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Abstract
We investigate how to assign probabilities to sentences that contain a type-free truth
predicate. These probability values track how often a sentence is satisfied in transfi-
nite revision sequences, following Gupta and Belnap’s revision theory of truth. This
answers an open problem by Leitgeb which asks how one might describe transfinite
stages of the revision sequence using such probability functions. We offer a general
construction, and explore additional constraints that lead to desirable properties of
the resulting probability function. One such property is Leitgeb’s Probabilistic Con-
vention T, which says that the probability of ϕ equals the probability that ϕ is true.

Keywords Liar paradox · Semantic paradox · Revision theory of truth · Probabilistic
convention T

1 Introduction

The revision theory of truth is an influential way to account for a type-free truth
predicate. This theory constructs a series of hypotheses, or extensions, of the truth
predicate. In this process one ‘revises’, or moves from one hypothesis to the next, by
an application of Tarski biconditionals. After some sufficiently long initial sequence
one can look back at the revision sequence and draw certain conclusions about the
semantic status of different sentences. The sentence T�0 = 0�, for example, settles
down on being true, whereas the liar sentence (which says of itself that it is not true)
will have its truth value continuing to switch throughout the revision sequence. One
then concludes that T�0 = 0� is true, and that the liar sentence is paradoxical.
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There are many ways of not settling down on a truth value. For instance, a sentence
might fall into a pattern such as

t, . . . , t, f, t, . . . , t, f, t, . . .

where the strings of t’s (‘true’) coming between two successive f ’s (‘false’) can be
of any finite length, and the classification of this sentence will be the same as that of
the liar sentence: they are both paradoxical. However, we suggest that a finer-grained
classification system is needed because their probability of being true is different. In
this paper we construct such probability functions that measure how often a sentence
is true in a revision sequence of hypotheses.

This idea was pioneered in Leitgeb [9], where the finite stages of the revision the-
ory of truth are used to define probabilities for sentences that may include a type-free
truth predicate. We suggest that Leitgeb’s construction yields a satisfactory account
of the semantic probability of the sentences whose semantic behaviour is captured by
the sequence of finite revision stages. For instance, the liar sentence is given seman-
tic probability value 1/2 because it always changes truth value in the transition from
stage n to stage n + 1.

However, the semantic status of some sentences is not appropriately captured by
the finite revision stages: one needs to proceed into the transfinite to see the true
colours of such sentences. In this article, we explore ways that Leitgeb’s construction
can be extended to determine probability values dependent on the transfinite stages
of the revision sequence, thus answering a question in Leitgeb [10].

Moreover, we will be interested in such probability functions that also satisfy cer-
tain notable global properties. One of these is Leitgeb’s Probabilistic Convention T,
which says that the probability of a proposition ϕ equals the probability of the propo-
sition that ϕ is true. Another global property is regularity, which says that sentences
have probability 0 only if they are always false in the revision sequence.

This article is structured as follows.We start by commenting on the kind of probability
that is being assigned and how that is to be interpreted.We then, in Section 4.1, briefly
review the revision theory of truth on which our probability assignments are based.
In Section 4.2 we present the theory of Leitgeb [9], on which our proposal builds.
Our proposal extends his by assigning probabilities at a transfinite ordinal stage, mea-
suring how often the sentence is true in the revision sequence up to that ordinal. In
Section 5 we then present the idea of our new proposal and some initial workings
towards it. In fact, we formulate two distinct proposals which are different ways of
extending our idea; however the two proposals are closely related in that the one is
the ‘standard part’ of the other. These proposals are presented in Sections 5.2 and 5.3.
It will emerge that which probability values get assigned and how the probability values
work depends on a choice of an ultrafilter. In Section 6 we discuss different proper-
ties of the ultrafilters one might wish to impose, and consider their consequences for
the probability functions that they determine. In Section 7 we conclude.

2 Some Preliminaries

Consider a language LT which adds to some background language L (which at least
contains Peano Arithmetic) a predicate T, called the truth predicate. We assume a



Probability for the Revision Theory of Truth 89

standard Gödel coding of the sentences of LT into the natural numbers, where the code
of ϕ is denoted #ϕ, and is referred to in the object language by �ϕ�. In fact, in the interest
of readability, and without real harm, we will at times be sloppy about coding matters.

In the revision theory of truth we are only interested in the extension of the truth
predicate. So we fix some background model M of L, which is a standard model of
Peano Arithmetic for the arithmetic vocabulary. A model of LT is given by adding to
M an interpretation of the truth predicate (a ‘hypothesis’), T, thus obtaining a model
M = (M,T) of the language LT.

We will fix some limit ordinal, κ , and define a probability function Pr which mea-
sures how often ϕ is true in the revision sequence up to the stage κ . There are different
ways of choosing this ordinal κ; we mention a few here. One might do everything
with κ as the class of ordinals On, though then one will have to take ultrafilters on
proper class-sized objects. Alternatively one may fix κ as ‘long enough’. One pro-
posal for such long-enough κ would be to set κ = ω1. The motivation for this would
be that the semantic behaviour of every sentence of LT is conclusively exhibited well
before ω1 in the revision sequence. Finally, one might instead think of κ as variable
limit ordinal and that what we are doing is assigning probabilities at each stage in the
revision sequence; one might then read off facts about the probability by determining
what is brought about by all Pr with κ large enough. For the purposes of this article
any of these three interpretations are admitted.

Our aim is then to find some Pr that measures how often a sentence is true in a
revision sequence up to the ordinal κ . Since the probability we are going to assign to
a sentence depends only on the sequence of truth and falsity values, we will directly
define such probability values as functions of such truth profiles, using 0 for ‘false’
and 1 for ‘true’:

Definition 1 A truth profile is a function f : κ → {0, 1}.
Many, but of course not all, truth profiles are expressed by sentences of LT :

Definition 2 The truth profile of a sentence ϕ is the function

TruthProfileϕ(α) :=
{
1 if (M,Tα) |= ϕ

0 otherwise

We want to define some Pr(f ) that measures how many 1s there are in a truth
profile. We then abuse notation and set

Pr(ϕ) := Pr(TruthProfileϕ).

This definition of probability of a sentence in terms of the probability of its truth
profile will henceforth be taken for granted.

3 Semantic Probability

In this article we are constructing a probability function that assigns probability val-
ues of sentences according to how often they are true in the revision theory of truth.
But what kind of notion of probability is it?
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The truth or falsehood of grounded sentences of LT are determined by the back-
ground model (the standard natural number structure). So there seems no immediate
room for non-extremal probability values there. So the usual applications of proba-
bility that say interesting things about, e.g., tosses of coins will not be covered by
this notion. But the probability notion we develop will allow for non-extremal prob-
abilities in cases of paradoxical sentences, where the background model does not
determine their truth value. Perhaps the best we can say about their truth status is
based on the frequency of them being true in the revision sequence.

Since these frequencies are not grounded in empirical facts, ours is not a standard
variant of the frequentist conception of probability. Instead, the truth frequencies
are determined by revision sequences. The revision sequences are in turn driven by
the Tarski-biconditionals, which are the basic semantical rules governing the truth
predicate. So we are using a semantic notion of probability: the probabilities that we
assign to paradoxical sentences might, in the spirit of Roeper and Leblanc [13, p. xi;
p. 111–113], be taken to be their semantic values.

Semantic probabilities are not degrees of belief, and they are not chances as usu-
ally conceived. But there may nonetheless be connections between the semantic
probabilities we assign and those other notions of probability. For example, perhaps
one’s degrees of belief should be weighted averages of semantic probabilities.1 This
proposal could be motivated by modifications of the traditional arguments for proba-
bilism. One such argument for probabilism is based on accuracy, or epistemic utility,
considerations (see Joyce [8]). This argument relies on the idea that beliefs should
be as close to the truth, or ‘accurate’, as possible. One might think that the seman-
tic probabilities we obtain in this paper should be treated as the semantic values of
sentences in such arguments, and one’s degrees of belief should be as close to such
semantic values as possible. Along the lines of Williams [15] one will be able to
show that this results in an agent’s degrees of belief being required to be weighted
averages of the semantic probabilities. A Dutch-book style argument will similarly
be able to be used to this same conclusion (again, see Williams [15]). In the special
case where the agent knows what the semantic probabilities are, this will also mean
that her degrees of belief should then equal those semantic probabilities.

4 Background

4.1 The Revision Theory of Truth

In the revision theory of truth (Gupta and Belnap [6]), one constructs revision
sequences, which are sequences of interpretations of a truth predicate. These can
be used to determine appropriate interpretations of T, or at least facts about how
appropriate interpretations will treat different sentences. Starting with an initial
hypothesised interpretation, T0, one can revise this hypothesis to determine a new
hypothesis, which will itself in turn be revised, etc. This process of revision develops

1Many thanks to an anonymous referee for this suggested connection to the accuracy arguments.
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a sequence of hypotheses. The revision of a hypothesis works by following the Tarski
jump:

Tα+1 = {#ϕ | (M,Tα) |= ϕ}
The paradoxicality of the liar sentence then finds its expression in the fact that

from any stage n to the next revision stage n + 1, the truth value of liar is reversed.
Typically, however, one wishes to extend the revision sequence into the transfi-

nite in order to account for certain intuitive characteristics of truth. Consider the
sentence:

∀nTn�0 = 0�,

with Tn denoting a string of n occurrences of T. This sentence is not paradoxical: we
expect any Tn�0 = 0� to be true simpliciter, and thus ∀nTn�0 = 0� to be true. But
this is not guaranteed to be obtained in any finite stage of the revision sequence: each
finite stage may only recognise a finite number of iterations of the truth predicate
applied to to 0 = 0, and thus may take ∀nTn�0 = 0� to be false. To guarantee the
truth of ∀nTn�0 = 0� one would then need to proceed to an ωth stage. This is done
by ensuring that if the revision sequence has settled down on some particular truth
value then that truth value is also assigned at the limit stage. There are different rules
for what to do at the limits, and we do not assume any particular such rule, but one
standard one is the Herzberger limit rule where Tλ contains only the stable truths at
any limit ordinal λ:

Tλ = {#ϕ | ∃β < ω ∀α
≥β
<λ ϕ ∈ Tα}

We in fact need to go beyond Tω and into the transfinite: even though for every
n, the sentence Tn�0 = 0� must be in Tω, the sentence ∀nTn�0 = 0� may not yet
be in Tω. We thus have to proceed one step further into the transfinite, following
the Tarski revision step for successor stages. Proceeding in this manner, we see that
∀nTn�0 = 0�must enter the extension of the truth predicate by stage ω+1, and stays
there forever after. It is easy to construct non-paradoxical sentences that first enters
the extension of truth predicate (and stays in forever after) at a stage that is much
larger than ω + 1, at least when we start with the empty initial hypothesis.2

4.2 Leitgeb

In Leitgeb [9], a proposal is made for how to define probabilities based on relative fre-
quencies in ω-length revision sequences. The present article can in part be seen as an
answer to a question in Leitgeb [10], which asks how one might define such relative
frequency based probabilities for revision sequences of ordinal length significantly
greater than ω. Our paper provides an answer to this question. Leitgeb specifically
asks whether one can take Banach limits of such longer revision sequences, which we
can provide an answer for if we restrict our ultrafilter to be ‘Banach’ (see Section 6.4).

2These matters are discussed in Welch [14] and Horsten et al. [7, section 3].
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Tarski’s theorem on the undefinability of truth shows that no classical model
makes Tarski’s convention T true in an unrestricted way, i.e., there is no model where
the Tarski-biconditionals

ϕ ↔ T�ϕ�

are true for all ϕ ∈ LT. In Leitgeb [9, p. 219] Leitgeb introduces his Probabilistic
Convention T, which can be seen as an approximation of the unrestricted Tarski-
biconditionals. Probabilistic Convention T says that for every sentence ϕ:

Pr(ϕ) = Pr(T�ϕ�).
This principle immediately has certain consequences: for example, Leitgeb notes
that every probability function that satisfies Probabilistic Convention T must assign
exactly probability 1/2 to the liar sentence.

Leitgeb shows that Probabilistic Convention T is consistent with the axioms of
finitely additive probability by using the finite stages of the revision theory and pro-
viding a summary probability function capturing the ideas of relative frequencies in
these finite stages of the revision theory.

We now present his proposal, which we subsequently generalise to apply also to
transfinite revision sequences.

Leitgeb’s basic idea for obtaining probabilities based on relative frequencies in ω-
length revision sequences is to take longer and longer finite samples, where relative
frequencies can easily be defined, and take limits to obtain the final probability value.
More carefully, then, if f is an ω-length truth profile—often it will be the truth values
of some sentence in the ω-length revision sequence—we can directly define relative
frequencies in each initial segment {0, 1, . . . , n − 1}:3

RelFreqn(f ) :=
∑n−1

i=0 f (i)

n
= |{i ∈ {0, . . . , n − 1} : f (i) = 1}|

n
.

Leitgeb then uses these RelFreqn to approximate the sought-after Prω, defining Prω
to be a limit of the finite approximations.

The relative frequency idea, together with the classical (Cauchy-Weierstraß) con-
ception of limit of a sequence, supports the view that if Prn(f ) converges to r as n

goes to ω, then Prω(f ) should be taken to be identical with r .
However, not all sequences have convergent probability, so this does not determine

Prω. As an example, consider a truth profile which switches value at each stage of the
form 3n. For such a profile, when the value is switching the number of stages in the
final sequence of values is much larger than all the preceding stages; in fact twice as
large. This means that its probability value then oscillates between being ≥ 2/3 after
each sequence of 1s, and being ≤ 1/3 after each sequence of 0s. There is a sentence
that has this non-convergent profile as its truth profile:4

∀n

(
Tn�0 = 0� ∧ ¬Tn−1�0 = 0�
→ ∀p

(
(3p ≤ n ∧ 3p+1 > n) → Even(p)

)
)

3Where |X| denotes the cardinality of X.
4At least if we take T0 = ∅, as then n is the first stage at which Tn�0 = 0� is satisfied. So the antecedent of
this formula identifies n as the stage of the revision theory we are at. Even(p) is shorthand for ∃x(2 · x =
p).



Probability for the Revision Theory of Truth 93

So the familiar notion of limit does not give us a probability function that is defined
on all profiles, or even all sentences of LT . To determine a probability value for all
profiles, one can take a generalised limit at stage ω of the finite relative frequencies.
There are of course many ways of doing this, many of which would result in a finitely
additive probability function defined on LT . But Leitgeb proposes that we take a
Banach limit at stage ω, and define the sought after probability function Pr to be such
a Banach limit. A Banach limit is a generalised limit that is shift-invariant:

Definition 3 For an truth profile f : κ → {0, 1}, the shift Sf of f is the function
such that

Sf (α) = f (α + 1).

Definition 4 Pr is shift-invariant iff for all f, Pr(f ) = Pr(Sf ).

Leitgeb then shows how being shift-invariant guarantees that Pr indeedmeets the ade-
quacy condition of satisfying Probabilistic Convention T (Leitgeb [9], Theorem 1,
p. 219–220).

In the previous section we saw that the sentence ∀nTn�0 = 0� is not necessarily
classified as true at stage ω. Since Prn(∀nTn�0 = 0�) may be 0 for all n, it fol-
lows that Prω(∀nTn�0 = 0�) may be 0. But just as it seems intuitively clear that
∀nTn�0 = 0� is true, it seems that it should get a probability (approximating) 1. It
seems that the overwhelming likelihood of ∀nTn�0 = 0� being true becomes visible
only in the transfinite. There are also paradoxical sentences whose ‘true colours’ only
become visible after stage ω. It is not hard to construct sentences that start oscillating
in a liar-like fashion only after some transfinite stage α (but do something differ-
ent before stage α).5 Thus we have also probabilistic reasons for extending Leitgeb’s
construction into the transfinite.6

5 Two Proposals

In this section, we try to improve on the revision theories of probability that we
have discussed above, and formulate two new proposals. In the first proposal, a class
of real-valued probability measures is defined. In the second proposal, a class of
hyper-real probability functions is constructed.

5.1 The Idea Behind the Proposals

We want Pr to be something like the relative frequency of ϕ being true, but we only
have a clear idea of how to define the required relative frequency if we have finitely

5See footnote 2.
6Campbell-Moore [5] presents a proposal which might also be seen as a method of extending Leitgeb’s
construction to the transfinite; but Campbell-Moore points out a number of undesirable features of her
proposal. This paper can be seen as an improvement on her proposal. There are also some technical sim-
ilarities between PrApprox that we construct and her limit stage requirements: If C is a closed property
(see Campbell-Moore [5]) and {X ∈ [κ]<ω | RelFreqX(f ) ∈ C} ∈ U then PrApprox(f ) ∈ C.
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many stages. What we will do, then, is first take finite samples and work out relative
frequencies for these, and then sum up the findings from this finite sampling into a
probability value. In order to sum up the findings, we will be using an ultrafilter.

Leitgeb’s construction only looked at up to n − 1:{0, 1, . . . , n − 1}, but we here
define finite sampling more generally. For a finite, non-empty set of ordinals X we
define

RelFreqX(f ) :=
∑

α∈Xf (α)

|X| = |{α ∈ X : f (α) = 1}|
|X| .

So, in particular, if X is the interval {0, 1, . . . , n − 1}, we have RelFreqX is the same
as RelFreqn as defined earlier.

We now want to choose Pr in such a way that it sums up the results from the finite
sampling from ordinals < κ . Using standard notation, we call the collection of all
such finite, non-empty samples

[κ]<ω := {X ⊆ κ | X �= ∅ and X is finite}.
So we define Pr using the RelFreqX(f ) for X ∈ [κ]<ω. The probability value we
will assign will consider what happens in ‘enough’ samples. If enough samples have
RelFreqX(f ) = r then we will assign Pr(f ) = r . We will capture this notion of
enough by an ultrafilter, U .7 This imposes rather strong constraints on the notion of
‘enough’, for example either a collection of samples counts as enough or its comple-
ment does. But these are required to ensure that our proposals end up assigning every
sentence a probability value.

We then want:

Pr(f ) = r ∈ R if {X ∈ [κ]<ω | RelFreqX(f ) = r} ∈ U ,

where U is an ultrafilter on [κ]<ω.

This does not yet fix the probability values of all sentences: it might be that for no
real number r do enough samples have RelFreqX(ϕ) = r .8

To be able to assign values to all sentences we make two different proposals.
The first is to assign a sentence a real number as a probability value if that num-
ber is approximated in enough samples. This proposal is developed in Section 5.2,
and is called PrApprox. The second proposal we make does require that the value
the sentence is assigned is exactly achieved in enough samples, it just allows that the
probability values be non-standard real numbers, or hyperreals. We develop this pro-
posal in Section 5.3, and the probability notion developed is labelled PrHyp. These

7U ⊆ ℘([κ]<ω) is an ultrafilter iff:

– [κ]<ω ∈ U ,
– ∅ /∈ U
– If A ∈ U and B ⊇ A, then B ∈ U ,
– If A ∈ U and B ∈ U , then A ∩ B ∈ U .
– Either A ∈ U or [κ]<ω \ A ∈ U .

It is rather common to use the metaphor of ‘enough’ to describe such ultrafilters.
8For example, consider T�0 = 0� which has the truth profile f, t, t, t . . . if we start with T0 = ∅. For any
fine, non-principal ultrafilter this will not have its relative frequency equal to any fixed value in enough
samples. See Section 6 for definitions of these kinds of ultrafilters.
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two proposals that we present are very closely connected: PrApprox is just the stan-
dard part of PrHyp, as is made precise in Theorem 9, but we think it is valuable
to present PrApprox directly both because we think that helps understanding PrHyp
without needing to first know anything about the hyperreals, and because we think it
is a valuable proposal in itself.

Our definitions are always relative to an ultrafilter U . The probability values that
are assigned by these are thus dependent on the ultrafilter chosen.9 In Section 6 we
consider some further global properties that can be imposed on ultrafilters and discuss
the consequences they have for the probability values assigned by the proposals.

5.2 Real-Valued Probabilities

The proposal developed in this section extends the previous suggestion, which took
a real number as the value of a sentence if that number was the relative frequency in
enough samples, by looking at approximation instead of equality. This will allow that
every sentence is assigned a particular real number as its probability value, of course
relative to a chosen ultrafilter.

We use RelFreqX(f ) ≈1/n r as shorthand for |RelFreqX(f ) − r| < 1/n.

Definition 5 PrApprox(f ) = r ∈ R iff for all n ∈ ω,

{X ∈ [κ]<ω | RelFreqX(f ) ≈1/n r} ∈ U .

It turns out that this does in fact ensure that each sentence obtains a probability
value, and even ensures that the probability values they receive satisfy the axioms of
finitely additive probability.

Proposition 6 PrApprox assigns a value to each sentence and this is a finitely
additive probability function.

Proof This can be proved directly, but it can be seen more concisely as a corollary of
Proposition 9 and the fact that PrHyp is a perfectly additive probability function.

We take this to be a potential suggestion for our sought-after Pr. However we will
also give another alternative in the next section.

5.3 Hyperrational Probabilities

The probability functions that were discussed in the previous section are everywhere
defined, real valued and finitely additive. But they are not σ -additive, i.e., there may
be cases where

Pr(∃xϕ(x)) �= lim
n−→ω

Pr(ϕ(0̄) ∨ . . . ∨ ϕ(n̄))

(Leitgeb [10], Theorem 1, p. 219–220). Indeed, they do not satisfy any natural infinite
additivity rule.

9See Benci et al. [3] for further discussion of the dependence on the ultrafilter.



96 C. Campbell-Moore et al.

We will now define a class of probability functions that do satisfy a natural and
strong infinite additivity principle. This principle is called perfect additivity. It says,
roughly, that for any family (countable or uncountable) of pairwise disjoint events,
the probability of its union is the sum of the probabilities of the members of the fam-
ily.10 The price that we will have to pay is that these probability functions take their
value in a non-archimedean extension ofQ (hyperrational spaces). This construction
uses the machinery developed in Benci et al. [2].

This construction allows us to keep the equivalence

PrHyp(f ) = r iff {X ∈ [κ]<ω | RelFreqX(f ) = r} ∈ U ,

instead of resorting to using approximation in the right hand side of this equivalence.
However it will do so by assigning non-standard probability values to sentences
where no real satisfies the right hand side of this equivalence.

As before, we consider a revision sequence for LT of length κ , and we take an
ultrafilter Uκ on [κ]<ω.

We will construct the hyperreal space in the usual way, by using equivalence
classes based on the ultrafilter chosen.

Definition 7 For F,G : [κ]<ω → Q, define: F ∼κ G iff

{X ∈ [κ]<ω | F(X) = G(X)} ∈ U .

Here F and G can be thought of as giving relative frequencies of truth on finite
sets (‘samples’) of hypotheses.

Now we use the ∼κ equivalence classes to be the objects in our hyperrational
space: Hκ = {[F ]∼κ }. On the basis of elementary arguments from non-standard anal-
ysis, this can be seen as a non-Archimedean extension of the rational [0,1] interval
by associating a rational number r with [Fr ]∼κ , where Fr is the constant function
assigning r to every X.

The field operations can be similarly used on this hyperrational space by defining
them point-wise; e.g. [F ]∼κ+[G]∼κ =[F +G]∼κ —one can check that these are well-
defined. One can also define [F ]∼κ < [G]∼κ iff {X | F(X)<G(X)}∈U . One can then
define notions like ‘infinitesimally close to’: x ≈ x′ iff for all n ∈ ω, |x −x′| < 1/n.

Then for any function F : [κ]<ω → [0, 1]Q we can define the (hyperrational)
probability of F to be [F ]∼κ . We obtain our desired probability values for truth
profiles by using RelFreq:

Definition 8 Forf a truth profile, define Ff : [κ]<ω →Q by Ff (X) :=RelFreqX(f ).
Then

PrHyp(f ) := [Ff ]∼κ .

This definition extends our original attempted definition in that we have for r ∈ Q,
PrHyp(ϕ) = r iff {X ∈ [κ]<ω | RelFreqX(ϕ) = r} ∈ U .

10This is discussed in detail in Brickhill and Horsten [4, section 2.5]. (The exact perfect additivity principle
that we get is given in Proposition 8 of that paper.)
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PrHyp is always an everywhere defined finitely additive probability function
(Benci et al. [2], section 3.4). Moreover, PrHyp is perfectly additive (Benci et al. [2],
Proposition 8, p. 132–133).11

In the mathematical literature, probability theory is almost regarded as applied
mathematical analysis. In other words, in mathematical probability theory, many feel
that if an account does not contain a rule that relates infinite events to sub-events that
are infinitely small in comparison to it —of course σ -additivity, which makes use of
the classical notion of limit, is the standard way of doing this— then it cannot really
be said to be a theory of probability. In the philosophical literature on probability, in
contrast, finite additivity is often regarded as sufficient.

For many purposes in philosophy we can confine ourselves to finite sample spaces
(finite sets of possible worlds, for instance). But infinity is at the heart of what we
are concerned with: we need to take account of infinitely many stages. In the context
that we are concerned with, it is desirable to have a rule that tells us how the prob-
ability value of a sentence of the form ∃xϕ(x) supervenes on the probability of the
sentences ϕ(0), ϕ(1), ϕ(2), . . ., and this requires an infinite additivity principle. This
seems to be particularly important for the semantic notion of probability that we are
developing here.

The definition of PrHyp relates to the notion PrApprox in the following way:

Proposition 9 PrApprox(f ) ≈ PrHyp(f ), i.e. PrApprox(f ) is the standard part of
PrHyp(f ).

Proof Due to the definition of PrApprox, we have:

{X | RelFreqX(f ) ≈1/n PrApprox(f )} ∈ U
for all n and we can thus conclude that PrHyp(f ) ≈1/n PrApprox(f ) for all n,
i.e. PrHyp(f ) ≈ PrApprox(f ).

6 Constraints on Ultrafilters

The construction we have presented depends on the choice of an ultrafilter U . We
might wish to study what happens with particular choices of ultrafilters. In this
section we consider additional restrictions one may wish to impose on the choice of
ultrafilter. Using such restricted ultrafilters then allows us to read off additional prop-
erties of the probabilities assigned. For example the property of Banachness imposed
on an ultrafilter ensures that the probability of the liar sentence is 1/2.

This section considers five properties of ultrafilters, Non-Principality, Fineness,
Stability, Banachness and GrandLoop, and the features of the resulting probability
functions that they lead to. At the end of the section we show to what extent the
properties are compatible.

For the reader who wishes to skip technical details we provide a summary of the
principles and what they lead to in Section 6.6.

11The notions of perfect additivity are defined for probabilities as applied to events instead of truth profiles
or sentences. But one can see how to apply these definitions in our context by using Definition 25.
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6.1 Non-Principal

There is a good reason to think that we should require that U be a non-principal
ultrafilter as otherwise the probability is determined by a single finite snapshot.

Definition 10 A filter U on [κ]<ω is non-principal if there is no X ∈ [κ]<ω such
that U = {A ⊆ [κ]<ω | X ∈ A} (or equivalently {X} ∈ U ).

In fact we can say something stronger about principal ultrafilters: they are deter-
mined by a sample consisting of a single stage: i.e. if U is a principal ultrafilter then
there is some α such that U = {A ⊆ [κ]<ω | {α} ∈ A}.

Principal ultrafilters count a single sample, in fact a singleton sample, as being
enough, leading to an unnatural notion of ‘enough’. They also lead to undesirable
probability assignments: If the probability is defined using a principal ultrafilter, then
we will get that PrHyp(f ) = RelFreq{α}(f ) for the α which generates U . We will
thus have that PrHyp(f ) = f (α). So probability values will always be 0 or 1 depend-
ing on whether the sentence is satisfied at α or not. This is undesirable. We will thus
require that our ultrafilter is non-principal.

Non-principal ultrafilters, along with all the others we mention in this section, will
always exist, but we leave this result to Section 6.6.

6.2 Fine

There is a school of thought that holds that it is desirable for a probability function
to be so fine-grained as to distinguish between impossible and possible events. In
other words, only the probability of the empty event should be 0. This requirement
is called regularity (Lewis [11], p. 267).12 In our context, regularity amounts to the
requirement that PrHyp(f ) = 0 only if the sentence is always false up to stage κ . We
obtain such regularity if we restrict our attention to fine ultrafilters:

Definition 11 For β < κ define:

A
β

Fine := {X ∈ [κ]<ω | β ∈ X}
An ultrafilter U is fine if A

β

Fine ∈ U for all β < κ .

Hyperrational probability functions based on fine ultrafilters have interesting
properties:

Proposition 12 If the ultrafilter U on which PrHyp is based is fine, then PrHyp is
regular (in the sense given above).

Proof Brickhill and Horsten [4, Proposition 2.5].

12A philosophical discussion of the requirement of regularity can be found in Benci et al. [3, section 5.2].
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It is easy to see that fineness entails non-principality. Moreover, fineness entails
uniformity, i.e., that the probability of any truth profile that has a 1 only at a single
ordinal is the same. Or, in terms of events, the probability of any singleton event is
the same as that of any other singleton.

Proposition 13 If the ultrafilter U on which PrHyp is based is fine, then PrHyp is
uniform.

Proof Brickhill and Horsten [4, Proposition 2.6].

In the present setting, given perfect additivity, uniformity means that every model
in the revision sequence makes an equal contribution to the probability of any
sentence of LT .

Alternatively, a weight function can be added to the construction of PrHyp, as in
Benci et al. [2]. This will enable us, for instance, to assign more weight to ordinals
that are further away from limit ordinals (as one might think that stages that are
further away from a limit are better). This would allow us to get regularity without
uniformity.

It is easy to see that if PrHyp is constructed from a fine ultrafilter, then the sen-
tence¬T�0 = 0�, which has truth profile (1, 0, 0, 0, 0, . . .) if we start from the empty
hypothesis, is given an infinitesimally small but non-zero probability value by it.
Proposition 9, which relates the real-valued probability function PrApprox to the
hyperrational probability function PrHyp, then entails that PrApprox(¬T�0 = 0�) =
0. So PrApprox will not in general be regular even if it is based on a fine ultrafilter.
Note that this is not necessarily a bad thing: it seems good to completely ignore the
only model in the revision sequence that makes the grounded sentence ¬T�0 = 0�
true even though it should come out false! We will return to the question of to what
extent regularity is desirable in Section 6.6.

6.3 Stability

The next property of ultrafilters that we consider is that of being a stability ultra-
filter. A stability ultrafilter only cares about what happens in the ‘final’ part of the
truth profile of a sentence. The motivation for it therefore directly conflicts with the
motivation for the fineness property, and indeed we will see in Section 6.6 that the
property of stability we introduce is incompatible with that of fineness, at least if
these properties are required unrestrictedly.

The intuition behind the stability notion is that if a sentence ends up always being
false from some stage onwards, then a stability ultrafilter will give that probability 0
as it doesn’t care what happened in the initial part of the truth profile. This will get
us, for example, that PrHyp(T�0 = 0�) = 0, whereas regularity got us that it was
non-zero if our starting hypothesis was empty.

Definition 14 For β < κ define:

A
β

Stability := {X ∈ [κ]<ω | for all α ∈ X, α ≥ β}.
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We say U is a stability-at-β ultrafilter if A
β

Stability ∈ U .

This allows one to ignore initial stages of the revision sequences, as made precise
by the following proposition:

Proposition 15 Suppose A
β

Stability ∈ U . Suppose f and f ′ are truth profiles such that
for κ > α ≥ β, f (α) = f ′(α). Then PrHyp(f ) = PrHyp(f ′).

Proof Let f and f ′ agree from β onwards. Then for each X ⊆ [β, κ),
RelFreqX(f ) = RelFreqX(f ′), and thus {X | RelFreqX(f ) = RelFreqX(f ′)} ⊇
A

β

Stability ∈ U , so by the superset property of ultrafilters {X | RelFreqX(f ) =
RelFreqX(f ′)} ∈ U . Therefore PrHyp(f ) = PrHyp(f ′).

Taking an ultrafilter on [κ]<ω that is a stability-at-β ultrafilter is equivalent to
taking an ultrafilter on (finite samples of ordinals in) [β, κ), i.e., where one ignores
the ordinals up to β. So considering a stability-at-β ultrafilter is essentially the same
as just applying all the considerations to a revision sequence that starts at the point β.

6.4 Banachness

Leitgeb asked how one might take Banach limits to obtain probability values based
on relative frequencies in long revision sequences (Leitgeb [10], Section 2.3, Ques-
tion 2). In this section we introduce a property of ultrafilters that yields Leitgeb’s
sought-after generalisation of his construction.

We have seen in Section 4.2 that Leitgeb’s construction leads to a shift invari-
ant probability function: assigning the same probability values to an ω-length truth
profile, f , and its shift Sf . One of the aims of the present paper is to base probabil-
ity judgements on revision sequences longer than ω. In the hyperrational approach,
given regularity, it is clear that we cannot have, for all truth profiles f , PrHyp(f ) =
PrHyp(Sf ): otherwise the probability value assigned would ignore the truth value at
stage 0, but regularity rules that out. But it might be reasonable to ask in this con-
text for almost shift invariance, i.e., PrHyp(f ) ≈ PrHyp(Sf ). This would entail
that for all ϕ ∈ LT , PrHyp(ϕ) ≈ PrHyp(T�ϕ�). In other words, such hyperrational
probability functions would approximately satisfy Probabilistic Convention T, and
the associated real probability functions, PrApprox, would fully satisfy Probabilistic
Convention T.

On longer finite initial intervals, the relative frequencies associated with a truth
profile f and its shift Sf approximate each other ever closer. So the rough idea for
constructing a shift invariant probability measure is to let larger and larger finite
intervals belong to the ultrafilter on which the probability function is based.13

13A simper requirement would be to define An
Banach := {I k

α | n < k}. But this would cause conflicts with
Fineness so we take this weaker definition which is also sufficient for obtaining shift-invariance.
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Since we will be using it a lot, it will be useful to give a shorthand for intervals of
length k (∈ N) starting at α.

Definition 16 Let I k
α := [α, α + k) = {γ | α ≤ γ < α + k}.

Definition 17 For each n ∈ N define

An
Banach :=

⎧⎨
⎩

m⋃
i=1

I ki
αi

∈ [κ]<ω

∣∣∣∣∣∣
m ∈ N,

n < k1, . . . , km ∈ N,

α1, . . . , αm < κ,

⎫⎬
⎭ .

Say that U is Banach if each An
Banach ∈ U .

This will do the job we require: such Banach ultrafilters will generate shift invari-
ant PrApprox measures, and almost shift invariant PrHyp measures. We thus have
provided our answer to Leitgeb’s open problem.14

Recall that for any truth profile f : κ → {0, 1}, the shift of f , Sf , is defined by
Sf (α) = f (α + 1).

Proposition 18 If U is a Banach ultrafilter, then PrApprox is shift-invariant,
i.e.

PrApprox(f ) = PrApprox(Sf ).

And PrHyp approximates the equality (i.e. replace = by ≈).

Proof Let n be chosen. We want to show that

{X ∈ [κ]<ω | RelFreqX(f ) ≈1/n RelFreqX(Sf )} ∈ U .

We will show that for each X ∈ A2n
Banach, RelFreqX(f ) ≈1/n RelFreqX(Sf ). The

result will then follow by the assumption that A2n
Banach ∈ U .

Suppose X is some member of A2n
Banach. Then X is of the form

⋃
1≤i≤m I

ki
αi

where ki > 2n. Without loss of generality we can choose these intervals to be
disjoint.

Since ki > 2n,

RelFreq
I

ki
αi

(f ) − RelFreq
I

ki
αi

(Sf ) = f (αi) − f (αi + ki)

ki

<
2

ki

<
1

n

14Leitgeb actually asks how one can take Banach limits, which are linear functionals that are shift-
invariant. We have just defined our probabilities on truth profiles, which are sequences of 1s and 0s. If we
instead defined everything to apply a “probability” value to bounded sequences of reals then our PrApprox
would be a linear functional that is shift-invariant, i.e. a Banach limit. This alternative definition would
also allow a more direct proof of Proposition 20 from Proposition 18.
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SoX is a finite union of intervals, where the relative frequency of f and Sf are closer
than 1/n in each interval, and thus the relative frequency of f and Sf are closer than
1/n in the whole of X, as required.15

Corollary 19 PrApprox satisfies Probabilistic Convention T. I.e.

PrApprox(ϕ) = PrApprox(T�ϕ�)
and PrHyp approximates it (i.e. replace = by ≈).

Proof From Proposition 18, as in the proof of Theorem 1(2) in Leitgeb [9, p. 221].

This constitutes a significant improvement on the probability measures proposed
in Leitgeb [9]: we have now satisfied Probabilistic Convention T whilst having at the
same time assigned ‘correct’ probability values to sentences that take a long time to
stabilise (such as the sentence ∀nTn�0 = 0� and its more sophisticated variants).

The key feature of Banach ultrafilters is that they ensure that the ordering of the
truth values plays a role in the final probability assignment. If a truth profile falls
into a repeating pattern, for example, 1, 1, 0, 1, 1, 0, 1, 1, 0, . . ., then we might want
to ensure that the probability assigned to this is 2/3. By ensuring that the ultrafilter
is Banach we obtain this result.

Proposition 20 Suppose f falls into a repeating pattern of length N that starts at
stage M (N, M ∈ N),16 then

PrApprox(f ) = RelFreqIN
M

(f )

and thus PrHyp(f ) ≈ RelFreqIN
M

(f ).

Proof We actually only need to show the result for the case when M = 0 (i.e. when
f is N-periodic) and the result for other M holds by shift invariance (Proposition
18) as PrApprox(f ) = PrApprox(SMf ) and SMf is a sequence that just consists of
copies of the repeating sequence.

The argument works in a similar manner to that of Proposition 18. A sketch is as
follows: Consider any union of intervals and each longer than N · K . The collection
of all such intervals is a member of U by our Banachness assumption. We show that
any such union has RelFreqX(f ) ≈1/K RelFreqIN

α
(f ), because the majority of X is

formed of N-length intervals. This proves our result.

15More carefully: for X = ⋃
1≤i≤m I

ki
α1 ,

RelFreqX(f ) − RelFreqX(Sf )

=
∑

1≤i≤mki(RelFreq
I

ki
αi

(f ) − RelFreq
I

ki
αi

(Sf ))∑
1≤i≤mki

≤
∑

1≤i≤m ki · 1/n∑
1≤i≤mki

≤ 1/n

16This will later be called N -periodic after M: see Definition 23 for a careful definition of this.
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If we consider, in addition to Banachness, the property of stability, we will be able
to obtain the result that the probability of sentences whose truth profile falls into
a repeating finite-length sequence after some transfinite stage is reduced to a finite
relative frequency. This therefore extends what we obtained in Proposition 20 where
we only required Banach ultrafilters, whereas here we need Banachness and stability.

Proposition 21 Suppose f falls into a repeating pattern of length N that starts at
stage β (N ∈ N, β < κ).

Let α ≥ β. If U is Banach and Aα
Stability ∈ U then

PrApprox(f ) = RelFreqIN
α

(f )

and thus PrHyp(f ) ≈ RelFreqIN
α

(f ).

Proof The argument works as in Proposition 20.

By finite applications of shift-invariance, we see that the Banach property of
shift-invariance entails the property of finite shift invariance, so for each n ∈ N,
PrHyp(f ) ≈ PrHyp(Sn(f )). So we can obtain almost finite-shift-invariance of our
probability functions for transfinite revision sequences. It is natural to ask whether
stronger forms of almost infinite-shift-invariance can also be obtained. One might
wonder, for instance, whether we can obtain probability functions such that

PrHyp(f ) ≈ PrHyp(f + ω),

where (f +ω)(α) := f (α+ω). Indeed, if we choose κ = ω1, one might wonder if we
can have hyperrational probability functions for LT that are almost β-shift-invariant
for every β < ω1. We will not pursue this theme further in this article.17

6.5 Grand Loop

It is known from the literature on the revision theory of truth that if we use the
Herzberger limit rule then every sentence falls into a repeating pattern. This eventual
periodicity of the entire revision sequence is known as the Grand Loop phenomenon.
This phenomenon also appears using limit rules such as the ‘constant bootstrapping
policies’ of Gupta, but notably not for the permissive limit criterion which allows one
to make choices at each limit ordinal. For this section we focus on the Herzberger
limit rule, though any other rule that has the Grand Loop phenomenon would be
equally applicable here.

There are thus ordinals ζ and λ such that for any sentence, ϕ, after ζ the truth
profile of the sentence just consists of copies of a single λ-length sequence. One
moral to be taken from this Grand Loop phenomenon is that after going through
the stages [ζ, ζ + λ), one might as well stop, for from then on the pattern will just

17The question of shift-invariance has been investigated to some extent in the context of Numerosity The-
ory (see Benci et al. [1]), which is from a mathematical point of view closely related to the generalised
probability functions that are investigated here.
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repeat indefinitely. We might want the Grand Loop phenomenon to be reflected in our
probability measure. In other words, we might want the probability of the sentence
to be able to be determined by its action on [ζ, ζ + λ). In this section we will find
such a result: we will impose a particular constraint on the ultrafilters that ensures
that the probability of a sentence is the probability of the sentence on the interval
[ζ, ζ + λ), or in fact in any loop. We will formalise this idea in terms of conditional
probabilities.

In this section we will impose a further constraint on κ: that it is closed under λ-
addition, i.e. if α < κ then α + λ < κ . If κ is ω1, for example, then this will hold for
any λ < ω1.

To simplify the presentation we will first work as if the model associated with
stage ζ , where the grand loop starts, is the intial stage 0 of our revision theory. To
ensure that our ultrafilter property works for ζ > 0, we will later additionally impose
the property of stability-at-ζ ,which as mentioned in Section 6.3 is equivalent to just
considering an ultrafilter on [ζ, κ).

There is a little bit of work to do to formalise the informal idea of looping
sequences when the looping length is transfinite. For this one needs the notion of
‘modulus’:18

Definition 22 Define α mod λ as the unique γ < λ for which there is some δ with
α = λ · δ + γ .

We can now formalise the idea of the loop:

Definition 23 We say that a truth profile f is λ-periodic if for all α, f (α) =
f (α mod λ).

Or, equivalently, if for all α, β, if α mod λ ≡ β mod λ, then f (α) = f (β). A
truth profile is λ-periodic after ζ if the above holds restricted to α, β > ζ .19

The Grand Loop phenomenon20 then says:

Theorem 24 There are ordinals ζ and λ such that for all ϕ ∈ LT, the truth profile of
ϕ is λ-periodic after ζ .

So what we are looking for is some property of ultrafilters that will ensure that
the probability of the sentence is the same as the probability just focusing on the
interval [0, λ) —recall that we are first assuming for simplicity that the beginning of
the grand loop is at stage 0.

18Rivello [12] also uses this setup. See his paper for more analysis of the Grand Loop phenomenon.
19Note that our definition differs slightly from Rivello [12] as it is slightly more convenient for us, but
note that the definitions are equivalent if ζ is a multiple of λ.
20Results in this section are perhaps still relevant to someone who is interested in alternative limit crite-
ria which need not exhibit this Grand Loop phenomenon as they might tell one about the action of the
sentences that do happen to become periodic. However one would have to reconsider Theorem 30 with
varying λ.
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In order to state this we first will need to define this notion of ‘probability just
looking at [0, λ)’, which we do by means of defining conditional probability:

Definition 25 We can identify a set E ⊆ κ , or an event with a truth-profile: its
characteristic function.21 We will abuse notation and refer just to E when we mean
its truth profile. We will also assume that intersections of truth profiles are defined as
would be expected.22

If PrHyp(E) > 0 (possibly infinitesimal), then

PrHyp(f |E) := PrHyp(f ∩ E)

PrHyp(E)
.

Which property of ultrafilters will get us what we want? It will be such that the
collection of X ∈ [κ]<ω where

RelFreqX(f ) = RelFreqX(f ∩ [0, λ))

RelFreqX([0, λ))
= RelFreqX∩[0,λ)(f )

is a member of U . So we just need to ensure that there is some A
0,λ
GrandLoop ∈ U where

all the X ∈ A
0,λ
GrandLoop have that property. (The 0-superscript is for later generali-

sation).23 So our question becomes: Which X ∈ [κ]<ω have the feature that if f is
λ-looping then

RelFreqX(f ) = RelFreqX∩[0,λ)(f ),

i.e., that the relative frequency in the whole of X is the same as in X ∩ [0, λ)?
A sufficient condition on X is that how it looks in [0, λ) is the same as it looks

at the other loops.24 Such a condition will ensure that if f is λ-periodic, its relative
frequency in X will be the same as the relative frequency in X ∩ [0, λ).

To define this we will first introduce a more general notion for λ-length intervals
starting at ordinals θ . We only present the definition for θ multiples of λ,25 as they’ll
be the starting points of the loops and will be all we need for our definition.

21TruthProfileE(α) :=
{
1 α ∈ E

0 otherwise

22For truth profiles f and g, (f ∩ g)(α) =
{
1 f (α) = 1 and g(α) = 1
0 otherwise

.

23It will also need to be that for all X ∈ A
0,λ
GrandLoop, X ∩ [0, λ) �= ∅ (to make the denominator > 0), but

this will hold for our choice of A
0,λ
GrandLoop.

24A weaker requirement is

X =

⎧⎪⎪⎨
⎪⎪⎩

⋃
γ∈�

�γ ∈ [κ]<ω

∣∣∣∣∣∣∣∣

� is a finite set of ordinals each < λ

For each δ ∈ �γ , δ mod λ = γ

For each γ ∈ �, �γ ∩ Iλ
ξ �= ∅

There is some m ∈ N such that |�γ | = m for each γ ∈ �

⎫⎪⎪⎬
⎪⎪⎭

which allows the required repetitions of the members of X∩Iλ
ξ to not come in blocks but be spread out. We

present the stronger requirement to keep the arguments easier to follow, but one can check that everything
goes through with this alternative requirement.
25By which we mean θ mod λ = 0.
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Definition 26 For θ a multiple of λ,26 define the λ-interval starting at θ as:

Iλ
θ := [θ, θ + λ) = {α | θ ≤ α < θ + λ}.

We also present the definition not just for the 0 case, but for other ordinals ξ that
are starting points of loops.

Definition 27 For ξ a multiple of λ define A
ξ,λ

GrandLoop :=⎧⎪⎪⎨
⎪⎪⎩

⋃
θ∈�

�θ ∈ [κ]<ω

∣∣∣∣∣∣∣∣

� is a finite collection of multiples of λ, and contains ξ

�θ ⊆ Iλ
θ

Each �θ is a λ-copy of �ξ ,
i.e. {ξ + α mod λ | α ∈ �θ } = �ξ

⎫⎪⎪⎬
⎪⎪⎭

Say U is a GrandLoopλ ultrafilter if Aξ,λ ∈ U for all ξ multiples of λ.

This set has been constructed so that if the ultrafilter contains it then the probability
of any λ-periodic sequence is the same as its conditional probability on [0, λ).

Theorem 28 If f is a λ-periodic sequence, and A
ξ,λ
GrandLoop ∈ U , then

PrHyp(f ) = PrHyp(f | Iλ
ξ ).

Proof

RelFreq�θ
(f ) =

∑
α∈�θ

f (α)

|�θ | =
∑

α∈�θ
f (ξ + α mod λ)

|�θ |
=

∑
β∈�ξ

f (β)

|�ξ | = RelFreq�ξ
(f )

Since X ∈ A
ξ,λ

GrandLoop is a finite union of such �θ , and �ξ = X ∩ Iλ
ξ , we have that

RelFreqX(f ) = RelFreq�ξ
(f ) = RelFreqX∩Iλ

ξ
(f ) = RelFreqX(f ∩ Iλ

ξ )

RelFreqX(Iλ
ξ )

.

As we mentioned in the introduction, the grand loop result for the revision the-
ory only says that sentences will be periodic after some ordinal ζ . By ensuring
that our ultrafilter is a stability-at-ζ ultrafilter we can essentially get it to ignore all
stages before ζ , which are the cases that would mess up with the relative frequencies.
Another way of getting the same result is of course simply to take the first repeated
point ζ as the starting hypothesis of the revision sequence. If we do that, then we do
not have to impose an additional stability condition on our ultrafilter.

26The definition without this restriction would be: If θ = λ · δ + γ , for γ < λ, then:

Iλ
θ := [λ · δ + γ, λ · (δ + 1) + γ ).

And the following theorems would then still hold.
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Theorem 29 Suppose f is λ-periodic after ζ , and ξ is a multiple of λ and is > ζ . If
A

ζ
Stability ∈ U and A

ξ,λ
GrandLoop ∈ U , then

PrHyp(f ) = PrHyp(f |Iλ
ξ ).

Thus we have
PrHyp(ϕ) = PrHyp(ϕ|Iλ

ξ )

for any ϕ ∈ LT, with ζ and λ as in Theorem 24.

Proof The argument exactly follows as in Theorem 28 observing that now by our
stability assumption the θ can be restricted to ordinals > ζ , where the relative
frequencies work properly.

By imposing stability-at-ζ we have thus essentially ignored all models up to stage
ζ and this can be seen to be motivated by the grand loop picture: For every stage
α < ζ , there are non-pathological true sentences (such as ∀nTn�0 = 0�) that are
made false by model Tα . So any such model is determinately deficient.

In contrast, none of the models Tα for α ≥ ζ assigns the wrong truth value to
any non-pathological sentence. So it is likewise motivated to require that every Tα

for α ≥ ζ makes an infinitesimal non-zero contribution to the probability value of
sentences. To get this coming out in our probability assignments one could impose
the constraint of fineness at all stages after ζ , which is possible because the ultrafilter
properties of fineness and grand loop cohere, as is shown in the next section.

6.6 How These Properties of Ultrafilters Relate

We have now presented all the properties of ultrafilters that we will consider. We first
just summarise these properties:

– Non-Principal: We want the ultrafilter to be non-principal because otherwise the
probability value of a sentence would always reduce to the truth value at some
fixed stage of the revision sequence, and therefore would not in any sense capture
how often the sentence is true.

– Fineness: This allows PrHyp to be regular and uniform, treating each stage of
the revision sequence equally.

– Stability: This allows one to ignore any initial segment of the revision sequence,
capturing the idea that the later stages are better and should be initial stages are
just ‘junk’ that can be thrown away.

– Banachness: This allows us to obtain Probabilistic Convention T (at least
for PrApprox): PrApprox(ϕ) = PrApprox(T�ϕ�). This is the principle that
motivated Leitgeb’s original introduction of these probabilities of the revision
sequences.

– GrandLoop: This is motivated by specific revision theory considerations: revi-
sion sequences (at least those where the limit is determined by a rule) will settle
into a periodic pattern — the Grand Loop phenomenon. This GrandLoop prop-
erty of ultrafilters that we considered ensures that the probability of a sentence is
given by just considering its action within one of the loops of the Grand Loop.
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Each of these properties we find interesting, and we find ourselves attracted to
them in varying degrees. We find non-principality essential, and GrandLoop we think
of as an interesting optional feature. One can note, though, that not all of them can
be asked to simultaneously hold unrestrictedly. In particular we see that the moti-
vations for Fineness and Stability are inconsistent. Fineness is motivated by treating
all stages equally, whereas Stability allows us to ignore initial stages and treat later
stages as more important. However, restricted versions are consistent: so long as one
only asks for Stability up to some point and Fineness after that these will be com-
patible. There is similarly a conflict between GrandLoop and Stability as GrandLoop
says we can just consider a particular loop, whereas Stability tells us that from some
later perspective that loop should be ignored. However, again they will be consistent
if we restrict Stability up to some stage and GrandLoop after that.

Our next two results make the above more precise:

Theorem 30 For any λ < κ , there is an ultrafilter that has all the above-mentioned
properties except for Stability, i.e. Non-Principality, Fineness, Banachness and
GrandLoopλ.

Stability can be added if we restrict Fineness and GrandLoop:

Theorem 31 For any λ < κ , ζ ≤ κ , ζ a multiple of λ,27 there is an ultrafilter,
U satisfying Non-Principality, Fineness-after-ζ , Stability-before-ζ , Banachness, and
GrandLoopλ-after-ζ . I.e.:

– U is Non-Principal,
– Aα

Fine ∈ U for all α > ζ ,
– Aα

Stability ∈ U for all α < ζ ,
– U is Banach, i.e. An

Banach ∈ U for all n,

– A
ξ,λ
GrandLoop ∈ U for all ξ multiples of λ that are > ζ .

Proof Note that Theorem 30 follows from Theorem 31, so we prove the latter.
We note that an ultrafilter is non-principal iff A ∈ U for every cofinite A.28

We use the standard fact that if A ⊆ ℘[κ]<ω has the finite intersection property,
i.e. the intersection of any finite B ⊆ A is non-empty, then there is an ultrafilter
extending A.

So take finitely many from each of our classes, and we will find X that is in all of
these classes.

• Non-Principal: X ∈ A1 ∩ . . . ∩ An, where each Ai is cofinite.
• Fineness: X ∈ A

γ1
Fine ∩ . . . ∩ A

γn

Fine with γi > ζ

– So we need to ensure γ1, . . . γn ∈ X.

27If ζ = κ then Stability is required unrestrictedly, and GrandLoop and Fineness are dropped.
28I.e. [κ]<ω \ A is finite.
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• Stability: X ∈ A
β1
Stability ∩ . . . ∩ A

βn

Stability with βi < ζ

– So X ⊆ [βi, κ).

• Banachness: X ∈ A
m1
Banach ∩ . . . ∩ A

mn

Banach

– So X is a finite union of finite intervals, each at least mi long. So we
just need to check that it’s a finite union of intervals each at least m :=
max{m1, . . . mn} long.

• GrandLoop: X ∈ A
ξ1,λ

GrandLoop ∩ . . . ∩ A
ξn,λ

GrandLoop with each ξi a multiple of λ and
> ζ .

– So X is a finite union of �θ ⊆ Iλ
θ , each being a λ-copy of �ξi

.

We will define infinitely many sets that are members of each of the sets, except
for the non-principal ones. Then since the non-principality condition can only rule
out finitely many sets, one such set must be in A1 ∩ . . . ∩ An as that is a cofinite set.

Take any M ≥ m.
YM :=

⋃
i≤n

IM
γi
.

This would already be enough to get all of our properties except for GrandLoop.
For GrandLoop we need to get the copies working properly. The initial idea would
be to ensure than anything that is a λ-copy of something in YM gets thrown into
our set. That will end up with an infinite set, so instead we just add the additional
members that are in the λ-intervals of interest, i.e., the ones that are non-empty. More
carefully, then, we define the following: � will be the collection of starting points of
our intervals of interest, and �M will describe how each copy of interest looks: Let

� := {θ | θ is a multiple of λ and Iλ
θ ∩ Ym �= ∅} ∪ {ξ1, . . . , ξn}.

�M := {α mod λ | α ∈ YM}
These sets are both finite.29

Now define
XM := {θ + α | θ ∈ � and α ∈ �M}.

Choose some M ′ with XM ′ ∈ A1∩ . . .∩An. This is possible because A1∩ . . .∩An

is cofinite. Then let
X = XM ′ .

We need to check that X is a member of all our required sets.

– Non-Principal: We have chosen X to be some XM ′ that lies in A1 ∩ . . . ∩ An.
– Fineness: γi ∈ Im

γi
⊆ YM ′ ⊆ X

– Stability: Because γi > ζ , each α ∈ YM ′ is > ζ . And because ζ is a multiple of
λ, each θ with Iλ

θ ∩ YM ′ �= ∅ must be > ζ . Also we have each ξi > ζ . So each
α ∈ �M ′ is > ζ . And thus each α ∈ X is > ζ . Since we required our βi be < ζ

we therefore have that each α ∈ X is > βi .

29Note that we could equally have defined � to depend on M , but this would not change anything.
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– Banachness: We started with YM ′ being a union of M ′-length intervals, and
we only added further λ-copies of M ′-length intervals, so we will never have
obtained an interval that is shorter than M ′ > m.

– GrandLoop: Let�θ := X∩Iλ
θ = {θ+α | α ∈ �M ′ }, and see thatX = ⋃

θ∈� �θ .
Observe that {ξi + α mod λ | α ∈ �θ } = {ξi + α | α ∈ �M ′ } = �ξi

.

One could retain commitment to Stability in its full generality and drop Fineness
and GrandLoop. Commitment to GrandLoop is interesting but we think it is not as
well motivated as the alternative properties, and it is only interesting if one fixes
attention on limit rules that lead to the Grand Loop phenomenon. One might worry
that by not requiring Fineness we can ignore certain features of the sequence that
should not be ignored. A weaker idea that is consistent with the Stability idea is that
we should care about all the cofinal hypotheses. That does not mean caring about any
particular ordinal at which they appear, but just some ordinal at which the hypothesis
reappears. It is an open question whether we an impose a property on the ultrafilters
that would get us this feature.

From a philosophical point of view, the most attractive way to go might instead be
to take that the global constraints on ultrafilters that we have discussed are to some
extent correct. From our discussion of Stability, we take on board that the stages
before the initial ordinal ζ should be disregarded completely because the hypothesis
of every such stage is definitely defective. From our discussion of GrandLoop, we
take on board that the stages from the first repeating ordinal Z onwards can all be
disregarded completely because they are merely repeating hypotheses that we have
seen before. From the discussion of Fineness, we take on board that each of the stages
between ζ and Z should be counted and should be counted equally, because we have
no convincing reasons for disqualifying any of those hypotheses or finding any of
them less plausible than another.30 And Banachness is important for the reasons that
are discussed in Leitgeb [9].

This means that from a philosophical point of view, probability measures deter-
mined by fine Banach ultrafilters on the finite subsets of the half open interval [ζ, Z)

might be of particular interest. Nonetheless, all the global restrictions on ultrafilters
that we have discussed are of interest in themselves. We hope that our discussion
of them illustrates the power and flexibility of the ultrafilter technique for building
hyperrational probability functions that satisfy specific desirable properties.

7 Further Research

In the revision theory of truth, the truth value of a sentence of a language that includes
a type-free truth predicate is revised over and over. Some sentences eventually settle
on a truth value that remains unchanged throughout the remainder of the revision
sequence. These might be called the grounded sentences. But many sentences never
settle on a truth value. These are the paradoxical sentences. In the spirit of Leitgeb

30Fineness entails non-principality, so this suggestion would also retain commitment to non-principality.
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[9], the suggestion of this article is that paradoxical sentences do not have a truth
value as their semantic value, but have a probability value as their semantic value.

Building on Leitgeb [9] we have formulated and discussed two new proposals for
associating relative frequency-inspired probability values to sentences of a type-free
truth language on the basis of a revision sequence. In one proposal, the resulting
probability function is real-valued; in the second proposal, the probability values are
hyperrational-valued. But the two proposals are closely related: the real-valued prob-
ability functions can be seen as approximations of hyperrational-valued probability
functions.

We could at this point extend our proposal in the spirit of Leitgeb [10] to obtain
theories of self-referential probability based on a revision sequence. This would
involve adding a probability function symbol pr to the language LT, and develop-
ing revision models for that. Our construction for defining hyperrational probability
functions allows us to extract probability assignments at each stage of the revision
process and can use this to add probability to the object language itself: we let the
probability function symbol pr to the object language be interpreted at each stage β

by the corresponding Prβ .
There are subtleties to be dealt with for this version. For one thing, properties of

ultrafilters that we have discussed, which lead to nice properties at limits, might not
be desirable at successor stages. For another, it seems overkill to choose (Axiom of
Choice!) a new ultrafilter at each stage α of the revision sequence in order to construct
Prα . Fortunately, it turns out that it suffices to choose one ultrafilter on [κ]<ω for the
whole revision sequence of length κ , and obtain the ultrafilters on the (finite subsets
of the) initial segments of the whole sequence by uniformly restricting the ultrafilter
on [κ]<ω to finite subsets of smaller ordinals.31 However, we leave the details of this
for a future occasion.
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Oxford Handbook of Probability and Philosophy (pp. 248–276). Oxford University Press.

https://doi.org/10.1017/S1755020318000060

