexample cannot be derived 
from sound principles. Nevertheless, one can never remove the worry 
completely. The best we can do is probably to prove faithfulness prop- 
erties. 
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A thesis that is weaker still can be expressed as follows: granting that 
there may very well be arithmetical sentences that are undecidable in 
principle, one cannot prove of a given sentence that it is undecidable in 
principle. 

In cEA, this thesis can be expressed as: 

AXIOM 3 (MPA). For all A E cPA: A -K-A). 

MPA is a version of McKinsey's axiom D1QA -~ OOA (the only dif- 
ference being that MpA's schematic letter is allowed to range only over 
nonmodal sentences), and is easily seen to be derivable from T. 

There is an interesting variant of MPA: 

AXIOM 4 (M/A). For all A(x) E LPA: -K32x(-KA(x)A-K-A(x)). 

MIA is stronger than MPA, and cannot be derived from T (although it 
is easily seen to be derivable from S). To a large extent, our motivation 
for T may be repeated at this point to argue for the plausibility of MIA. 
Except that we need the additional claim that the only way to show 

3x(-KA(x) A -K-A(x)) for some A E cPA is to establish an instance 
of it (i.e. that no reductio proof can be given). I do not know how to 
motivate this claim any further. It expresses an aspect of S (and of the 
superthesis that motivates it) of which I am less confident than of what 
is contained in T. 

We will now show that the principle S does not allow us to derive 
new constructivistic statements. We do this by transforming theorems of 
EA + S into theorems of EA by a translation p that leaves translations 
of constructivistic sentences in cEA unchanged. p is defined as 7((), 
where 7 and ( are the following translations: 

DEFINITION 2 (the translation 7). 

* For atomic formulas: 

7(A) = A, 

* for complex formulas: 
1. if * E {A, V, --, H}: 

7(A * B) = 7(A) * (B), 

2. if o E {-} U {( I is a variable} U {V(~ is a variable}: 

7(oA) = o7(A), 
3. if A = KB: 
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(a) if B = -Ci 
A. 

- A-Cn or B = -KCI 
A. " 

A KCn for some 
n E w, with C1,..., Cn E 

-PA: 
T(KB) = (K-C1 A KKC) A 

... 

A(K-Cn A K-KC,), 

(b) otherwise: 

r(KB) = Kr(B). 

Let QK (F) be the result of prefixing each quantifier in the string Q(5) 
with an occurrence of K. Then the translation ( is defined as follows: 

DEFINITION 3 (the translation (). 
. For atomic formulas: 

((A) = A, 
* for complex formulas: 

1. if E {A, V, , t+}: 

C(A B) = ((A) * ((B), 

2. if o E {-, K} U {31( is a variable} U {V(~C I is a variable}: 
(a) if A = Q()cp, where cp = -KCI A ... A -KCn for some 

nE w , C1, . .. Cn E PA: 

((A) = QK(c)Kp, 

(b) otherwise: 

((oA) = o (A). 

Now let T+ be the following scheme: 

K(-KA1 A 
... 

A -'KAn) 
K( AI A 

- A An E 

Using these definitions, we can prove a couple of statements that will 
lead us to our theorem. We will not give their proofs in full, since they 
are straightforward but tedious. 

LEMMA 1. For all A E EA: EA + S - A = EA + T+ - ((A). 
Proof Induction on the length of proofs in EA + S. t 

To prove the next lemma, we need a simple proposition: 

PROPOSITION 1. For all A E LEA: EA - KT(A) = EA H 7(KA). 
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Proof Induction on the complexity of A. 

Using this proposition, we establish: 

LEMMA 2. For all A E LEA: EA + T+ - A =~ EA FT- (A). 
Proof Induction on the length of proofs in EA + T+. E 

Combining the two lemmas, we are done: 

THEOREM 4. For all A E LHA: EA + S H V(A) = EA H V(A). 
Proof From the two lemmas, and the fact that p leaves all sentences 

of the form V(A) unchanged, . 

We have tried in this section to argue for the plausibility of S. In part S is 
supported by a general thesis (the superthesis), in part it is supported by 
consistency and faithfulness properties, and by some of its consequences 
(see Section 4). If the reader remains in spite of this unconvinced of the 
soundness of S, she may still feel that one or more of its consequences 

(MpA, MPA, T), of which the content is somewhat clearer, are correct. 

3.2. Epistemic Principles about Epistemic Sentences 

We will now investigate to what extent the schematic axioms of the 
previous section can be generalized to range over all epistemic sentences. 

Let us call these generalized principles SEA, TEA, M, M+. At first 
blush, they appear to be quite natural generalizations of their restricted 
counterparts. But a simple argument shows that if we add TEA as an 
extra axiom to EA (call the resulting system EAT) then the epistemic 
operator K collapses:9 

PROPOSITION 2 (Fitch, Schumm). FEAT A 
-- 

KA. 

Proof Suppose K(AA-KA). Then KA and K-KA, so KAAK-A, 
which entails a contradiction. Therefore we have -K(A A -KA) as a 
theorem of EAT, whence also K-K(A A -KA) (by the necessitation 
rule for K). We can reformulate this as K-Ki(A -* KA). So by TEA 
and the reflexivity axiom, we obtain A - KA. o 

Let us pause for a moment to look at this proposition and its proof. The 
argument produces a sentence of 

-EA 
of which it is possible to show 

that it is absolutely irrefutable without actually proving it, which explains 
why our motivation for T cannot be repeated here. The proof is not of 
an arithmetical nature, it consists in a manipulation of the epistemic 
principles of EA. And the derived consequence of taking TEA as an 
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extra axiom is clearly unacceptable. So TEA, and hence also SEA, are 
not viable as axiom candidates. 

Note that the argument of Proposition 2 cannot be strengthened to a 
proof of TEA HEA A - KA. In the argument, the necessitation rule 
for K is applied to a formula which is itself obtained by an application 
of TEA. This is possible only because TEA is a theorem of EAT. Nev- 
ertheless, it is easy to see that for all A E cHA: TEA F-EA V(-,-A) -- 
V(Ai). In other words, from TEA we can derive the translation of the 
intuitionistic reading of the law of excluded third. This surely makes TEA 
(and a fortiori SEA) suspect even as a hypothesis.1l 

What then are we to say about M and M+? We maintain that some 
plausibility can be attributed to these principles, although the support 
that we adduce for them is somewhat weaker than that for T. 

Let us begin by looking at M and M+ from a conceptual point of 
view. The argument about TEA shows that the fact that they appear to be 
natural generalizations of MpA and M+A can be very misleading. But 
this is not all that we can say. If we let -i be the translation of the intu- 
itionistic negation in LEA (i.e., -iA =def K-KA), then the scheme M is 
equivalent to the scheme -iA - -iA. 

Shapiro regards this as a "plau- 
sible statement of consistency between the classical and the intuitionistic 
negation", but hastens to add that nevertheless the precise mathematical 
content of M is not easy to determine ([35]). Most significantly, perhaps, 
we will show in the next section that EA + M+ proves a very natural 
generalization of a theorem of HA, which apparently cannot be derived 
in EA alone. This adds to the plausibility of M+ (and hence also of M). 
Altogether, however, this conceptual support is somewhat indirect, and 
we will have to rely more than before on faithfulness properties. 

Using the same trick as before, we easily show that M and M+ are 
consistent with EA. It is a little more difficult to show that they cannot 
be used to prove constructivistic statements that cannot be proved in 
EA alone. 

LEMMA 3. For all AE LEA: EA + M - V(A) = EA - V(A). 
Proof This can be shown using the method of [8]. Inspection of their 

proof makes it clear that it suffices to show that the reverse translation 
(see [8, p. 56]) of the instances of M can be derived in HA. This property 
can be verified to hold. o 

DEFINITION 4 (the translation 4). Let r be the translation which trans- 
forms any sentence of the form 

~K321(~KA(z) -, K~A(z)) 
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into 

~32K~(~KA(z) -, K~A(z)), 

and leaves all other sentences unaffected. 

Using this shallow translation we prove the following theorem: 

THEOREM 5. For all A E cHA: EA + M+ 
- 

V(A) EA - V(A). 
Proof By induction on the length of proofs in EA + M+ it is shown 

that 
- 
translates theorems of EA + M+ into theorems of EA + M. Then 

the result follows from the observation that c leaves V-images unchanged 
and the previous lemma. o 

Pankrat'ev claims that even when we extend EA with the Grz scheme 

K(K(A KA) A) -+ A, 

no new translations of constructivistic statements can be proved [29]." 
This suggests that we investigate the plausibility of the Grz axiom. But 
since I find it hard to obtain intuitions concerning this scheme, I prefer 
to defer judgement. 

There may exist mutually incompatible principles such that when 
one of them is added to EA, no new constructivistic statements can 
be proved. Given the vagueness surrounding the notion of provability in 
principle, it may in such a case be a complicated matter to judge which 
one of them should be rejected. We may come to the conclusion that 
some such principles just do not have a determinate truth value, because 
the concept of provability in principle in se is not well enough deter- 
mined to decide the matter (as it is argued to be the case with the notion 
of set). Perhaps M+ (or even S) is already in that category. 

In sum, we see that the motivation of generalized versions of the 
principles discussed in the previous section is a much trickier affair. The 
generalized versions of S and T are not viable axiom candidates, and 
the support that we can give for M and M+ is weaker than the support 
for their restricted versions. 

4. CONTROVERSIAL CONSTRUCTIVISTIC PRINCIPLES 

4.1. Markov's Principle and the Intuitionistic Version of Church's 
Thesis 

Markov's principle is usually stated as follows (in cHA): 

(Vx(A(x) V -A(x)) A ---,3xA(x)) -- 
3xA(x). 
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Let us abbreviate this principle as MP. MP is often discussed in the con- 
text of Constructive Recursive Mathematics (the Russian version of con- 
structivism). This constructivistic school identifies proofs with Markov 
algorithms (or Turing machines, we may say). The justification which 
they give for MP is this. If A(x) is constructively decidable, then there 
must be a Turing machine e which decides it. If we also know that there 
can be no proof of -3xA(x), then in particular e cannot be such a proof. 
Hence if we start e on the numbers 0,1,2,..., eventually we find a 
number n for which e tells us that it has the property A(x). 

On Heyting's proof interpretation of the logical connectives, the con- 
tent of MP can be expressed roughly as follows: p is a proof of (an 
instance A(x) of) Markov's principle just in case p is a mathematical 
procedure which successfully converts a proof q that A(x) is intuition- 
istically decidable and that it is impossible for A(x) to hold universally 
into a number p(q)l and a proof p(q)2 such that the latter is a proof 
that A(x) holds of the former. Even though on certain constructive inter- 

pretations of the logical connectives its acceptability is well-known, the 

acceptability of Markov's principle as a general principle of constructive 
arithmetic is notoriously hard to decide [40, p. 204]. 

The following scheme is a simplification of an approximation to the 
translation of MP in cEA: 

AXIOM 5 (MPHA). For all (A(x))i that are translations of sentences 

A(x) E 
L-HA: 

(KVx(K(A(x))i 
V K-K(A(x))i) A K-K-K3x(A(x))i 

Since Markov's principle is independent of HA, we know by Theorem 1 
that MPHA is independent of EA. 

In LEA it is also possible to formulate versions of the axiom scheme 
MPHA in which the schematic formula does not range over V-translations 
of formulas of LHA, but over all arithmetical formulas, or over all for- 
mulas of cEA: 

AXIOM 6 (MPPA). For all A(x) E cPA: 

(KVx(KA(x) V K-KA(z)) A K-K- K3zA(x)) 
-, 3xA(x). 
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AXIOM 7 (MPEA). For all A(x) E LEA: 

(KVx(KA(x) v K-KA(x)) A KK-K3zxA(x)) 
3xA(x). 

Another controversial first-order scheme is the intuitionistic version of 
Church's thesis. If Pe (x) is the formalization in cHA (and therefore also 
in cPA) of the function which computes the output that is generated 
when the Turing machine with gSdel number e is started on a natural 
number z, then this principle can be expressed in LHA as ICT: 

Vx3yA(x, y) -~ 3eVxA(x, pe(x)). 

In LEA, ICT is translated as: 

AXIOM 8 (ICTHA). For all (A(x,y))i that are translations of sen- 
tences A(x, y) E cHA: 

KVxz3yK(A(x, y))i -+ 3eKVx(A(x, ye(x)))j. 

ICT is a strengthening of Church's thesis. Like Church's thesis, it con- 
nects effective methods with Turing machines. But unlike Church's the- 
sis, it does this in the form of a constructive implication. Again, even 
though the soundness of JCT on certain interpretations is well-known, 
its acceptability as a general principle of constructivistic arithmetic is 
controversial. 

We can formulate in LEA a generalization of ICT in which the 
parameter ranges over all formulas of cEA: 

AXIOM 9 (ICTEA). For all A(x,y) E LEA: 

KVx3yKA(x, y) -~ 3eKVxA(x, (e(x)). 

By developing a realizability interpretation for EA (Flagg realizability), 
Flagg has proved the consistency of EA + ICTEA ([7]). A considerably 
simpler proof of the consistency of EA + ICTEA was later found by 
Goodman ([16]). It would be interesting to know whether EA + ICTEA 
is conservative over HA + ICT, i.e. whether for all Ai E cHA, if 
EA + ICTEA H V(Ai), then HA + ICT H Ai. 

4.2. Relations with Epistemic Principles 

We now establish some connections between these variants of construc- 
tivistic principles and the epistemic principles that we discussed earlier. 
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PROPOSITION 3 (Shapiro). For all A(x) E LPA: 

EA - (KVx(KA(x) V K-A(x)) A K3xA(x)) 
- K3cKA(x). 

Proof [33, p. 30 (Theorem 19)]. o 

LEMMA 4. EA + T MPpA. 
Proof An easy derivation shows that MPPA follows in EA+T from 

(KVx(KA(x) V K-A(x)) A K3zA(x)) 
-+ K3xKA(x). 

Hence the desired result follows from Proposition 3. n 

So we have a natural variant of MP, of which there appears to be no 
proof in EA, and which follows from T. 

Using this lemma, we establish a statement linking T to the intuition- 
istic version of Church's thesis and Markov's principle. The proof idea 
behind this statement is the following. Lemma 4 says that in EA we can 
derive MPPA from T. So if we want to derive MPHA, we are done 
if we can reduce its derivability to the derivability of MPPA. This is 
what ICTHA allows us to do. It guarantees the existence of a Turing 
machine 

Soe(x) 
with code e such that we can prove for every transla- 

tion A(x) of an intuitionistic predicate that A(n) 
-. 

pe(n) = 1 and 
-A(x) - cpe,(n) = 0 for all natural numbers n. This means that the 
arithmetical formulas Pe ,(x) = 1, Pe,(x) = 0, can replace the epistemic 
formulas A(x), -A(x), respectively, in the antecedent of MPHA. This 
reduces this antecedent to an antecedent of an instance of MPPA, and 
from there Lemma 4 takes over. Thus we have the following theorem: 

THEOREM 6. EA + T + ICTHA F- MPHA. 
Proof Assume that we have KVx(KA(x) V K-A(x)) and 

K-iK-K3xA(x) for some formula A(x) which is a translation of a 
formula of I-HA. 

A*(x, y) - K[(KA(x) A K(y = 1)) 

V(K-A(x) A K(y = 0))]. 

Clearly A*(x, y) is the translation of an intuitionistic formula, and it can 
be simplified to 

K[(KA(x) A (y = 1)) V (K-A(x) A (y = 0))]. 
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It can easily be shown that the following two statements hold: 

(1) KVx[(KA(x) - A*(x, 1)) A (K-A(x) 
+-, A*(x, 0))], 

(2) KVXz (A*(x, 1) ~ - A* (x, 0)). 

Now suppose KVx(KA(x)V K-A(x)). It follows by (1) that 

KVx3yKA*(x,y). If we then apply ICTHA, it follows that 

KVxzyKA*(x, (Pe(x)) for some Turing machine with Gidel number e. 
From this we can infer by the definition of A*(x, y) that KVxz(KA*(x, I) 
V KA*(x, O)). 
From this, in turn, we obtain 

KVx(K(pe(x) = 1) V = 0)). 

For suppose that KA*(x, 1). Then if 
ce(x) 

$ 1, then either ye(x) = 0 
or Pe(x) > 1, so either A*(x, 0) or A*(x, n) for some n > 1. In the 
former case, we contradict (2); in the latter case we are in conflict with 
the definition of A*(x, y). So we have cPe(x) = 1, and since the premise 
is of the form K /, we obtain K(cpe(x) = 1). Similarly, we can prove 
from the supposition that KA*(x, O) that K(cpe(x) = 0), so we have 
indeed 

KVxz(K(pe(x) 
= 1) V K(Qpe(x) 

= 0)). 

On the other hand, we can prove that 

3xA(x) 3xA*(x, 1) 3x(ce(X))= 1). 

Therefore, 

- e(x)= 1)]. 

So from K-K-'K3xA(x), we may infer 
K-K-K] x((p,(x) = 1). 

From this and 

KVx(K(cpe(x) = 1) V K( pe(x) = 0)), 

we may by Lemma 4 infer to K3xKA(x). o 

COROLLARY 1. For all Ai E cHA: HA + MP + ICT H Ai < 
EA + T -+ ICTHA H V(Ai). 

Proof The =--direction follows from Theorem 6 and the soundness 
direction of Theorem 1. The 

<=-direction 
follows from Theorem 4. o 

Like G6idel's Dialectica Interpretation ([13]), Theorem 6 gives us a way 
to prove MP without having to assume it beforehand. HA + MP + ICT 
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is taken to be a good axiomatization of the first-order theory of arithmetic 
of the Russian constructivistics ([3, pp. 16-17]).12 Therefore EA + T + 
ICTHA can be taken as an interpretation of Russian constructivism. 
Corollary 1 says that when we look at constructivistic sentences, in the 
context of ICT, the principle T proof-theoretically plays the role of MP. 
In other words (and put rather loosely), even though T does not prove 
new constructivistic statements in the context of HA (Theorem 4), it 
does prove new constructivistic statements in the context of HA + ICT. 

Using the same reasoning as in the proof of Theorem 6, MPEA can 
be derived from ICTEA and T: 

THEOREM 7. EA + T + ICTEA H MPEA. 
Proof Similar to the proof of Theorem 6. E 

CONJECTURE 1. For all Ai E cHA: HA + MP + ICT - At 
EA + T + ICTEA H 

V(Ai). 

The left-to-right direction follows from Theorem 7. I do not know how 
to prove the other direction. There is, however, a fairly straightforward 
proof of the weaker statement that EA + T + ICTEA is consistent.13 To 
show this, we first introduce some notation: 

DEFINITION 5 (constructivization of a formula). For any given formu- 
la A E cEA, let A-K be the result of removing all occurrences of K 
from A. Then the constructivization of A (denoted as C(A)) is defined 
as V(A-K). 

By analogy, the constructivization of a proof A1,..., An, A is defined 
as 

c(Al),..., C(A,), C(A). 

PROPOSITION 4. EA + T + ICTEA is consistent. 
Proof Suppose we have a proof in EA + T + ICTEA of 0 -= 1, and 

let HEA be the constructive fragment of EA (i.e. the theory which is 
just like EA except that it lacks the principle of excluded third). Then 
there will be a proof P in HEA + T + ICTEA of 0 = 1 (this can be 
seen by a simple induction on the length of proofs). Now consider the 
constructivization of P. C(P) can be considered as a proof of 0 = 1 
in HA + ICT. But since HA + ICT is consistent, no such proof can 
exist. O 

Note that the same reasoning yields a very simple consistency proof 
for EA + ICTEA. 
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Our last theorem of this section connects M+ with the generalized 
form of MP. By a theorem of Luckhardt, the scheme ---MP (of IHA) 
is provable in HA [23, p. 73]. We can prove a somewhat analogous 
proposition in EA for the stronger scheme MPEA: 

THEOREM 8. EA + M+ H- K-KMPEA. 
Proof Suppose that we have a formula A(x) E cEA such that: 

(3) KVx(KA(x) v K-A(x)) 

(4) K KxK3xA(x) 

(5) K - KA(x) 

Combining (3) and (4), we see that VxK-KA(x). 
We also know that -KqxA(x). For suppose K3xA(x). Then 3xA(x), 
so suppose A(b). Then we have 

-K-,A(b). 
But from (5) we also have 

-KA(b). So we have 

3x(-K- A(x) A -KA(x)). 

Since all premises are of the form K4, we can infer to 

K3x(-K-A(x) A -'KA(x)), 

contradicting M+. 
Furthermore, we have -K-,3xA(x). For suppose K-3xA(x). Then 

K~K~K~3zA(2). 

But from (4) we know that K-K-'K3zA(x). So we have 

K--K-K(3xA(x) A -3xA(x)), 

which is easily refuted. 
So we have 

-K3xA(x) A -iK3xA(x), 

i.e. 3xA(x) is undecidable in principle. Since all the premises are of the 
form Kb, we obtain 

K(K3zA(x) A -K-3xA(x)). 

But this conflicts with M, which is a consequence of M+. 
o 

So even though M+ does not prove new constructivistic statements, it 
does prove a natural generalization of a theorem of HA of which there 
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appears to be no proof in EA alone. We regard this as providing support 
for M+. 

5. THE DISJUNCTION PROPERTY AND THE NUMERICAL EXISTENCE 
PROPERTY 

In [9, pp. 27-28], Flagg lists three conditions that an epistemic frame- 
work F must meet in order to serve as a reasonable synthesis of classical 
and constructive mathematics: the existence of appropriate faithfulness 
theorems, the definability of certain classical and constructive opera- 
tors (in particular: we want a disjunction and an existential quantifier 
which have the disjunction property and the numerical existence prop- 
erty, respectively), and the consistency with F of certain problematic 
principles of intuitionism. We have seen in Sections 3 and 4 that most 
of the systems discussed in this paper have the appropriate faithfulness 
properties. And these systems contain versions of Church's thesis and 
Markov's principle, so they are a fortiori consistent with them. In this 
section we show that they also have the disjunction property and the 
numerical existence property. Therefore we suggest that they give at 
least a partial epistemic synthesis of the lawlike intuitionistic arithmeti- 
cal universe. 

We show that the systems EA + T, EA + S, EA + M+, EA + 
T + ICTHA have the disjunction property and the numerical existence 
property. 

PROPOSITION 5. EA + T has the disjunction property and the numer- 
ical existence property. 

Proof It suffices to show that | K-KA - K-A for all A E LPA, 
where is Shapiro's adaptation of the Kleene slash (see [34, p. 18]). 
Assume I K-KA, i.e. - KA and H-EA+T -KA. Now erasing all K's 
in a proof of EA + T results in a proof of PA. So HPA -A, whereby 
trivially cF-EA -A. But by the soundness of PA, we also have -A true in 
the natural number structure. So by [34, p. 18, Lemma 3], we have I A. 
Therefore we have -EA -A and I -A, i.e. K A. This means that if 
I K-KA, then I K-A, whereby | K-KA - K-A. o 
PROPOSITION 6. EA + S has the disjunction property and the numer- 
ical existence property. 

Proof. Essentially the same as the proof of Proposition 5. o 

PROPOSITION 7. EA+M+ has the disjunction property and the numer- 
ical existence property. 
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Proof. It suffices to show that 
-|K3x(-KA(x)A 

-KA(x)). The 
following equivalences hold: 

I 
cK3x(-KA(x) 

A -KA(x)) a 

not I K3zx(-KA(x) A -KA(x)) + 

/EA+M+ ]x(-KA(x) A -KA(x)) 
or not x 3(-KA(x) A -KA(x)) 

But the first disjunct of this last equivalence has to hold, otherwise EA + 
M+ would be inconsistent. o 

In order to prove that EA + T + ICTHA has the disjunction property 
and the numerical existence property, we have to modify Shapiro's mod- 
ification of the Kleene slash, since | ICTHA fails to hold. We do this by 
(in a way) combining Shapiro's modification of the Kleene slash with 
the ordinary numerical realizability interpretation for HA. 

DEFINITION 6 (modification of Shapiro's variant of the Kleene slash). 

1. If A is atomic, then I|A if and only if EA + T + ICTHA - 
A. 

2. IA A B if and only if IA and lIB. 
3. IA V B if and only if either A V B = V(Ci) for some Ci E LHA 

and EA + T + ICTHA - V(Ci), or: I[A or |IB. 
4. IA 

-- 
B if and only if either: if IA then lIB, or K(A -+ B) = 

V(Ci) 
for some Ci E cHA and EA + T + ICTHA - V(Ci). 

5. IHA if and only if not IA. 
6. IIVxA if and only if IiA(n) for all n E w. 
7. 113xA if and only if either IIA(n) for some n E w, or 3xA = V(Ci) 

for some Ci E cHA and EA + T + ICTHA F- V(Ci). 
8. IIKA if and only if either IA and EA + T + ICTHA H A, or 

KA = V(Ci) for some Ci E cHA and EA + T + ICTHA 
- 

V(Ci). 

LEMMA 5. For all A EcPA, IA if and only if A is true. 
Proof Similar to the proof of [34, p. 18, Lemma 3]. o 

LEMMA 6. For all A E cEA, if EA + T + ICTHA - A, then IA. 
Proof By induction on the length of the proof of A. o 

LEMMA 7. HA + MP + ICT has the disjunction property and the 
numerical existence property. 

Proof [38, p. 179]. o 

THEOREM 9. EA + T + ICTHA has the disjunction property and the 
numerical existence property. 
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Proof. We only verify that the disjunction property holds (the verifi- 
cation of the numerical existence property is similar). 

Suppose EA + T + ICTHA F- KA V KB. By Lemma 6, it follows 
that IIKA V KB. 

1. If KA V KB = V(Ci V Di) for some Ci, Di E iHA, then HA + 
MP + ICT I- Ci V Di by Corollary 1 (the faithfulness theorem for 
EA + T + ICTHA). Therefore by Lemma 7, we have HA + MP + 

ICT - Ci or HA + MP + ICT H Di, whereby EA + T+ICTHA F 
V(Ci) or EA + T + ICTHA H V(Di). 

2. If KA V KB Z V(Ci V Di) for any Ci, Di E cHA, then IIKA or 

IIKB. Suppose IIKA (the other case is similar). Then EA + T + 
ICTHA H A, whereby EA + T + ICTHA H KA. o 

CONJECTURE 2. EA + T + ICTEA has the disjunction property and 
the numerical existence property. 

This statement seems harder to prove. 

6. CONCLUDING PHILOSOPHICAL REMARKS 

Shapiro's theory of Epistemic Arithmetic provides a good framework for 
an investigation into the relations between classical and constructivistic 
arithmetic. This is so even if the translation V does not preserve the 
exact meaning of the constructivistic statements.14 For it does seem to 
be the case that when classical mathematicians "learn" the meanings 
of the constructivistic connectives, or do constructivistic mathematics, 
they implicitly use an "absolute" notion of provability (as [11] suggests) 
and a translation function that resembles V. The claim of this paper is 
that logical principles concerning provability in principle play a role in 
the intuitions that mathematicians have concerning the acceptability of 
certain variants of problematic constructivistic principles. 

Of course more work remains to be done. An obvious question is 
whether the approach of this paper can be fruitfully extended to second- 
order arithmetic and set theory, and to variants of constructivistic choice 
and continuity principles that can be expressed in these languages. Even 
in the first-order language of EA there may be many more epistemic 
principles that merit consideration, and there may be more connections 
with variants of constructivistic principles to be established. But all that 
is left for another occasion. 

The notion of provability in principle is regarded as philosophically 
suspect, or even incoherent by many classical mathematical logicians 
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(even though these feelings are seldom made explicit). Certainly the 
notion is usually regarded as less respectable than the venerable notion 
of truth. I am not sure that these doubts are justified, and there seem 
to me to be two ways to help dissolving them. First, there is a need 
of conceptual clarification of the notion of provability in principle. The 
present paper hardly makes a contribution to this task. But secondly, it 
needs to be shown that the notion is fruitful, that something interesting 
can be done with it. That is what this paper intends to show, and it 
thereby attempts to be a small step in the direction of making the notion 
of provability in principle respectable. 
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NOTES 

Around the same time, Reinhardt independently developed similar epistemic formal- 
izations of arithmetic (see [31], [32]). 

2 The classical paper on informal rigour is [20], but see also [18, 19, 21, 22]. 

3 See [37, 39; 40, Chapter 4; 28, 3, 4, 20]. 
4 For a good introduction to these two research traditions in constructivistic mathe- 

matics, and their characteristic principles, see [40, Chapter 4]. 
The notion of absolute knowability does not accord very well with this idea: one 

might argue on the basis of knowledge of the number of atoms in the universe that there 
is a fixed bound on the complexity of proofs that can be constructed, and hence that 
some mathematical questions are "absolutely undecidable". We do not want to count the 
conclusion of this argument for that reason as being in the intended extension of K, 
because the argument is not a proof, i.e. it is not a nonempirical argument. 

6 Not everyone agrees with Shapiro on this score. The soundness of the transitivity 
axiom OA - O DIA for the intended interpretation of K, for instance, is questioned by 
Martin-LOf ([25]). 

7 Note by the way that axiom S is a quite strong way of giving content to Thesis 1. 
Suppose QF = 3x, and i = 1. Then axiom S states 

K~z-cKAl(s) - 3zK-cAl(z). 

In other words, axiom S states that a form of de dicto provability supervenes on a 
corresponding de re provability, namely on the provability of a particular natural number 
that it has the property -A I(x). 
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SThe distinction between empirical and non-empirical (i.e. a priori) reasoning has been 
criticized by Quine (see [30]) and his followers. But the last decade has seen a growing 
consensus that there is a clear and useful distinction here. First and perhaps foremost, 
Kripke deserves to be credited for clearly distinguishing pairs of notions that were often 
used in the literature as though they are interchangeable (see [17, pp. 34-41]), which 
made it seem as if criticism of any of these pairs of notions (e.g. a questioning of the 
usefulness of the distinction between the analytic and the synthetic) tells equally against 
any of the other distinctions (e.g. the empirical/a priori distinction). The empirical/a priori 
distinction is argued to be respectable and is further analyzed in [1] and in [5]. 

9 This argument was given to me by George Schumm. It is a version of an argument 
in [6]. 

"' There appears to be an analogy between TEA and the naive comprehension axiom, or 
the axiom of full determinacy in set theory. Even though these principles have an initial 
plausibility, they can on closer inspection be seen to be false. But restricted versions of 
them might well be true. 

Whether they are viable axiom candidates is yet a further question. Since determini- 
nacy principles have recently been shown to follow from large cardinal axioms, they are 
of course no longer viable axiom candidates (if they ever were). 

" Since EA + Grz is stronger than EA + M, this implies that M does not allow us 
to derive new constructivistic statements. We have not been able to verify Pankrat'ev's 
claim that the "reverse translation" of the Grz axiom in provable in EA (the computation 
seems complicated). 

12 According to Troelstra, most Russian constructivists accept a somewhat stronger 
form of the intuitionistic version of Church's thesis ([40, p. 202]). 

13 We cannot use the technique of [16] to prove the consistency of EA + T + ICTEA, 
since T is not Flagg realizable. 

14 For an argument to this effect, see [36]. The arguments given on both sides of this 
issue seem to me to be inconclusive; I am not even sure how to formulate the problem 
in a way that makes an unequivocal answer possible. 
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