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Abstract1

This note is a critical response to Kentaro Fujimoto’s new conserva-2

tiveness argument about truth, which centres on the notion of finite3

conjunction. We argue that Fujimoto’s arguments turn on a specific4

way of formalising the notions of finite collection and finite conjunc-5

tion in first-order logic. In particular, by instead formalising these6

concepts in a natural way in set theory or in second-order logic, Fuji-7

moto’s new conservativeness argument can be resisted.8

1 Deflationism and conservativeness9

According to the central claim of deflationism about truth, the concept of10

truth is a ‘light’, ‘insubstantial’ notion. This raises the question what kind11
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of notion truth is instead. Many deflationists take truth somehow to be a12

quasi-logical notion. Just as it makes no sense to ask what the essence of13

‘and’ is, so it makes no sense to ask what the essence of truth is. Rather,14

like ‘and’, truth is a notion that helps us reason well.15

The claim that truth is an insubstantial notion is rather vague; it can16

be made clearer in several ways. One way in which the claim that truth17

is an insubstantial notion can be made more precise is in terms of proof18

theoretic conservativeness. On this precisification, a notion of truth that is1

governed by a set of axioms Tr is deflationist if for any theory S that does2

not explicitly involve the notion of truth, the extension of S with the ax-3

ioms of Tr—call this theory Tr[S]—is proof theoretically conservative over4

S. Here Tr[S] is said to be proof theoretically conservative over S if and5

only if Tr[S] proves no new theorems in the language of S: if a theorem in6

the language of S is provable in Tr[S], then it is already provable in S alone7

(i.e., without making use of the concept of truth).8

Conservativeness deflationism has been implicitly or explicitly endorsed9

by several authors. Horsten and Leigh, for instance, defend a conservative10

type-free disquotational truth theory as our fundamental theory of truth,11

and thus indirectly endorse conservativeness deflationism.1 Waxman ex-12

plicitly endorses conservativeness deflationism in the following passage:13

Is there any reasonable scope for denying that a deflationist14

theory of truth must be conservative? [. . . ] The transition [from15

the claim that truth is insubstantial to the claim that truth is16

conservative] has considerable intuitive force, for it seems ex-17

tremely uncomfortable to maintain that truth is an insubstan-18

tial or non-robust property if the addition of truth principles19

leads one to rule out what were previously considered to be20

live possibilities concerning a (truth-free) subject matter. Per-21

haps the best way of understanding the transition is as a pro-22

posed explication: the informal notion of metaphysical insub-23

stantiality is to be (possibly partially) explicated in terms of the24

formal criterion of conservativeness. It is striking, and a mark25

in favour of the plausibility of this understanding, that the con-26

servativeness requirement has attracted considerable support27

among deflationists themselves. [Waxman 2017, p. 445–446]28

Conservativeness deflationism can also be made more precise in terms29

of other concepts, such as semantic conservativeness. However, the proof30
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theoretic explication is often presupposed in the debate about the viability31

of deflationism about truth. It plays a central role in the so-called conser-32

vativeness argument against deflationism of truth, which goes as follows.33

A powerful and seemingly unobjectionable theory of truth is the compo-34

sitional truth theory CT[S], according to which the truth predicate com-35

mutes with the first-order logical connectives. It can be shown that under36

fairly general conditions, CT[S] is not proof theoretically conservative over37

a background theory S when the schematic commitments of S (such as its1

logical commitments, and its commitment to the principle of mathemati-2

cal induction) are taken in an open-ended way rather than restricted to the3

language in which S is formulated. Therefore—or so the argument goes—4

truth is a substantial notion, and deflationism about truth is false.5

Even given the proof theoretic explication of deflationism about truth,6

the conservativeness argument is controversial. Perhaps the most influ-7

ential objection against it was raised by Field in [Field 1999].2 He argues8

that extending mathematical induction so as to include predicates contain-9

ing the truth predicate amounts to a mathematical strengthening of the10

background theory. If this is right, then the conservativeness argument is11

blocked. Let us denote the result of adding the compositional axioms for12

truth without extending the schematic mathematical axioms of a background13

theory S as CT−[S] (while continuing to reserve the designation CT[S] as14

the result of extending S with the compositional truth axioms and extend-15

ing all its schemes to allow instances of the truth predicate). Then CT−[S]16

is proof theoretically conservative over S, because inductive arguments17

concerning formulas including the truth predicate then cannot be carried18

out in CT−[S].19

In [Fujimoto 2022], Fujimoto formulates and discusses a new conserva-20

tiveness argument. Like the ‘old’ conservativeness argument, the new argu-21

ment also intends to establish the proof theoretic non-conservativeness of22

truth, and thereby to refute deflationism about truth. But it is intended to23

be convincing even to those who accept Field’s critique of the old conser-24

vativeness argument.25

The basic idea of the new conservativeness argument is that CT−[S]26

fails fully to capture the compositionality of the truth predicate. In partic-27

ular, CT−[S] does not prove that any arbitrary finite conjunction of (truth-28

free) statements is true if and only if every one of these statements are29

true. This property of truth is called the principle of conjunctive correctness.30

Fujimoto produces informal arguments the validity of which turns on in-31
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stances of the principle of conservative correctness. Thus, Fujimoto ar-32

gues, the truth theory CT−[S] should be extended by the principle of con-33

junctive correctness. But it has been shown in recent years that if CT−[S]34

is extended by a particular formalisation of conjunctive correctness, then35

the resulting theory CTcc[S] is under fairly general conditions proof theo-36

retical non-conservative over S even if no predicates containing the truth pred-37

icate are allowed in arguments by mathematical induction. Thus deflationism38

of truth fails even if Field’s critique of the ‘old’ conservativeness argument1

is correct.2

We will see how Fujimoto’s argument turns out to be quite sensitive to3

the way in which conservative correctness is formally expressed. Fujimoto4

formalises conjunctive correctness in a first-order setting, in terms of an5

arithmetical coding of finite sets and an elementhood relation on finite6

sets. If instead the notion of finite set is formalised in a natural way in7

second-order logic or in set theory, then the resulting truth theory is proof8

theoretically conservative.9

We will argue that the straightforward formalisation of finiteness in10

second-order logic has an intuitive appeal that Fujimoto’s formalisation11

involving coded expression of finite sets in first-order arithmetic lacks.12

One can argue about the advantages and disadvantages of formalising13

conjunctive correctness in first-order arithmetic, set theory, or second-order14

arithmetic. But it should not be a commitment of truth theory that the con-15

cepts of finite set and of finite conjunction are expressed in one particular16

setting. Therefore Fujimoto’s new conservativeness argument should not17

sway even the philosophers who accept the proof theoretic explication of18

deflationism about truth.19

2 Blind deduction20

Following Fujimoto, we work in a typed setting, so that the discussion is21

unaffected by complications induced by self-applicable truth. Moreover,22

as is often done, for concreteness we mostly take, in what follows, the23

background theory S to be PA. But the arguments that we will give are24

intended to apply more generally to compositional truth applied to arbi-25

trary background theories, as long as they are mathematically sufficiently26

strong. Indeed, in section 4.1 we briefly discuss the situation where not27

first order arithmetic, but rather first order set theory, is taken as back-28
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ground theory. Moreover, we will consider the prospects of appealing to29

second-order resources in the formalisation of arguments that involve the30

concept of arbitrary finite conjunction.31

Basic truth principles are needed to explain why certain apparently32

valid informal arguments using the concept of truth indeed are valid. Fuji-33

moto argues that for truth theories adequately to fulfil this task, they must34

at least contain the compositional truth axioms [Fujimoto 2022, section 3].35

In other words, he argues that the truth theory CT− should be taken for1

granted. We do not challenge this assumption in this note.2

Truth is used in what Fujimoto calls blind deductions, which are “deduc-3

tive arguments about the truth of some sentences by analysing and manip-4

ulating their logico-linguistic structure without explicitly specifying what5

these sentences are” [Fujimoto 2022, p. 137].6

Examples of blind deductions play a key role in Fujimoto’s new conser-7

vativeness argument. In particular, Fujimoto makes use in his new conser-8

vativeness argument of the following three pieces of informal reasoning:9

10

ARGUMENT 1 [Fujimoto 2022, p. 147]11

P1 All the axioms of PA are true.12

P2 Amy wrote down some (finitely many) axioms of PA in her note-13

book.14

P3 If what Amy wrote down in her notebook is all true, then Cathy’s15

conjecture is true.16

P4 Cathy made exactly one conjecture.17

C1 Cathy’s conjecture is true.18

ARGUMENT 2 [Fujimoto 2022, p. 149]19

P1,2 (The first two premises of Argument 1.)20

P5 Beth denied one of the sentences that Amy wrote in her notebook.21

P6 If Cathy’s conjecture is true, then Beth’s claim is true.22

P7 Beth made exactly one claim and Cathy made exactly one conjecture.23
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C2 If what Amy wrote in her notebook is all true, then Cathy’s conjec-24

ture is not true.25

ARGUMENT 3 [Fujimoto 2022, p. 151]26

P1,2,7 (Premises 1, 2, and 7.)27

P8 Beth claimed the conjunction of what Amy wrote in her notebook im-1

plies Cathy’s conjecture2

C3 If Beth’s claim is true, then Cathy’s conjecture is true.3

Observe that Argument 3 can be seen as a “variant” of Argument 1.4

Let us violate Russellian strictures about the fomalisation of descrip-5

tions slightly by formalising ‘Cathy’s conjecture’ as a (first-order) individ-6

ual constant a and ‘Beth’s claim’ as a (first-order) individual constant b.7

This simplifies matters—since we can then ignore premises P4 and P7,—8

without affecting the structure of the argument (as the reader can readily9

verify).10

Fujimoto claims that all three Arguments are intuitively valid [Fujimoto 2022,11

p. 147, p. 149, p. 150], and so do we. If truth is a quasi-logical notion, then12

an adequate axiomatic theory must bear this out, by being such that from13

correct formalisations of the premises, the conclusions can be derived using14

truth axioms.15

3 From blind deduction to conjunctive correct-16

ness17

The concept of finiteness seems to play a role in all three arguments. In18

fact, we will see that it is not clear that the concept of finiteness plays19

an essential role in the first two arguments; but is a crucial ingredient in20

Argument 3.21

The following is a first-order way of making sense of the concept of
finiteness that is at play. There is an arithmetical expression

˙
ε belonging

to the language of first-order Peano Arithmetic (LPA) such that for every
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finite set of (codes of) sentences X, there is an arithmetical code c of X such
that, for all natural numbers n,

n ∈ X ⇔ n
˙
εc.

Moreover, PA proves (a coded version of) comprehension for finite predi-22

cates [Fujimoto 2022, p. 145]:23

Definition 1 (FC) Φ(x) has a finite extension, i.e., ∃n∀x(Φ(x) → x ≤ n) iff24

∃c∀x(x
˙
εc↔ Φ(x)).25

In addition, there is an arithmetically definable function
˙
∧ that transforms1

a code c of a finite set of sentences into the conjunction of these sentences2

(with a given bracketing convention). This then gives us a notion of blind3

conjunction (
˙
∧ x).4

Now for any given a finite collection X of sentences, Fujimoto claims
that the truth of the blind conjunction of the X-es should be formalised as

T(
˙
∧ c),

with c the code of X, and T a primitive truth predicate [Fujimoto 2022,5

p. 146].6

Then the following principle, which is known as the axiom of Conjunc-7

tive Correctness, can be formulated:8

Axiom 1 (CC)

∀c : (∀x(x
˙
εc→ x ∈ LPA))→ ((∀x(x

˙
εc→ T(x)))↔ T(

˙
∧ c)).

The version of CC with the consequent restricted to a left-to-right impli-9

cation is known as CCintro. The version of CC with the consequent re-10

stricted to a right-to-left implication is known as CCelim.11

Define CTcc[PA] as the theory resulting from adding the axiom CC to12

CT−[PA]. Enayat and Pakhomov proved the following surprising theo-13

rem:14

Theorem 1 [Enayat & Pakhomov 2019]

CTcc[PA] ` CT0[PA],

7



where CT0[PA] is like CT−[PA], except that the induction axioms for quantifier-15

free atomic formulas that may contain occurrences of the truth predicate are16

also included. Now Wcisło and Łełyk have shown that CT0[PA] is arith-17

metically non-conservative over PA [Wcisło & Łełyk 2017]. So this means18

that CTcc[PA] is also arithmetically non-conservative over PA.19

With all this in place, Fujimoto argues that the conclusions of Argu-20

ment 1 and Argument 2 can be derived from their premises only if CC21

holds. More specifically, in the context of CT−[PA] Argument 1 is a deriv-22

able argument scheme only if CCintro holds, and Argument 2 is a deriv-23

able argument scheme only if CCelim holds [Fujimoto 2022, section 4]. We24

do not rehearse his argument here, but merely stress that his argument25

heavily depends on formalising these arguments using the machinery of1

coding finite sequences in first-order arithmetic in the way described above.2

Since in the context of CT−[PA], CC is arithmetically non-conservative3

over the background arithmetical theory PA, Fujimoto concludes that truth4

is non-conservative.5

4 Truth, finiteness, and second-order logic6

We now turn to the evaluation of Fujimoto’s new conservativeness argu-7

ment. All three Arguments are intended to indicate that conjunctive cor-8

rectness should be added to CT−[PA] as a fundamental truth axiom, and9

all three Arguments are somehow connected with the notions of finiteness.10

We accept that a form of conjunctive correctness needs to be provable from11

our basic principles governing the notion of truth. In the following, we12

critically evaluate the role and formal treatment of finiteness in Fujimoto’s13

three Arguments.14

4.1 In set theory15

The notion of finiteness is of course straightforwardly expressible in the16

language of set theory (LZFC). So suppose we take first-order ZFC as our17

background theory, and—like in the arithmetical case—add compositional18

truth axioms to it, but be careful not to allow the truth predicate to oc-19

cur in the separation and replacement schemes. Call the resulting theory20

CT−[ZFC]. Then we can define a natural (coding-free) notion of corrective21

correctness in the following manner:22
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Definition 2 (CCset) ∀x : [| x |< ω ∧ ∀y ∈ x : y ∈ LZFC]→ [T(conj(x))↔23

∀y ∈ x : Ty].24

It is clear that in the theory CT−[ZFC] + CCset, the obvious formalisations25

of the three Arguments can be proved.26

However, it follows from an argument by Fujimoto3 that :27

Theorem 2 CT−[ZFC] + CCset is conservative over ZFC for the language of28

set theory.29

Thus, as Fujimoto himself notes ([Fujimoto 2022, p. 155]), Fujimoto’s new30

conservativeness argument does not go through in this setting.31

What is wrong with formalising the three Arguments in the setting of1

set theory? One possible worry might be that the ontological commit-2

ments of set theory far outstrip the ontological commitments of the three3

Arguments. It might seem, in other words, that the price for ideologi-4

cal conservativeness is ontological non-conservativeness. For this reason,5

we shall now attempt to show that even in a setting that is ontologically6

conservative over first-order arithmetic, the three Arguments do not force7

non-conservativeness of truth upon us.8

4.2 The first two arguments9

The qualification “finitely many” is in brackets in Argument 1 and implic-10

itly assumed in Argument 2 (witness Fujimoto’s formalisation of Argu-11

ment 2 on [Fujimoto 2022, p. 149]), so it is somewhat ambiguous whether12

it belongs to the argument. If we ignore the qualification “finitely many”13

in our formalisation (and therefore do not need the first-order machinery14

of coded finite sets at all), then the validity of Arguments 1 and 2 can15

be witnessed in the background theory alone or in CT−[PA]. So, in that16

case, non-conservativeness does not follow from these arguments. Let us17

formalise Argument 1 in this way, where the predicate N formalises ‘is18

written down by Amy’ (and, as said before, a is an individual constant19

referring to Cathy’s conjecture):20

1. ∀x : AxPA(x)→ Tx21

2. ∀x : N(x)→ AxPA(x)22

3. (∀x : N(x)→ T(x))→ T(a)23
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4. T(a)24

It is immediate that the last sentence is derivable from the previous ones.25

Indeed, truth laws play no role in this derivation. Thus the parentheti-26

cal finiteness assumption appears to be a red herring. Moreover, we do27

not even need the truth laws of CT−[PA] in this derivation. This de-28

pends on formalising ‘A implies B’ as T(A) → T(B).4 Alternatively, one29

could formalise ‘A implies B’ as T(A → B). Then some of the compo-30

sitional truth axioms of CT−[PA] play a role in the derivation. In either31

case, on this reading of Argument 1, we do not obtain proof theoretic non-1

conservativeness.52

As is well-known, the notion of finiteness can explicitly be defined in3

a simple and natural way in second-order logic. Moreover, since second-4

order logic can be interpreted in an ontologically non-inflationary way as5

plural logic,6 we take it in principle to be philosophically unobjectionable6

to make use of second-order logic for purposes of formalisation of natural7

language arguments.8

If we do build the parenthetical finiteness claims into our formalisation,9

but formalise finiteness in a second-order setting, then the conclusions of10

Fujimoto’s first two arguments again follow from their premises very di-11

rectly. Let FIN(X) be a standard second-order definition of what it means12

for X to be finite. Then Argument 1, for instance, can be formalised in the13

language of second-order arithmetic as follows:714

1. ∀x : AxPA(x)→ Tx15

2. ∃X[FIN(X) ∧ ∀y : N(y)↔ (y ∈ X ∧ AxPA(y))]16

3. (∀x : N(x)→ T(x))→ T(a)17

4. T(a)18

For the last sentence to be derivable from the premises, it suffices to derive19

∀x : N(x) → T(x) from the first two premises. But this can easily done20

using just the normal existential generalisation / instantiation rules for21

second-order logic,8 and without using truth laws. Again, the bit about22

finiteness in the formalisation plays no active role in the derivation: it is23

a red herring. Note that in particular, therefore, no use is made of any24

kind of second-order comprehension (or mathematical induction) in this25
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derivation. This means that the whole derivation can easily take place in a26

second-order theory such as ACA0, which is first-order conservative over27

PA (and even this is overkill).928

4.3 The third argument29

Fujimoto’s Argument 3 is subtle. According to P8, Beth does not make a30

claim concerning any specific conjunction of statements: Beth makes a de31

dicto rather than a de re claim. This is the reason why the concept of arbi-1

trary finite conjunction is needed to formalise the Argument.10 Nonethe-2

less, as we shall now argue, we do not need to appeal to a non-conservative3

extension of CT−[PA] to derive its conclusion from its premises.4

First, we show how being a finite conjunction can be defined in a nat-5

ural way in second-order logic. We work in the language of relational6

second-order logic over the language of arithmetic. In addition to the7

theorems of PA, we assume that (monadic and relational) second-order8

comprehension holds for all formulas in the language: we can thus com-9

prehend on formulas involving arbitrary arithmetic and relational second-10

order resources.11 On the other hand, the second-order induction axiom is11

not assumed in our second-order framework.12

We start by being precise about what we will mean by “finite” in what13

follows:14

Definition 3 We say that a set X is finite if it is finitely enumerable. More15

precisely, we say that X is finite when there is a well-order R on X which is16

reverse well-founded. (Equivalently, there is a well-order R on X such that: X17

has an R-last element, and every element of X is either the R-least element or an18

R-immediate successor of some other element).19

Lemma 1 If X is finite, then < is a reverse well-founded well-order on X.20

Proof. Let R witness the fact that X is finite. Trivially, < is a linear order on21

X. So, suppose it is not well-founded and let Y ⊆ X have no <-least element.22

We can then define, by recursion on R, a functional relation R′ such that (i) R′’s23

domain is X, (ii) if x is the R-least element of X, then R′(x, y) where y ∈ Y is24

some arbitrarily chosen object, and (iii) if x is the immediate R-successor of y and25

R′(y, z), then R′(x, w) where w is the R-least element of Y <-below z. If x is the26

R-greatest element of X and R′(x, y), then there is an element of Y <-below y27

and therefore not in the range of R′. So, R′ codes a one-one function from X into28
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one of its proper subconcepts, which is impossible.12 The argument is similar if <29

is not reverse well-founded.30

Next, we define the way in which a conjunction of a finite set of formu-31

las is inductively built up:32

Definition 4 Say that R is a (canonical) conjunction sequence for a finite set33

of formulas X if (i) R is functional, (ii) R’s domain is X, (iii) if x is the <-least34

member of X, then R(x, x), and (iv) if x ∈ X is the <-immediate successor in X1

of y ∈ X and R(y, z), then R(x, w) where w = z ∧ x. (Since X is assumed to be2

a set of formulas, z ∧ x is well-defined for z, x ∈ X.)3

Next, it can be shown that all finite sets of formulas have conjunction4

sequences:5

Lemma 2 If X is a finite set of formulas, then it has a unique (up to extension)6

conjunction sequence.7

Proof. By Lemma 1, < is a reverse well-founded well-order on X. We prove the8

existence of unique conjunction sequences by induction on < over X.13 Clearly,9

there is such a sequence for the <-least element of X and its <-predecessors in10

X. So, suppose R is a conjunction sequence for x ∈ X and its <-predecessors in11

X. Let y ∈ X be x’s immediate <-successor in X, and let z be such that R(x, z).12

Then R′ = R ∪ 〈y, z ∧ y〉 is a conjunction sequence for y and its <-predecessors13

in X. Moreover, since R is unique up to extension, so too is R′.14

Definition 5 When X is a finite set of formulas, let CONJ(X, x) abbreviate the15

claim that any (equivalently: some) conjunction sequence R for X is such that16

R(y, x), where y is the <-greatest element of X. Let FIN(X) abbreviate the17

claim that X is a finite set of formulas.18

Theorem 3 ∀X(FIN(X)→ ∃!x CONJ(X, x)).19

Proof. Trivial from Lemma 2.20

If we had an axiom of Global Well-Ordering, we could use Dedekind-21

finiteness as our notion of finiteness. In the absence of such an axiom, enu-22

merable finiteness (Definition 3) is often taken to be the right notion. How-23

ever, our argument above with the enumeration notion of finiteness might24

be regarded as preferable over the strategy with Dedekind-finiteness plus25
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Global Wellordering instead. This is because some may see Global Wellorder-26

ing not as a logical but as a mathematical principle, and would then argue27

that through assuming a Global Wellordering, non-conservativeness en-28

ters through the back door.29

To some extent, our argument is in the spirit of recent projects that at-30

tempt to secure conservativeness by separating syntax from subject matter31

(see, for example, [Leigh & Nicolai 2013]). However, flat footedly doing32

that in response to Fujimoto’s argument would be ineffective. Finiteness33

is, arguably, an arithmetical property more so than a syntactic one. In con-1

trast, our notion of finiteness is as natural as the arithmetical one.2

It follows from Theorem 3 that we can treat CONJ as a function symbol:3

with mild abuse of language, for any set A, let CONJ(A) be the conjunc-4

tion of the elements of A if A is a finite set of sentences of LPA (and a num-5

ber that is not the code of a sentence otherwise). Now we can formalise6

Argument 3 as follows:7

1. ∀x : AxPA(x)→ Tx8

2. ∃X : FIN(X) ∧ ∀y : N(y)↔ (y ∈ X ∧ AxPA(y))9

3. T(CONJ(N))→ Ta10

4. T(a)11

In order for the conclusion to be provable from the premises, we need12

the following second-order version of conjunctive correctness:13

Axiom 2 (CC2)

∀N : FIN(N)→ (∀y(Ny→ Ty)↔ T(CONJ(N))

The principle CC2 is a very natural way of expressing that an arbitrary14

finite conjunction is true iff all its conjuncts are true. We now show that15

CC2 can be conservatively added to CT−. Let SOL be any reasonable sys-16

tem of second-order logic. It may contain full or only restricted second-17

order comprehension, and second-order choice principles. Then we have:18

Proposition 1 The theory CT−[PA] + SOL + CC2 is first-order arithmetically19

conservative over PA.20
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Proof. We show that any model of CT−[PA] can be expanded to a model of21

CT−[PA] + SOL + CC2. Since CT−[PA] is first order arithmetically conserva-22

tive over PA, this establishes the conclusion.23

Take any first-order modelM such thatM |= CT−[PA]. Take the standard24

second-order expansionM′ ofM to the language of second-order arithmetic, i.e.,25

M′ is likeM except that it also interprets second-order quantifiers, and it takes26

the second-order quantifiers to range over all subsets of the (first-order) domain27

ofM (standard or non-standard). We will show thatM′ is the expansion that28

we are looking for.29

Because M′ interprets the second-order quantifiers in a standard way, it
makes SOL true. So it suffices to verify that M′ also makes CC2 true. Again
because it is standard for the second-order quantifiers, we have:

M′ |= FIN(X)⇔ X is a finite subset of the domain ofM′.

Now (speaking somewhat informally), take any X such that M′ |= FIN(X).1

Then X really is finite: say it consists of n elements y1, . . . , yn of the domain.2

(a) Suppose that for every i < n, we haveM′ |= T(yi). We know thatM′ |=
CT−, so (by a simple inductive argument in the metalanguage) we see thatM′

satisfies
(T(y1) ∧ . . . ∧ T(yn))→ T(y1 ∧ . . . ∧ yn),

and moreover we haveM′ |= CONJ(N) = y1 ∧ . . . ∧ yn. So we haveM′ |=3

T(CONJ(N)).4

(b) Conversely, we see in a similar way that ifM′ |= T(CONJ(N)), thenM′ |=5

T(yi) for each i < n.6

5 Concluding remarks7

Field has argued that instances of induction that contain the truth predi-8

cate do not count as truth laws because mathematical induction is a math-9

ematical property: it holds in virtue of the natural numbers rather than in10

virtue of truth.11

Finiteness is also a mathematical property. We should be given the12

freedom to formalise in one of several acceptable ways. It is not the busi-13

ness of truth theory to prescribe how it should formally be expressed. In14

particular, as far as truth theory goes, it is permissible to treat it as a second-15

order concept. But we have seen that if we do this, then Fujimoto’s non-16

conservativeness argument no longer goes through. This can be seen as17

14



an indication that in formalising finite correctness as Fujimoto does, using18

numerical codes of finite sets, one is injecting new mathematical content19

into the theory. Or, in Fieldian terms, the worry is that the principle CC20

may not be a purely truth theoretical principle after all.21

In extending CT−[PA] to a second-order theory, we did not extend the22

first-order induction scheme of PA to the second-order mathematical in-23

duction axiom. Someone might object, however, that we should do this,24

and observe that this will result in a second-order theory that is not con-1

servative over PA. However, this would amount to conceiving of mathe-2

matical induction in an open-ended way. This attitude is, as we have seen,3

exactly what Field criticised in his rejection of the ‘old’ conservativeness4

argument [Field 1999]. In other words, if induction is open-ended, then no5

new conservativeness argument is needed.6

There is an interesting remaining question concerning extending CT−[PA]7

to a second-order setting, however. It might be argued that it is natural to8

add a compositional truth clause that says that truth also commutes with9

the second-order quantifiers. Moreover, since not all values of second-10

order variables have names in the language, it is then natural to switch11

to satisfaction clauses instead of truth clauses. Let the resulting theory be12

called CT2−[PA]. Then the reasoning of the proof of Proposition 2 can-13

not be used to establish that the extension CT2−[PA] + SOL + CC2 is first-14

order arithmetically conservative over PA. Whether the resulting theory15

is conservative or not, appears to be an open problem.14
16

15



Notes1

2
1See [Horsten & Leigh 2017].3

2For a recent critical discussion conservativeness deflationism, see [Murzi & Rossi 2020].4

3See [Fujimoto 2012, Theorem 20].5

4Actually, it should probably rather be formalised as ‘Necessarily, if A is true, then B is6

true’. But, like Fujimoto, we ignore the modal aspect of implication in this note.7

5A completely parallel analysis can be given of Argument 2. We leave this analysis to8

the reader.9

6See for instance [Boolos 1984].10

7Again we leave the completely analogous formalisation of Argument 2 to the reader.11

8These rules are onobjectionable: they are completely parallel to the usual existential12

generalisation / instantiation rules of first-order logic.13

9We will later see that comprehension does play a role in dealing with Argument 3.14

10Otherwise, as an anonymous referee rightly observed, there would be no need to15

appeal to the concept of arbitrary finite conjunction in the formalisation of Argument 3.16

11Alternatively, we could work in a monadic second-order logic and code relations as17

concepts of arithmetically coded ordered pairs.18

12This is so because finite enumerability implies Dedekind finiteness even in the ab-19

sence of a Global Wellordering principle.20

13Notice that we’re not doing induction on < in general, but only on < restricted to X.21

So, we do not need arithmetical induction on second-order formulas to carry it out. We22

do, however, use arithmetical facts about formulas in the induction: like, e.g. that x ∧ y23

is well-defined for formulas x and y.24

14Acknowledgements The authors wish to thank two anonymous referees for extremely25

helpful comments and suggestions for improvement. The first author’s research on this26

article was made possible by a DAAD-CSC scholarship for post-doctoral research in Ger-27

many (University of Konstanz, 2022-2024).28
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