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IGOR DOUVEN and LEON HORSTEN 

EARMAN ON UNDERDETERMINATION AND EMPIRICAL 
INDISTINGUISHABILITY 

ABSTRACT. Earman (1993) distinguishes three notions of empirical indistinguishability 
and offers a rigorous framework to investigate how each of these notions relates to the 

problem of underdetermination of theory choice. He uses some of the results obtained in 

this framework to argue for a version of scientific anti-realism. In the present paper we 

first criticize Earman's arguments for that position. Secondly, we propose and motivate 

a modification of Earman's framework and establish several results concerning some of 

the notions of indistinguishability in this modified framework. Finally, we interpret these 

results in the light of the realism/anti-realism debate. 

1. INTRODUCTION 

The present paper is intended as a constructive criticism of John Earman's 

article Underdetermination, Realism and Reason (1993). Earman's inten? 

tion in that article is to argue for a position similar to van Fraassen's anti 

realism (p. 35).1 Towards that end, Earman seeks to establish the following 
thesis: 

(T) There is a logical asymmetry between observational and 

theoretical hypotheses, which ensures that scepticism about the 

latter does not automatically spill over to scepticism about the 

former (cf. pp. 28-29). 

The asymmetry between observational and theoretical hypotheses that Ear 
man wants to exhibit is related to the notion of empirical indistinguisha? 

bility. He distinguishes three notions of empirical indistinguishability, and 

offers a rigorous framework in which these notions can be investigated. 
He then formulates several propositions concerning these notions of in? 

distinguishability which, when linked to results from confirmation theory, 

together support (T). He subsequently provides detailed arguments for 

these propositions in the context of his formal framework. 

It will be shown that Earman's arguments for some of the supporting 
propositions for (T) are unconvincing. The situation with respect to these 

claims is more complicated than Earman makes it appear, and a deeper 

LJ Erkenntnis 49: 303-320, 1998. 
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investigation of the notion of empirical indistinguishability is required to 

determine their truth-value. We will take some steps in the direction of this 

deeper investigation, and suggest an improvement of Earman's framework. 

It will be seen that the asymmetry Earman argues for in his paper can be 

defended in the resulting, modified framework. More importantly, how? 

ever, our technical results concerning the modified framework will reveal 

a logical asymmetry between observational and theoretical hypotheses that 

considerably strengthens the case for Earman's thesis (T). 

2. EARMAN'S FORMAL FRAMEWORK FOR THE INVESTIGATION OF 

EMPIRICAL INDISTINGUISHABILITY 

Earman's framework assumes that all scientific hypotheses are formalized 

in a first-order language.2 An important distinction is that made between 

hypotheses in, what Earman calls, the language of the evidence (observa? 
tional hypotheses) and hypotheses that outrun the language of the evidence 

(theoretical hypotheses). The idea is to partition the descriptive vocabulary 
of the language into two parts, V0 and VT, and then to take the language 
of the evidence to consist of all the sentences which, apart from the logical 

vocabulary, only contain terms belonging to Vo. Earman emphasizes that, 

although in the context of the realism debate it is natural to think of the 

subscripts as short for 'observational' and 'theoretical', it is inessential 

where exactly the line is drawn (p. 21).3 
In Earman's framework empirical (in-)distinguishability is taken to be 

a property of classes of hypotheses. More precisely, it is a property of 

certain classes of hypotheses that are mutually exclusive, self-consistent, 
and jointly exhaustive. Let us call a class of hypotheses which meets these 

conditions a hypothesis partition. A hypothesis partition is called theoreti? 

cal if it contains at least one hypothesis that is not logically equivalent to a 

hypothesis stated exclusively in the observational vocabulary; otherwise it 

is called an observational hypothesis partition.4 Also, in the examples of 

hypothesis partitions in Earman's paper the hypotheses are all sentences. 

This might give the false impression that the framework can only handle 

finitely axiomatizable theories. This is not so however: there is no difficulty 
in principle in dealing with (non-finitely) recursively axiomatizable theo? 

ries. Therefore we propose to distinguish between partitions which contain 

only finitely axiomatizable hypotheses 
- called FA-hypothesis partitions 

- and those which contain one or more members which are recursively 
but not finitely axiomatizable - 

NFA-hypothesis partitions. This distinction 

will be seen to be relevant to many of our results later on in the paper. 
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Furthermore, the property of empirical distinguishability accrues to hy? 

pothesis partitions only relative to a class M of models of the language 
and an evidence matrix M. The class of models can be taken to be the set 

of all models, or a restricted set thereof (p. 23). If it is taken to be a proper 
subset of the set of all models, then the requirements of joint exhaustive 

ness and mutual exclusiveness have to be relativized to this restricted set. 

An evidence matrix is a class of sentences. No general assumptions are 

made about evidence matrices, other than that their elements - sometimes 

referred to as evidence statements - 
belong to the language of the evi? 

dence. One might think that some additional general restrictions on what 

sentences can go into an evidence matrix are in order or in any case that 

more should be said about why no further restrictions are imposed. It is, for 

instance, not evident that every sentence of the language of the evidence 

can be regarded as a possible evidence statement. But more about this later 

on. 

Earman formulates three notions of empirical distinguishability. Since 

only the second and third of these - abbreviated ED2 and ED3 
- are relevant 

in both Earman's and our paper, we skip the definition of the first kind of 

distinguishability. 

DEFINITION 2.1. A hypothesis partition M is ED2 relative to evidence 

matrix 8 and the class of models M exactly if for all Ht, Hj e M, there is 

a sentence Et e 8 such that (i) for all M? e M: if H? is true in Af,-, then so 

is Ei, and (ii) there is a Mj e M in which Hj is true and Et false. 

In words: this notion of distinguishability requires the hypotheses to have 

different consequences in the language of the evidence. 

DEFINITION 2.2. A hypothesis partition M is ED3 relative to an evidence 

matrix 8 and the class of models M if and only if for all Ht, Hj e H and 

for all M,-, Mj e M: if Ht is true in M?, and Hj is true in Mj, then there is 

a sentence E? e 8 such that Et is true in M? but not in Mj. 

Note that here no mention is made of the hypotheses' empirical conse? 

quences; for a hypothesis partition to be distinguishable in this sense it 

suffices that any model in which one of the hypotheses is true differs in 

some respect expressible by an evidence statement from any model in 

which one of the other hypotheses is true. 

Notions of empirical mdistinguishability are now straightforwardly de? 

fined as the negations of the foregoing definitions (notation: EI; = 
-?ED;).5 
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Unlike EI3, EI2 has a familiar ring to it. Roughly, it says that hypotheses 
are indistinguishable if they have the same empirical consequences. 

One further basic notion has to be introduced, viz. that of a truth iden? 

tification method. A truth identification method for a hypothesis partition 
3? is a function / from finite sequences of evidence statements on (the 

superscript indicates the length of the sequence) to 3i. Intuitively, such a 

function conjectures on the basis of the evidence obtained so far which of 

the Hi 's M is true. A truth identification method is said to be reliable 

for M relative to 8 and M if and only if, for all models Mt M and 
all possible finite evidence sequences a, there exists an n such that for all 

m>n'.f(om) 
= 

Hj exactly if Hj is true in M? (see Earman 1993, section 

3, for details). A hypothesis partition M is said to be underdetermined 

by the evidence if and only if there exists, relative to the class of models 

considered, no reliable truth identification method for M.6 

3. EARMAN'S ANTI-REALIST ARGUMENT 

Earman argues for (T) on the basis of an example of an observational 

hypothesis partition (Earman's 'Example 2'; 25) and the following general 
theorem - to which we shall refer as Theorem E - 

concerning theoretical 

hypothesis partitions (p. 24): 

THEOREM E. Let there be given an evidence matrix 8 that is rich enough 
to contain for any sentence Et, singular or quantified, whose descriptive 
terms belong entirely to Vo (that is, belonging to the language of the ev? 

idence), a sentence that is logically equivalent to either Et or -i??. Now 

suppose that there is an acceptable hypothesis partition M the members of 

which are stated in a language that outruns the language of the evidence 

and which is EI2 with respect to 8. Then M is EI3 with respect to 8. 

In other words, every theoretical hypothesis partition that is EI2, is also 

EI3. Since it follows straightforwardly from the definitions of truth identi? 

fication method and EI3 that there cannot be a reliable truth identification 

method for an EI3 hypothesis partition, a confirmation-theoretically impor? 
tant consequence of Theorem E is that EI2 theoretical hypothesis partitions 
are necessarily underdetermined by the evidence. 

'EXAMPLE 2': Suppose all models in M have countable domains which 

are fully named in the sense that for each element in the domain there 

is a constant a? (/ = 1, 2, 3, ...) that names it. Let M = 
{VxSyRxy, 
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3xVy-^Rxy] with R e V0, and let 8 = 
{ finite truth-functional combi? 

nations of R?i?j} with /, j ranging over the natural numbers. Then M 

is EI2 
- the hypotheses simply have no non-trivial consequences in ? - 

but any model (with a domain as specified) of one of the hypotheses must 

evidently differ from a model of the other in a way that is expressible by 
some element of 8. Hence, H is ED3. 

Hence Theorem E does not hold for observational hypothesis partitions. 
In addition, Earman argues that there exists a reliable truth identification 

method for 3?? So observational hypothesis partitions are not necessarily 
underdetermined by the evidence. 

Earman's Theorem E and Example 2 are jointly meant to show that 

there is a logical asymmetry between observational and theoretical hy? 

pothesis partitions which is of confirmation-theoretic importance. If we 

accept Earman's arguments for the claim that there are interesting cases 

of EI2 theoretical hypothesis partitions (section 9 of Earman's paper; but 

see section 4.3 below), we here seem to have an argument for a scepticism 
with respect to the unobservable which does not automatically spill over 

to a scepticism vis ? vis the observable. 

However, we do not find Earman's anti-realist argument convincing. 

Specifically, our complaint is that the validity of Earman's argument for an 

asymmetry between observational and theoretical hypothesis partitions is 

dependent on an asymmetry in accompanying evidence matrices. That this 

is so can be seen as follows. 

On the one hand, the evidence matrix of Theorem E is very large: 
even multiply quantified sentences with alternating blocks of quantifiers 
can count as evidence statements. In the proof of Theorem E no use is 

made of the assumption that the hypothesis partition is theoretical. So one 

would think that the corresponding version of the theorem for observa? 

tional hypothesis partitions also holds. And so it does. The point is that, 

given the evidence matrix that Theorem E assumes, there simply are no 

EI2 observational hypothesis partitions, as a moment's reflection reveals.8 

So the corresponding (observational) version of Theorem E is valid, but 

vacuous. 

On the other hand, the evidence matrix of Example 2 is very small: for 

example, no existential statements occur in it - not even sentences of the 

form 3xPx such that P? does occur in the evidence matrix for some a. If 

we add, for every sentence belonging to the evidence matrix of Example 
2, all its existential generalizations, then the hypothesis partition will no 

longer be EI2. And it will be argued below that it is reasonable to require 
that these existential generalizations belong to the evidence matrix. 



308 IGOR DOUVEN AND LEON HORSTEN 

In the face of this, there are two lines that can be taken. Either one 

argues that in a comparison between theoretical and observational hypoth? 
esis partitions it is reasonable to use different evidence matrices, or one 

argues for some plausible condition(s) that all evidence matrices should 

(minimally) satisfy and investigates the logical differences between both 

kinds of hypothesis partitions given the so defined class of evidence matri? 

ces. We believe that the first strategy will not work: if one wants to make a 

fair comparison between observable and theoretical hypothesis partitions, 
then one ought to look for results which hold for a fixed class of evidence 

matrices. So we will opt for the second strategy. 

4. STEPS TOWARDS A DEEPER INVESTIGATION OF EARMAN'S 

FORMAL FRAMEWORK 

In accordance with our critical remarks in relation to Earman's Exam? 

ple 2 we first make the constraints to be imposed on evidence matrices 

somewhat stricter. We then proceed to see what formal results concerning 
observational and theoretical hypothesis partitions can be obtained with 

those constraints in place. 

4.1. Evidence Matrices Fixed 

An evidence matrix contains the class of all possible evidence statements, 

i.e. the class of all statements that (when true) can be verified on the 

basis of direct observations. Surely all atomic sentences in the observa? 

tional vocabulary belong to this set. And in effect Earman requires that all 

finite truth-functional combinations of atomic sentences belong to every 
evidence matrix.9 Let us call this class Earman's minimal evidence matrix. 

We want to go one step further, and require that every existential gener? 
alization of every sentence of Earman's minimal evidence matrix belongs 
to every evidence matrix. The motivation for this requirement is the same 

as the one that presumably underlies Earman's closure condition. If P? 

and Pb are in some possible world supported by direct observations, then 

P? A Pb is directly supported by the same observations. But if Rab is 

supported by a direct observation, then 3xRax is directly supported by the 

very same observation. Let us call the wider class that results from this 

slightly stronger closure condition the minimal evidence class (MEC).10 
Earman wants to take a very liberal attitude concerning what goes into 

evidence matrices (pp. 20-21). Therefore he takes the requirement that 

every evidence matrix contains the minimal evidence matrix as the only 
restriction on admissible evidence matrices: one may, if one likes, take a 
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much larger evidence matrix (as in Theorem E), but one does not have to 

do so (as illustrated by Example 2). Likewise, we will take it to be the only 

requirement on evidence matrices that they contain the minimal evidence 

class. 

Technically, the minimal evidence class can be described as follows: 

DEFINITION 4.1.1. MEC is the smallest set such that: 

(i) all atomic sentences in the language of the evidence are in MEC; 

(ii) if 0, \?r e MEC, then (0 v f) e MEC; 
(iii) if 0, i/ e MEC, then (0 A jfr) e MEC; 
(iv) if 0?/ e MEC (for some a,- e Vo), then 3jc0[jc/?,-] e MEC; 
(v) if 0 g MEC and 0 is Ai, then -0 e MEC. 

It is easily seen that the class of sentences thus defined is the class of 

observational Xq -sentences.11 The restriction to A i-sentences in clause (v) 
is of course motivated by our intention to deviate as little as possible from 

Earman's minimal evidence matrix, and to be (almost) just as liberal in this 

respect as he is.12 

We have already mentioned that under the modified closure conditions 
on evidence matrices we propose, Earman's Example 2 as it stands is no 

longer acceptable, and when we include the existential statements in the 

evidence matrix, then the hypothesis partition of that example becomes 

ED2. Theorem E still holds. But its scope seems very limited, due to the 

very peculiar choice of evidence matrix. Ideally, one would want theorems 
that give information about a large class of evidence matrices, or, fail? 

ing that, about a narrow class of evidence matrices which are argued on 

philosophical grounds to be reasonable. The results in the remainder of the 

paper all hold under all evidence matrices containing MEC. 

4.2. Observational hypothesis partitions 

The main question to be addressed in this subsection is whether it is pos? 
sible to construct an observational hypothesis partition with the relevant 

properties of the partition in Example 2, i.e. an EI2/ED3 observational FA 

hypothesis partition relative to an evidence matrix containing MEC. For if 

this can be done, the moral of Earman's Example still stands. 

In view of the following proposition, such hypothesis partitions in any 
case cannot be of the 2-element kind of Example 2: 

PROPOSITION 4.2.1. If M is a 2-element observational FA-hypothesis 
partition, and MEC ? 8, then M is ED2 with respect to 8. 
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Proof. Let M be an arbitrary 2-element observational FA-hypothesis 

partition. Suppose, towards a reductio, that M is EI2. Since M is an ac? 

ceptable 2-element partition, M must be [H, ->/f} for some observational 

hypothesis H. Consider the prenex normal form of H (since M is an 

FA-partition this can be done); it will be of the form Q\ ... QnP, with 

n > 0, Q; either of the form Vx? or 3xt and P quantifier-free. The prenex 
normal form of-^H will then be of the form Q[.. .Qfn->P, with Q\ being 

V%; if Qi is 3x? and vice versa. Now consider 3x\ ...3xnP. Evidently, 
H \= 3x\.. .3xnP. Since 3jci. . .3xnP is a Xq-sentence in the language of 

the evidence and hence in 8, and since, by assumption, H and -># have the 

same g-consequences, it follows that -?// f= 3x\.. .3xnP. But this means 

that 0 |= 3*1.. .3xnP, i.e. that 3x\ ...3xnP is a tautology. By the same 

reasoning it follows that 3x\.. .3xn->P is a tautology. Now take an arbitrary 
model M the domain of which has only one element; call this element ?. 

Then, since both 3x\.. .3xnP and 3x\.. .3xn-*P are tautologies, we must 

have M \= P\a?x\,..., ?/xn] and also M \= ->P[?/xi,..., ?/xn]. But 

there cannot be such a model M. Hence our assumption that M is EI2 

must be false. But 3i was arbitrary, so there can be no EI2 observational 

FA-hypothesis partitions with only two members. D 

All examples of observational hypothesis partitions in Earman's paper are 

of the 2-element kind our proof deals with. But there is no principled 
reason not to consider n -element or even infinite observational hypothesis 

partitions. It might be the case of course that our condition on evidence 

matrices simply rules out the possibility of EI2 observational hypothesis 

partitions in general. This is not so, however, as we shall now show. We will 

first describe a way of generating finite EI2 observational FA-hypothesis 

partitions and then do the same for infinite NFA-hypothesis partitions. Sub? 

sequently it will be proved that there are EI2/ED3 observational hypotheses 

matrices.13 

First we introduce some terminology. Let ^be the first-order lan? 

guage of arithmetic. Let S be ?? or Tln for some n, and let Sf be the dual of 

S (i.e. Yln if S = ??, and conversely). And let T be a finitely axiomatizable 

extension of/Si. 

DEFINITION 4.2.1. Cons(S, T) is the set of sentences A such that for all 

B: if T + A h B, and B e S, then T Y- B. 

When we let T be /Xq and S the set of quantifier-free sentences in the 

language of arithmetic, then the G?del-sentence for /Si is a non-trivial 
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example of a sentence belonging to Cons(5, T) (non-trivial in the sense 

that it is not entailed by T). 

DEFINITION 4.2.2. NCons(5, T) is the set {A|-A e Cons(5, T)}. 

Then there is the following: 

THEOREM 4.2.1 (Solovay):14 S n Cons(S', T) n NCons(5, T) ? 0. 

CONSEQUENCE 4.2.1: For any n, if the class of X?-sentences (IVsen 

tences) of Xa is the class of possible evidence sentences, and all the vo? 

cabulary of Xa is observational, then there are finite EI2 observational 

FA-hypothesis partitions (relative to this evidence matrix). 

Proof: Consider, for simplicity, the case where n = 1. If we let S = II2, 
then the previous theorem says that there must be a B e n2 n Cons(X2, 

T) H NCons(n2, T). Since Xi ? X2 and Xi ? n2, it follows that: 

T + B h A =? T h A for A any Xrsentence. 

T + -?# h A =? T h A for A any Xrsentence. 

This means that T + B and T + -># have exactly the same set of evidential 

consequences. So the hypothesis partition {T + B, T + 
- 

#, -?r} is an EI2 
observational hypothesis partition. D 

CONSEQUENCE 4.2.2: For any n, if the class of X?-sentences (I~I?-sen 

tences) of Xa is the class of possible evidence sentences, and all the vo? 

cabulary of XA is observational, then there are infinite EI2 observational 

NFA-hypothesis partitions (relative to this evidence matrix). 

Proof: Let T be Peano Arithmetic. Take a pair of sentences B,-*B as 

in the proof of Consequence 1. Now let ct\, a2, ..., an, ... be a recursive 

enumeration of the axioms of T. Let T[-^an/an] be the set of first-order 

consequences of {a\, a2, ..., a?_i, -*an, an+\,...}. Then the hypothesis 

partition {T + B,T + -5, rH*i/c*i],..., T[-wn/an],...} will be of the 

required sort. D 

Theorem 4.2.1 and Consequences 4.2.1 and 4.2.2 are propositions about 

arithmetical languages. But these languages can also be given a physical 
interpretation. For instance, they could be interpreted as being about an 

infinite collection of balls of different sizes, linearly ordered by volume, 
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in an otherwise empty universe.15 In other words, these results can also be 

taken to bear on empirical theories. It is worth observing that both Con? 

sequences are very insensitive to the choice of class of possible evidence 

statements - 
presumably Earman would welcome this. 

For Earman's purposes the results so far still do not suffice of course: 

there remains the important question as to whether there exist any EI2/ED3 

observational hypothesis partitions. We will now show that the answer to 

this question is (a qualified) yes. 

PROPOSITION 4.2.2. For any observational hypothesis partition M, if 

every M e M is fully named and MEC ? 8, then M is ED3 with respect 
to M and 8. 

Proof: Let M be an observational hypothesis partition. Suppose, for a 

reductio, that it is EI3. Then there must be Mt, Mj e M and Hk, Hi e M 

(k 7^ /) such that M? \= Hk, Mj |= Hi and for all Xi-sentences A in 

the language of the evidence: M? |= A ^ Mj \= A. Since (i) M?, Mj are 

fully named and (ii) they satisfy the same Xi-sentences, they must have the 

same diagram (i.e., they satisfy the same set of closed atoms and negations 
of closed atoms). From this it follows that M{ = 

Mj (since a model's 

diagram describes it up to isomorphism). But this means that Mt \= Hi 

and Mj [= Hk and thus that M?, Mj both satisfy Hk A Hi. Since Hk, Hi 
were assumed to be mutually exclusive, it must be that both models satisfy 
_L. Hence there can be no EI3 observational hypothesis partitions. D 

On the assumption of fully named models we then have the following: 

PROPOSITION 4.2.3. There exist EI2/ED3 observational hypothesis par? 

titions. 

Proof: From Consequence 4.2.1/4.2.2 and the preceding proposition. D 

Absent the assumption of fully named models, it is quite easy to construct 

an observational EI3 hypothesis partition. In fact, the assumption is es? 

sential in Earman's Example 2; without it the hypothesis partition in that 

example is EI3 (relative to the evidence matrix Earman specifies). On the 

other hand, it is not true that without the assumption, all observational 

hypothesis partitions are EI3. For matrices consisting of non-quantified 

hypotheses this is evident, but if we require 8 to contain MEC, then, e.g., 

also the partition {3xPx, Wx^Px} is not EI3.16 It is straightforward to 
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prove the general claim that for any H, if 8 is chosen in such a way that 

all H e M, except perhaps one, are in 8, then 3t is ED3. 
The foregoing shows that the logical asymmetry between observational 

and theoretical hypothesis partitions that Earman claimed to have uncov? 

ered can be upheld in the modified framework. However, below it will be 

seen that there is a more effective strategy available to the anti-realist to 

argue for thesis (T). 

4.3. Theoretical hypothesis partitions 

Given the definition of theoretical hypothesis partitions in Section 2, we 

obtain: 

PROPOSITION 4.3.1.: 

1. There are 2-element EI2 theoretical hypothesis partitions. 
2. There are 3-element ED2 theoretical hypothesis partitions. 

Proof: Let T be a theoretical predicate, let O be an observational pred? 
icate, and let ? be an observational constant. Then for 1, take M = 

{3xTx, 

->3xTx}. And for 2, take H1 - 
{3xTx, -*3xTx A Od, -*3xTx A -*O?}. 

D 

Comparing Proposition 4.3.1.1 with Proposition 4.2.1 reveals an asym? 

metry between observational and theoretical hypothesis partitions which 

might seem to be of confirmation-theoretical relevance. For it shows that 

the result of Proposition 4.2.1, showing that all 2-element observational 

FA-hypothesis partitions are ED2, does not carry over to theoretical hy? 

pothesis partitions. The EI2 theoretical hypothesis partition given here is 

uninteresting, however, if only because neither of its members has any 

consequences in the language of the evidence. The question whether there 
are any interesting EI2 theoretical hypothesis partitions is currently subject 
to much controversy.17 As to M', it should be noted that the partition is EI3 
such that there exists no reliable truth identification method for it. 

Recall that Earman's Theorem E was a conditional claim: //"there exist 

any EI2 theoretical hypothesis partitions, then there exist EI3 theoretical 

hypothesis partitions. Rather than to rely on a controversial premise to 

argue for the existence of EI3 theoretical hypothesis partitions, we intend to 

tackle the question as to whether there exist any such hypothesis partitions 

straight-away. More precisely, we will show that: (1) all (finite and infinite) 
theoretical FA-hypothesis partitions are EI3; (2) all finite theoretical NFA 

hypothesis partitions are EI3. 
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PROPOSITION 4.3.2. If there are ED3 theoretical FA-hypothesis parti? 
tions with more than two elements, then there are 2-element ED3 theoreti? 

cal hypothesis partitions. 

Proof: Without loss of generality, let M be an infinite ED3 theoretical 

FA-hypothesis partition with hypotheses { H\, H2, H3,... }. Then pick an 

element of M that is not logically equivalent to an observational hypothe? 
sis: let it be Hn. Consider the partition H' = 

{Hn, -?//?}. Mf will also be a 

theoretical hypothesis partition, and it is easy to see that it must be ED3. D 

The restriction that M is an FA-hypothesis partition is essential here, for 

otherwise we have no guarantee that the element -^Hn of M' is recursively 
axiomatizable. We can drop the restriction if at the same time we require 
that the partition be finite: 

PROPOSITION 4.3.3. If there are rc-element ED3 theoretical NFA-hypo 
thesis partitions, then there are 2-element ED3 theoretical hypothesis par? 
titions. 

Proof: Let M = 
{H\,..., Hn] be an ED3 theoretical NFA-hypothesis 

partition. Pick again a member of M that is not logically equivalent to an 

observational hypothesis: let it be H\. The set of models that make H\ false 

is identical with the set S of models in which at least (and also at most) one 

of H2,..., Hnis true. The theory of S (i.e., the sentences 0 such that for all 

models M e S : M \= 0), Th(4) for short, can be seen to be recursively 
axiomatizable as follows: 0 e Th(<$) exactly if 0 is a consequence of each 

of H2,..., Hn. So if 0 <E Th(4), then, since H2,..., Hn are all recursively 

axiomatizable, 0 will occur after finitely many steps in the enumerations 

of H2, ..., Hn. As there are only n ? 1 enumerations we have to check, 
we can for each 0 e Th(-i) verify in a finite number of steps that it is a 

theorem of the theory. Hence Th(-i) is recursively axiomatizable. Call one 

such axiomatization -'Hi. Then [Hi, ->Hi} is an acceptable hypothesis 

partition. It can easily be seen to be ED3. D 

THEOREM 4.3.1. If M is a 2-element ED3 hypothesis partition, then M is 

observational. 

Proof: Suppose that M = 
{H,^H} is ED3. We will show that H (and 

therefore also ->//) is not theoretical. 

We know that, in virtue of (a corollary to) Craig's Theorem, since H, 

->H are recursively axiomatizable, their consequences in the language of 
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the evidence are recursively axiomatizable as well. Let H0 (resp.(->//)o) 
indicate the recursive axiomatization of //'s (resp.^/Ts) observational 

consequences. Then let W = 
{Ho, (-*H)o}. It suffices to show that Si* is 

a hypothesis partition. For then H is logically equivalent to Ho and -*H is 

logically equivalent to (?*H)0, whereby M is not a theoretical hypothesis 

partition. So we have to show that H0, (~,H)o are jointly exhaustive and 

mutually exclusive. 

The former is easy to show. For otherwise ~^H0 A ->(->H)o is consis? 

tent, which is impossible since its negation is implied by H as well as by 
-#. 

The latter is somewhat harder. Suppose, for a reductio, that HoA(-*H)o 
is consistent. Then take any maximal consistent extension E of H0 A 

(^H)o in the observational vocabulary. We will show that E is consistent 

with H, and also with ->H. Suppose E is inconsistent with H. Then by 
the compactness of first-order logic, there is an observational sentence Ef 
in E such that Ef h --//, i.e. H I- ?/. But since the observational 

consequences of H are axiomatized by H0, we must have Ho I?'Ef. But 

this is impossible, for H0 and Ef are together in the maximal consistent 

set E. In a similar way it can be proved that E is consistent with -^H. 

But that means that there is a model for H which makes E true, and a 

model for -?// which makes E true. These models are not separated by an 

evidence sentence (no matter how the class of possible evidence sentences 

is chosen), so H is not ED3, contradicting the assumption. Conclusion: 

H o A (-^H)o is inconsistent. D 

CONSEQUENCE 4.3.1. If M is an ED3 FA-hypothesis partition or a finite 

ED3 NFA-hypothesis partition, then H is not theoretical. 

Proof: Immediate from the preceding propositions and theorem. D 

A question that remains open is whether there are any infinite ED3 theo? 

retical NFA-hypothesis partitions. 
What we have here is clearly stronger than Earman's Theorem E: Con? 

sequence 4.3.1 asserts that important classes of theoretical hypothesis par? 
titions are EI3. In combination with our earlier result that all observational 

hypothesis partitions are ED3 (Proposition 4.2.2), this reveals a confirma 

tion-theoretically significant asymmetry between observational and the? 

oretical hypothesis partitions. It provides grounds for scepticism about 

theoretical hypothesis partitions that does not carry over to observational 

hypothesis partitions and that allows us to suspend judgment on the ques 
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tion of the existence of genuine scientific examples of EI2 theoretical hy? 

pothesis partitions. 

4.4. Relativizing to restricted classes of models 

We here briefly discuss two objections that could be raised against drawing 

philosophical conclusions from results about Earman's framework. First, 
someone could hold that Earman's restriction of the language in which 

scientific hypotheses are to be regimented to first-order is not innocuous. 

It is not at all clear that all of Earman's results continue to hold when 

we move to a second-order language 
- which we may after all need to 

express (up to isomorphism) the structures that we want to talk about (see 

Shapiro 1991). Second-order logic is not compact. Yet for instance Ear 

man's (1992:151) result that (given the evidence matrix of Theorem E) if 

a theoretical hypothesis partition is Eli, then it is also EI3, makes essential 

use of the compactness of first-order logic. So does our proof of Theorem 

4.3.1. Secondly, realists might complain that, apart from empirical 'fit', 
none of the factors which they regard as relevant to the confirmation of 

scientific theories (like for instance simplicity, explanatory power, coher? 

ence with currently accepted theories) has been taken into account. Such 

factors may help us choose between theories even if no truth identification 

method (in the sense defined earlier) can. 

Earman's framework has a partial defense against both charges built 

into it. As was noted in section 2, in the application of the notions of 

EDi, ED2, ED3 one might want to let iibea restricted class of models. 

It is useful to think of such a restriction as specifying the background 

theory which is taken for granted in the test situation. Viewed from this 

perspective, considering all possible models means testing in a knowledge 
vacuum. And the more natural and realistic situation is when we make a 

host of theoretical presuppositions. 
Earman does not require that restrictions on M should be first-order 

expressible. Nevertheless, if these restrictions are taken to capture back? 

ground theories, one might want to impose some restrictions on what is 

allowed as a restricted class of models, e.g. that it is expressible by a 

recursively axiomatizable set of sentences in a sufficiently strong language 

(the language of second-order logic, for instance). Of course one might still 

object to the arbitrary requirement that the hypotheses that do not belong 
to the background theory have to be first-order. We think this is a legitimate 

complaint but will not go into it here. 

Relativization also seems to offer a means for expressing the 'theoret? 

ical virtues' in Earman's framework. One could for instance contemplate 

relativizing to classes of 'structurally simple' models, or - which need not 
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amount to the same thing 
- to classes of models definable by 'simple' 

theories. However, to this we may expect anti-realists to reply that: (1) it 

remains to be seen whether these virtues can be made sufficiently precise to 

be expressible in terms of relativization; (2) if they can, it is an open ques? 
tion whether the logical asymmetry results supporting a selective scepti? 
cism no longer hold; and (3) it is unclear how such realist relativization 

policies can be justified without invoking some form of dogmatism. 
Let us conclude this section with an illustration of how relativization 

to a restricted class of models can make a difference. For this purpose, 
consider again Consequence 4.2.2. Peano Arithmetic occurs as an ele? 

ment in the hypothesis partition that is constructed in the proof of that 

consequence. But if we are a priori certain that the real world is to be 

found among the models of Peano Arithmetic, then we may consider Peano 

Arithmetic as a background theory which is beyond scrutiny. Relative to 

the class of models that is thereby determined, the partition {B, 
- 

?}, with 

B as in the proof of Consequence 4.2.1, is a 2-element EI2 observational 

FA-hypothesis partition. So if relativization is allowed, Proposition 4.2.1 

does not hold.18 

5. CONCLUSION 

In this paper we have critically discussed Earman's attempt to defend a 

version of scientific anti-realism on the basis of results from mathematical 

logic and confirmation theory. We have argued that Earman's argument 
fails because it depends at crucial junctures on choices of evidence matrix 

that seem entirely ad hoc. 

Our criticism was intended to serve a constructive purpose. We argued 
for a modification of Earman's framework in which evidence matrices 

meet certain minimal conditions. With those conditions in place we es? 

tablished various results for observational and theoretical hypothesis par? 
titions. These results pointed to a philosophically significant asymmetry 
between the two kinds of hypothesis partitions: all observational hypothe? 
sis partitions are ED3, whereas important classes of theoretical hypothesis 

partitions are EI3. This asymmetry is different from the one Earman was 

arguing for, i.e. that for theoretical, but not for observational, hypothesis 

partitions, EI2 implies EI3. The significance of Earman's asymmetry for the 

realism/anti-realism debate depends on what some take to be a question? 
able assumption, namely the existence of any philosophically interesting 
EI2 theoretical hypotheses. In contrast, the asymmetry established in our 

paper is not dependent on this assumption and thus provides more direct 

support for Earman's anti-realist thesis (T). 
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NOTES 

Unless otherwise indicated, all page references are to Earman (1993). 
2 In our discussion, we will take identity to be a logical symbol that is assigned its usual 

denotation by all first-order interpretations. 
3 

Of course this will do little to take away the worries of those who think that we cannot 

differentiate observational and theoretical hypotheses in a syntactic fashion (cf. for instance 

van Fraassen 1980, 53ff). However, we will for the purposes of this paper grant that such a 

division can be made. For Earman's defense of the theoretical/observational division, see 

his (1992), chapter 8, section 2. 
4 

Earman does not explicitly mention this last condition, but it is clear that it is intended. 

5 
Although the notions of (in-)distinguishability are defined for classes of hypotheses, we 

can by slightly abusing the language but without causing confusion also apply them to 

pairs of members of such classes, like for instance when we say that those members are 

EI2, meaning of course that those two hypotheses have the same consequences in 8 so that 

the partition to which they belong is EI2. Earman often uses the terms in this way. 
6 Prior to the publication of Earman's paper formal learning theorists had already devel? 

oped flexible and sophisticated frameworks to deal with questions of truth identification. 

See among others Kelly and Glymour (1989), Kelly (1992); Kelly (1996) is an extensive 

survey of the results obtained so far in formal learning theory. Admittedly, these frame? 

works have a much wider scope than Earman's. In some it is for instance possible to deal 

with non-axiomatizable theories (cf. Kelly and Schulte 1995), which Earman's cannot 

handle. Nevertheless, we believe that Earman's relatively simple framework is expres? 

sive enough to investigate certain important questions that have been raised in the debate 

between scientific realists and scientific anti-realists. 

7 
Earman notes that there is no completely reliable truth identification method for M in 

this case but that there does exist an 'almost sure' reliable truth identification method for 

it. A truth identification method is reliable in this weaker sense if it is reliable provided we 

can at the outset restrict the models which might model the domain under investigation to 

some subset of the logically possible ones. As Earman points out, it is, in the case of this 

particular J{, reasonable to settle for this 'almost sure' kind of reliability. This claim may 

not be uncontroversial, but that is topic for another paper. 
8 There is no way of making the hypotheses mutually exclusive. 

9 Earman does this in a somewhat inelegant way: he allows evidence matrices that are not 

closed under finite truth-functional combinations, but in the definitions of indistinguisha 
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bility, it is only their closures under taking finite truth-functional combinations that do real 

work (21). 
10 

Of course this definition of minimal evidence class is always relative to a language. 
11 

For a definition of the notions Sj, rij, etc., see any standard textbook on recursion 

theory, e.g., Rogers (1967). 
12 

Omitting the restriction to ? i -sentences in clause (v) would collapse MEC into the class 

of all sentences in the language of the evidence. 
13 

The results in the following paragraphs are based on the so-called theory of partially 
conservative sentences, a subbranch of proof theory of arithmetic. For proofs of the ba? 

sic theorems in this domain, see Bennett (1986), chapter 3. Thanks to Albert Visser for 

pointing out the relevance of this theory to elementary questions concerning the notion of 

empirical indistinguishability. 
14 

Albert Visser pointed out to us that Solovay's theorem goes through even for all exten? 

sions of the weak arithmetical theory / Aq + EXP, which is a FA subtheory of the FA theory 
/Ej. Bennett (1986, 11) makes the general remark that most of the standard theorems in 

the theory of partially conservative sentences hold for all extensions of relatively weak 

fragments of Peano Arithmetic. 
15 

Such interpretations have been explored in the philosophy of mathematics as a way to 

avoid mathematical platonism. See for instance Field (1980). 

The universal quantifier in Vx-*Px ranges over all the elements in the domain of a 

model, whether they are named or not. Hence 3xPx cannot be true in any model that 

satisfies Vx-iPx. Since 3xPx is in MEC, {3xPx, Vjc-?Pjc} is ED3. 
17 See e.g. Laudan and Leplin (1991), Hoefer and Rosenberg (1994), Leeds (1994), Kukla 

(1996), Leplin (1997). 
18 

In fact, the proof of Proposition 4.2.1 no longer goes through if we exclude all models 

with only one element in their domain from M. It would be interesting to know how much 

relativization is required to obtain actual examples of 2-element EI2 observational FA 

hypothesis partitions. 
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