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WOLFGANG SPOHN

ON THE PROPERTIES OF CONDITIONAL INDEPENDENCE

ABSTRACT. As the paper explains, it is crucial to epistemology in general and to
the theory of causation in particular to investigate the properties of conditional inde-
pendence as completely as possible. The paper summarizes the most important results
concerning conditional independence with respect to two important representations of
epistemic states, namely (strictly positive) probability mecasuores and nataral conditional
(or disbelief or ranking) functions. It finally adds some new observations.

In 1978, I submitted my manuscript ‘Stochastic Independence, Causal
Independence, and Shieldability’ to the Journal of Philosophical Logic.
Having realized that the laws of conditional probabilistic independence
are the basis of any theory of probabilistic causality and trying to explain
how in my view that theory should be built upon this basis I started the
manuscript by proving as many of the laws of conditional and also
of unconditional probabilistic independence as I knew and conjectured
that the two lists were indeed complete; these conjectures looked very
plausible to me after half a year of unsuccessful attempts to prove them.
The editor responded that 1 should rewrite the paper in the light of the
referee’s comments and attached a report of the utmost value which was
four pages long; I have not received so long and careful a review since
then. My first guess turned out to be right later on: Pat Suppes was the
referee.

Referring to these conjectures Pat Suppes wrote that they “are almost
surely incorrect ... It would be very surprising if the properties he
mentions would be sufficient . . . I think the remarks should be deleted.”
And so I did.

In this note, now, I would like to return to the 1ssue and to briefly
summarize essential parts of the progress made since then. We shall see
that Pat Suppes’s remark was proved to be mainly correct only ten years
later, and we shall see that the progress made is satisfying in essential
respects, but still incomplete in the general case. The results to be
reported are mainly those of the group around Judea Pearl; but others
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174 WOLFGANG SPOHN

also made important contributions, and I can add some news which
make the general case less hopeless than it presently looks.

What was the content of the retracted conjectures? It was pure prob-
ability theory. Let a probability space (€2, A, P) be given; {1 is a space
of possibilities, A an algebra of proposifions or events over Q,land Pa
probability measure. Infinity will be irrelevant; thus we may assume the
possibility space € to be finite, and then it does not matter whether A
is a Boolean or a o-algebra and whether P 1s finitely or o-additive. Just
for the sake of completeness let us define probabilistic independence in

DEFINITION 1. Let A, B and C be three events. Then A and B are

independent w.r.t. P,symbolically A1 pB,iff P(ANB) = P(A)P(B);

and if P(C) # 0, then A and B are independent conditional on C w.r.t.

P, symbolically ALpB/C,iff PIANB |C)=P(A|C)P(B | C).
Conditional independence among events obeys

THEOREM 1.

(a) If ALpB/C, then BLpA/C,
) if P(C) #£ 0and ANC C BNC, then ALpB/Ciff P(A|C) =0
or P(B | C) =1,

(c) if A and A" are disjoint and ALpB/C, then AU A" LpB/C iff

A! | PE)/C;
(d) if ALpC/D, then ALpBNC/Diff ALpB/CND.

Any other valid statement I know of which 1s stated purely in terms
of conditional independence and extremal probabilities is entailed by
‘Theorem 1.

However, independence among events 1s not the most important
kind of independence; an independence between two events may be
insignificant because it may arise accidentally, so to speak. The firmer
and more interesting kind of independence 1s that between random
variables and sets of them, which 1s my proper concern 1n the sequel.

So, let a finite set / of random variables on {2 be given; I shall use
X, Y and Z to denote single vanables and ./, K, L. and M to denote
subsets of I. Forany J = { Xy,..., X} C [ leta J-state be any event
of the form {w | X (w) = z1,..., X,(w) = x,} specifying one way
for Xy, ..., X, tobe realized. We assume the possible states of disjoint
sets of variables to be logically independent, i.e. if, fork =1,...,n, Ag
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is an X -state and if each Ay 1s a possible event, so is their intersection.
Then we may generalize Definition 1 to

DEFINITION 2: Let K, L, and M be three mutually disjoint sets of
random variables. Then K and L are independent w.r.t. P, symboli-
cally K1 pL, iff Al pB for all K-states A and L-states D; and K and
L are independent conditional on M w.r.t. P, symbolically K1 pL/M,
iff ALpB/C for all K-states A, L-states B, and M-states C' with

P(C) # 0.

In informal terms K 1L pL /M states that given complete knowledge
about the variables in M, nothing concerning the variables in L can
be inferred or induced from gaining information about the variables
in K (and vice versa). By considering only mutually disjoint sets of
variables, I neglect per definition the formally trivial, but intuitively
somewhat confusing case of self-independence.

Unconditional independence between sets of variables 1s character-

1zed by

THEOREM 2.

(UD) If KLpL, then L1 pK (Symmetry),

(U2) K1 pl (Trivial Independence),

(U3) if KLpL UM, then KL pL (Decomposition),

(Ud) if K1lpLand K ULLpM, then K1 pL UM (Mixing).

My minor conjecture has been that this characterization 1s complete,
as expressed

THEOREM 3. Each binary relation between disjoint subsets af [ sat-
isfving (U1-U4) is unconditional independence w.r.t. some probability
measure.

However, this theorem was proved to hold only by Geiger, Paz, and
Pearl (1988), and as Milan Studeny pointed out to me, by Matis (1988).
This 1s a remarkable positive result.

Conditional independence 1s much more intricate, and 1t will occupy
us for the rest of the paper. For its characterization it i1s useful to
introduce
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DEFINITION 3. A ternary relation L between disjoint subsets of / 1s
called a semi-graphoid (over I') iff it satisfies

(G1) If KLL/M, then LLK/M (Symmetry),

(G2) J1O/M (Trivial Independence),

(G3) if JLK UL/M, then JLK/M (Decomposition),

(G4) if JLK UL/M,then JLK/L U M (Weak Union), and

(G5 if JLK/LUM and JLL/M,then JLKUL/M (Contraction).

And it is called a graphoid (over I) iff it additionally satisties

(G6) if JLK/LUM,and JLL/K UM, then JLK U L/M (Intersec-
tion).

These terms and the labels of the properties are due to Pearl and Paz
(1985). They derive from the rich and useful graph theoretic connections
- of independence notions which, however, need not to be displayed here.
In these terms conditional independence is characterized by

THEOREM 4. For any probability measure P, | p is a semi-graphoid.
If P is strictly positive, i.e. if P(A) = Oonly for A =0, then Lp isa
graphoid.” Moreover, we have for any P:

(B) if X is a binary variable, i.e. takes only two values, and if K 1L pL
and K1 pL/{X}, then K U{X}LpLor KLpLU{X}.

My major conjecture was that this charactenzation 1s complete as
well, i.e. that, more precisely, for any semi-graphoid or graphotd there
is, respectively, a probability measure or a strictly positive probability
measure such that the semi-graphoid or graphoid is conditional inde-
pendence with respect to that measure — provided all the variables take
more than two values; the proviso 1s to circumvent the somewhat dis-
turbing special law (B) for binary variables. Pearl and Paz (1985) had
the very same conjecture. Alas, we were all wrong.

Before proceeding to this negative result and its partial positive sub-
stitutes we have to introduce, however, another very useful model of the
oraphoid properties of independence. There are subjective probabilities
cuiding betting behavior and (all?) other actions. But there 1s also plain
belief, at least we talk of it all the time; we believe things to be true
or to be false, or we suspend opinion. Plain belief cannot be adequate-
ly represented in terms of subjective probability. So what to do about it?
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One may disregard it; but we had better account for it. A fully condi-
tionalizable and hence dynamizable account of plain belief is, I think,
best given in the following terms:

DEFINITION 4. & is a natural conditional function or NCF* (over
Q) iff « is a function from 2 into the set of natural numbers® such
that x~1(0) # 0. An NCF & is extended to propositions by defin-
ing K(A) = min{x(w) | w € A} for each A # () and (@) = 0.0
Moreover, for A # 0 we can define conditional k-values by setting
k(w| A) = k(w) —k(A)forw € Aand k(B | A) = min{s(w | A) |
w€e€ANB}=k(ANDB) - k(A).

An NCF « is to be interpreted as a grading of disbelief. k(w) = O
says that w is not disbelieved, i.e. w might be realized according to x;
because not every possibility can be held to be unrealized, Definition 4
requires that k(w) = O for some w € Q. And k(w) = n > 0 says
that w 1s disbelieved with degree n. A proposition 1s then assigned
the minimal degree of disbelief of its members. Thus, if K(A) = 0,
A is not disbelieved, 1.e. A might be true according to «; and if
k(A) = n > 0, A is disbelieved, and ~A’ believed, with degree n.
Hence, precisely the supersets of x~'(0) are plainly believed according
to . ‘In a similar way, conditional x-values express conditional belief
and disbelief. On that basis, conditionalization rules analogous to those
discussed in probabilistic epistemology finally allow for a dynamic
theory of plain belief.’

NCFs may also be understood in terms of non-standard probability
measures, namely as assigning to propositions the infinitesimal order
of magnitude of their probability (relative to some given infinitesimal);
this maps products of probabilities into sums of x-values, divisions into
subtractions, and sums into minima.” So, in a way, it 1s no wonder that
NCFs behave very similar to probability measures. In particular, if there
1s conditionalization, there is also independence:

DEFINITION 5. Let K, L and M be three mutually disjoint sets of vari-
ables. Then K and L are independent w.r.t. to the NCF «, symbolically
K1,L,iff forall K-states A and L-states B k(AN B) = xk(A)+ x(DB).

Further, K and L are independent conditional on M w.r.t, k. Symbol-
ically K L ,.L/M, iff for all K-states A, L-states B, and M -states C
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K(ANB|C)=k(A|C)+«(B|C)
Conditional independence w.r.t. NCFs is characterized by

THEOREM 5. Forany NCF k, L, isa graphoid.m

There is no need to assume an analogue to strict positivity; NCLEs are
automatically strictly positive, so to speak (by not taking oo as a value).
Also, the special law (B) does not hold for NCFs because, whereas
P(A) and P(~A) are functionally related, x(A) and k(~A) are not;
there is only the condition that at least one of them must be ().

What is the use of knowing Theorems 4 and 5 and whether or not
they are complete? There is, first, mathematical curiosity to be satistied.
There is, moreover, a general philosophical interest. It 1s my experience
that the notion of independence is one of the most problematic and
confusing notions throughout the entire history of philosophy;!! and
then it 1s important to distinguish its various meanings and to uncover
their formal properties which are able to guide its quite unreliable use.
This has been good philosophical methodology in other cases as well.

But there are more specific reasons for knowing the properties ot
epistemic independence which we are considering here in the form of
probabilistic and NCF-independence. In probabilistic models of epis-
temic states, which are doubtlessly the most important and successftul
ones, conditional and unconditional independencies provide a qualita-
tive skeleton for epistemic states which 1s of vital importance. It is need-
ed in Al for making probability measures computationally manageable.
It 1s needed for describing the influence of experience which strikes the
epistemic structure at one point and then spreads along its paths; these
are also the paths along which we proceed from suppositions to conclu-
sions. The skeleton 1s needed to determine which parts are unaffected
by local changes in other parts; it thus helps to modularize basically
appropriate, but undifferentiated and therefore theoretically unfruitful
holistic accounts of epistemic states. And so forth. This fundamental
epistemological role of probabilistic independence 1s displayed in Pearl
(1988) 1n beautiful abundance. The very same remarks apply to any
other useful model of epistemic states and its associated independence
notion and in particular to NCks and NCF-independence. It 1s obvious,
then, how 1mportant it 1s to know the formal properties of the various

ON THE PROPERTIES OF CONDITIONAL INDEPENDENCE 179

explications of conditional and unconditional epistemic independence
as completely as possible.

There is another specific reason. It 1s arguable that causal depen-
dence and independence is basically a kind of conditional epistemic
dependence and independence,'“ a view which I share and tried to sup-
port since my (1980).1% This entails that one can derive the properties
of causal dependence from those of conditional epistemic dependence.
Thus, again, it is important to know the latter, both for inferring the
properties of causal dependence and for checking the plausibility of
these inferences and thus of that view.'* This reason applies equally to
probabilistic and to NCF-independence, since in my view a theory of
deterministic causation can be best spelled out in terms of NCES n stric
parallel to a theory of probabilistic causation. 1’ '

The two reasons given are not independent, of course; they rather
mesh, because it is quite plausible that the epistemic skeleton 1s provided
not by conditional epistemic dependence in general, but more specifi-
cally by causal dependence. In fact, the theory of Bayesian networks is
developed just from this assumption. '°

So, what more can be said about conditional epistemic independence
beyond Theorems 4 and 57 A lot; indeed there is no point in summariz-
ing here all the known results. Therefore 1 confine myself to presenting
only the results most relevant to the purposes just mentioned.

There are, first, some quite strong partial completeness results. In
order to understand them, we need

DEFINITION 6. A list of total causes'’ is a set of conditional inde-
pendence statements for which there 1s a linear ordering X, X, ... of
all variables in I such that the list contains for each variable X exact-
ly one statement of the form X 1{Xy,...,Xx_1} — J/J for some
J C {X,...,Xt—1}. A semi-graphoid is then said to be generated
by a list of total causes iff it is the closure of that list under the semi-
graphoid conditions (G1-G35); analogously, graphoids may be generated
in this way.

In this special case the semi-graphoid properties suffice to characterize
conditional probabilistic independence. This was shown by Geiger and
Pearl (1990) by proving
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THEOREM 6. For each semi-graphoid L generated by a list of total
causes there is a probability measure I’ such that Lp = L. 13

Concerning NCFs Hunter (1991) proved the corresponding

THEOREM 7. For each semi-graphoid 1. generated by a list of total
causes there is a NCF,. such that 1, = 1. 15

Interestingly, this immediately entails the further

THEOREM 8. Each semi-graphoid generated by a list of total causes
is the same as the graphoid generated by that list.

This is so simply because L is already a graphoid according to The-
orem 5.2V It should also be possible, it seems, to prove this directly
without recourse to an interpretation of L in terms of probabilities or
NCFs.

The appropriateness of the term ‘list of total causes’ and the impact
of these theorems gets a bit more perspicuous when we give them a
slightly different form. We first need to know how the relation between
causal and epistemic dependence is to be specified. The relation for
which I have argued in (1980, 1983, and 1990b) 1s stated 1n

DEFINITION 7. Assume a linear temporal ordering of the variables in
I. Then the variable X is potentially directly causally relevant to the
variable Y iff X precedes Y and X and Y are epistemically dependent

conditional on M, where M = {Z € I | Z precedes Y and Z # X},
i.e. not Y_LpX/M in the probabilistic case and not Y L, X/M in the

determmmistic case.

It is quite obvious that this explication grew out of Suppes’ basic work
(1970), and its main content 1s almost self-explanatory. Still it requires

some comments.
The definition is relative to a given set 1 of variables and to a given

P or k. This may seem unwelcome, but it is unavoidable, I think, and I

subscribe here to that relativization.?! Another issue not discussed here
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1s how the explication is to be modified when the temporal ordering is
assumed to be only weak and not linear so that simultaneous variables
are allowed.

Since we are considering causal relations only between varables, it
is adequate to speak of causal relevance or dependence; it 1s only events
or facts of which one can say that one causes the other. For the same
reason the qualification ‘potential’ 1s appropnate. The condition that not
Y L pX/M only says that there is some possible M -state conditional
on which X and Y are dependent; but this need not be the actual one.
This makes clear that actual causal relations cannot be studied purely
on the level of variables.*?

Moreover, it 1s obvious that the definition can characterize only direct
causal dependence (as relativized to the given set I of vanables). If X
were only indirectly causally relevant to Y, then the set of variables
preceding Y and different from X would contain all the variables medi-
ating between X and Y and would thus render X and Y conditionally
independent. The simplest and 1ndeed the right thing to say 1s that
(direct or indirect) causal dependence is the transitive closure of direct
causal dependence; but there are countcr-arﬁuments which are not easily
dissolved.?

Finally, it must be emphasized that the probabilistic part of the expli-
cation 1s adequate only if P is strictly positive; if it 1s not, if it contains
deterministic ingredients, so to speak, conditional probabilities required
for causal judgment may be undefined. In this case, one has, in my
view, to resort to Popper measures or rather something more compli-
cated which 1s, m eftect, a combination of probability measures and
NCFs.?* This view is related to my more complicated view of deter-
ministic causation. There is a long standing tendency,?’ particularly
in the statistical literature, to equate deterministic causal dependence
with functional dependence in the mathematical sense. This 1s not false,
but 1t 1s not the basic sense of deterministic causation and it requires
favorable circumstances and some steps of reasoning to reduce causal
to functional dependence.

So let us accept Definition 7 for the sequel, and let us assume that
the linear ordering X, X», ...of the variables in [ is their temporal
ordering. On this basis we can infroduce

DEFINITION 8. A list of direct causes®' is just any set of pairs (X;, Xi)
with 2 < & or of conditional dependence statements corresponding to
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such pairs according to Definition 7. A graphoid 1s then said to be gen-
erated by a list of direct causes iff it 1s the closure under the graphoid
conditions (G1-GO) of the complementary set of independence state-
ments, 1.e. of the statements X; L X; /{ X1, ..., Xic1, Xivty o o, Xk—1}
for all pairs (X;, X;) with 2 < k& which are not i the list.

There is an obvious one—one correspondence between lists of total caus-
es and lists of direct causes. If .J is the conditioning set of the entry for
X 1n a given list of total causes, then J consists just of all the vari-
ables directly causally relevant to X according to the corresponding
list of direct causes, i.e. X; € J iff (X;, Xi) is in that correspond-
ing list; so J may well be called a total cause of X;.*® The important
fact about this correspondence, of which the proponents of Defimition 6
were of course fully aware, 1s that the independence statements asso-
ciated with corresponding lists mutually imply each other. The entry
X 1{X1,...,Xc_1}—J/J for X}, in a given list of total causes entails
with the help of (G4) that X;CJ_X?;/{XM e X1, X1, - - ,X;C_[}
for each X; € {Xy,...,Xx_1} — J, i.e for each X; with ¢ < k such
that (X, Xi) is not in the corresponding list. Conversely, the latter
mdependencies jointly imply the tormer with the help of the special
graphoid property (G6). These implications entail that the graphoid
generated by a list of direct causes 1s the same as the graphoid generated
by the corresponding list of total causes. Combining this observation
with Theorems 0, 7, and 8, we finally get

THEOREM 9. For each graphoid 1. generated by a list of direct causes
there is a probability measure P suchthat 1L p = 1 and an NCF & such

that L, = L.

This entails the further side result that each set containing for all X,
Xg: with 1 < k either X;._LXE/{X; o w ,Xim;}Xz‘_H, .o ,X;g+1} or 1ts
negation 1S consistent, 1.¢. that any hypothesis about a direct causal
dependency or independency i1s logically independent of any set of
other such hypotheses. This 1s noteworthy because it says that causal
hypotheses are acceptable and rejectable without logical constraints
by the others and thus facilitates them to play the fundamental role
attributed to them.
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What has been done by deriving Theorem 9 1s simply to more ful-
ly explicate the intended causal content of Theorems 6 and 7. If the
relation between direct causal dependence and conditional epistemic
dependence 1s as specified in Definition ‘7, these theorems are fully
satisfying to the extent to which the important epistemological func-
tions mentioned above are performed just by the causal independencies
among the conditional epistemic independencies. In that case, we need
to know only the graphoid properties (G1-G6) and can even restrict the
use of (G6) to the transition from the given list of direct causes to the
corresponding list of total causes. |

This, in my view, is the most important partial completeness result.
But there are others as well: about so-called saturated independence
statements the three relata of which have to add to some fixed set of
variables, about special probability measures like normal distributions
or binary distributions, for the case that so-called deterministic variables
are allowed, with respect to other independence notions, concerning
stronger completeness notions, etc. Since there 18 no point i repeating
them here, I refer the reader to Geiger and Pearl (1988), and Geiger
(1990), and Geiger, Verma, and Pearl (1990).4°

Still it is not wholly clear whether among the conditional epistemic
independencies only the causal ones and their implications are episte-
mologically fundamental. I am not going to discuss that question; but it
is clear that in the case of doubt it would be epistemologically important
to know further properties of conditional independence and to have a
ceneral completeness result. So let us finally turn to this 18sue.

I already mentioned that the old completeness conjectures about
oraphoids and semi-graphoids have turned out to be false. The first one
to show this and thus to confirm Pat Suppes’s remark 1n his review was -
Studeny (1989a), p. 15. Making essential use of information theoretic
means Studeny was able to prove the following quite complex property
for cach probability measure F:

(S1) KLpK', LLpLl'/K, LLpL'/K', and K1pK'/L U L' if and
only if LLpL' K1pK'/L,KLpK'/L' and LLpL'/K UK’

Surprisingly, this property does not apply to NCFs; a counterexample 1s
given in the Appendix. Thus, the analogy between probability measures
and NCFs 1s not complete. Indeed, it 1s not clear to me how information
theoretic notions may be transferred to NCF theory, nor whether this
makes any sense.
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In (1989b) Studeny mentions a further property which is also about

two pairs of sets of variables and the eight independences built from
them and which holds only for strictly positive probability measures:

(82) if K LK'/LUL, K LK'/L, KAK'/L',L1I'/KUK', L1 L' /K,
and L1 L'/K’', then K LK’ and LLL'.

Of course, (S1) and (S2) also hold when all statements are further
conditionalized on some constant set M of variables. The tact that
these new properties were found after several years of unsuccessful

search was certainly a slight sensation.
But it got even worse. Having tasted the flavor of the new properties,

Geiger and Pearl (1988, p. 41) mention a whole new family of properties
applying to strictly positive probability measures, namely:

(S3) Let J = { Xy, ..., Xon—1}, and suppose that for each+ =1, ...,
2n: |

(@) X;LJ —{X;_1, Xi, Xim }/AXi—1, X1}
(b)) Xio1L X1/ X5,
(¢) X,;_1.LX;.1 (subscripts taken modulo 2n).

Then L{Xg, X2,..., Xon—2} and L{X}, X3,..., X2,1}. Here,
1 K means that X is totally independent, 1.e. that each member of
K is independent of the rest of &

This is an awfully complicated condition, and apparently one must even
fear that it provides a new, logically independent property for each n.

Studeny (1992, p. 382), presents a further, simpler family of proper-
ties applying to all probability measures:

(S4) Let { Xy, ..., Xn_1} be n variables (n > 4). Then Xo L X;/ X4
holds forall 7 = 1,...,n — 1 if and only if XoLX;.{/X; holds
forallz = 1,...,n — 1 (subscripts taken modulo n).

As is proved in the Appendix, (S4) applies as well to NCFs. The fear
concerning (S3) is in fact realized with respect to (84). For, Studeny

(1992, p. 383), has a beautiful proof of

THEOREM 10. (84) for n is logically independent of all properties of

probabilistic conditional independence of the form “iff K1 L Ly /My, ...,

Kr_yLL._(/M,_y, then K, LL,/M,” withr < n.

tion of all the properties of probabilistic conditional independence.
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Studeny concludes from this theorem that there 1s no finite axiomatiza-
30

Thus the situation looks pretty confusing, if not hopeless. But two

observations slightly reduce the confusion. First, there 1s still another

property which holds for all strictly positive probability measures as

well as for all NCFs:

(S5 If L1LL//K U K'"U M and if three of the four independencies
KI1K'/M,KIK'/LUM,K1K'/L/UM,and K LK'/LUL"U
M hold, then the fourth holds as well.

This time 1 have explicitly added a constant conditioning set M. The
proof of (S5) is given in the appendix. Clearly, (S5) is a generalization
of (S2).

Secondly, we have

THEOREM 11. For each n, (S3) is entailed by (GI1-G6) and (55).

Again, the proof is given in the Appendix. Hence, (S5) deprives (S3) of
its logical independence, and we need not worry about (53) any more.

To summarize: what we have so far for probabilistic conditional
independence are the old semi-graphoid conditions (G1-G35), the special
law (B) for binary variables, and the new properties (S1) and (S4), the
latter being in fact a whole family. Additionally we have (G6) and
(S5) applying only to strictly positive measures.”! NCFs behave in a
somewhat simpler way; conditional independence with respect to them
is uniformly characterized by (G1-G6), (S4), and (85), since we do not
have to distinguish different kinds of NCFs. So the situation is still quite
complicated; and having been wrong once, I shall not dare to make a
new conjecture.

However, a completeness theorem has not yet been shown to be
impossible. If such a theorem were feasible, it seems more likely that
it would be provable with respect to NCFs, since NCFs are mathemat-
ically much simpler than probability measures. In particular, since the
condition (B) does not apply to NCFs, one may expect that the mod-
els one has to find in a completeness proof can be restricted to binary
variables. Such a result concerning NCFs may even help with the prob-
abilistic case, provided the alleged homomorphism between NCFs and
infinitesimal probability measures still holds.
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Indeed, there is hope — at least in principle. The following claims look
at least plausible: for each finite set I of variables taking only finitely
many values a number 7 can be effectively specified so that any finite
truth-functional compound p of conditional independence statements
built from subsets of I is made false by an NCF taking values only
up to n, if p is made false by some NCF at all. And similarly, for
each such set [ a number n can be effectively specified so that any
such statement p is made false by a probability measure taking only
fractions with denominators up to n as values, if p 1s made false by
some probability measure at all. If these claims were true, then one
would have to check only finitely many NCFs or probability measures
in order to determine the validity of such a statement p. Thus, the set
of all valid statements of this form would be decidable and hence, a
fortiori, recursively axiomatizable. As Studeny admits, this would not
contradict Theorem 10, since finite axiomatizability 1s only a special
case of recursive axiomatizability. So, if these claims were true, the
existence of a complete characterization of conditional independence
would be assured. One would only have to find it.

APPENDIX

e

A COUNTER-EXAMPLE TO (S1) FOR NCFs. Let X, Y, Z, and W
be four binary variables assuming, respectively, the states A, A’, B, I’,
C.C', D, and DD'; and let the NCF & be defined for the 16 conjunctions
built from these states by the following matrix;

K cCnNnD CnD C'nD C'nD
ANEB 0 ] 1 2
AN B’ 2 6 6 10
A'NB 8 5 5 2
AN B’ 7 7 7 7

We then have Z_L W, X L. Y/Z, X L.Y/W,and ZL W/{X, Y}, but
nothingof XL,.Y,ZLW/X,ZLW/Y,and X L. Y/{Z, W}
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Proof of (§4) for NCFs. 1 state the proof only for n = 4 binary
variables Xg, X7, X, and X3 assuming, respectively, the states A, A,
B, B, C,C', D,and D'. Let an NCF & be given and define

Ei=ANBNnCnNnD, FL=BNCnD,
E,=ANBNCND', FR=BNnCnD,
Ey=ANnBNC'ND, F3=BNnC'ND,
Eis=ANBNC'ND', Fy=BnC'nD
Es=ANB'NCND, Fs=B'NnCnND,
FEs=ANB NnCnND', Fg=B"NnCnD,
E:=ANnB'NnC'nD, F=B'nC'nD,
Ee=ANB' NC'ND', Fek=B'"NnC'NnD,

and x,s = min{&(E, ), k(E,)) — min(&(F,), k(Fs)).

Then XL X, /X, implies that

k(A | C) k(A| BNC)
K(ANBNC)—=ks(BNC) =zxp7
k(A| B'NC)

R(Aﬂ B’ﬂC] — H,(B’ QC) = Ts6.

!

I

{

and similarly that

H:(A | C;) — X34 = T78.
In the same way, Xyl X>/X3 and Xy 1. X3/X, imply that
k(A | D) = x15 = x37.
H,(A | D!) — X6 = T 48%.
ﬁ:(A } B) — X113 = dT124.
k(A | B') = xs57 = x¢s.

Clearly, we cannot say anything about the order of the x-values of the
b, and the F,. except that k( E,) > k(F,) for each . But whatever this
order 1s, we find that

L1 = X546 1s between T15 and L6
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(this is to include the case where the first is equal to one of the latter
two), and similarly that

T34 = 78 1s between x37 and z4g,
17 18 between 13 and rs7,

&
P
W

|

== 48 1S between 14 and L6 s

&3
b
o

|

T13 = a4 1S between x17 and 34, and
T57 = Zeg 18 between s and z7s.

As is easily confirmed, these inequalities imply that the x,; considered
are in fact all the same. So we have arrived at the conclusion that

k(A|B) = k(A|B)=k(A|C)=r(A|C")
k(A]| D) =k(A|D") = k(A).

Since the same reasoning applies to A, we have Xy L. X; fori=1,2, 3.
(G5) applied to this and the premises yields Xo L {X;, X;} fori # j =
1. 2. 3: and from this the desired result finally follows with the help of
(G4).

[ assume that the same proof goes through, though in a still clumsier
way, when more than four and not necessarily binary variables are con-

sidered.

Proof of (85). Let A, A', B, B’, and C vary over states taken,
respectively, by K, K ' L, L', and M. The first premise says that

(*) PANANBNB |C)P(ANA"|C)
= P(ANA'NB|C)P(ANA'NB'|C).

Now suppose that, say, the first three of the four mentioned indepen-
dencies hold for PP. This means that the last three terms of (*) factor out
with respectto A and A’. Hence, (*¥) implies that P(ANA'NBNB' | C)
factors out in the same way; i.e. for each given B and B’ there
are functions fgp and gpp such that for all A and A" P(An A’ |
BNB'NC) = fpp(A)gpp (A"). Summingup overall A’ or A, respec-
tively, shows that fpp' and gpp' can be chosen in a normalized way so
that fgp (A) = P(A| BNB'NC)andgpp(A’) = P(A" | BNB'NC).
Hence K 1 pK'/L UL’ U M. Mutatis mutandis, the same proof applies,
if three others of the four independencies are given; n fact, as Milan
Studeny has pointed out to me, strict positivity of P is needed only in
these other cases. The analogous proof goes through for NCFs.
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Proof of Theorem 11. We have to show that the conclusion of (S3)
follows from the premises of (S3) with the help of (GI-G6) and (S5). So
assume (a), (b), (¢) of (§3). Take subscripts always modulo 2n, and letus

simplify the notation by writing, e.g., ¢ LJ—{i—1,4,2+1}/{i—1,¢+1}
for X;L1J — {X; 1, X;, Xiv1}/{Xi-1,Xigy1}. The assumptions first
imply: |
(d) {1+1,...,5 -1} L{7+1,...,s =1}/{s,j} forallz,j =0,.. .,
2n — 1 witht + 2 < 3.
This can be proved by induction: for 7 = i + 2, (d) 1s the same as (a).

Now suppose that (d) holds for all : and § = 7 4+ &k (k > 2). Thus we
have

1, it k=Ll k+ 10— 1} /{60 + k)
and

fo4+2,. .0+ k}L{g+k+2,. 0 /it +1,i+ k+ 1}
These two independencies imply with the help of (G4) and (G6)

fi4+1,...,0+k}L{i+k+2,...,0—1}/{s, i+ k + 1}

Thus, (d) holds also foriand 7 = ¢ + k + 1.
Moreover, (a)-(d) entail:

(e)i—11li+1/jforeachj #1— 1,71+ 1.

For, (a) implies ¢ Lj/{i — 1,¢ + 1}, (d) implies : — 1 Li + 1/{4,j},
(b) says that 2 — 1.L¢ + 1/, (c) says that ¢ — 1.Ls 4 1, and these four
independencies yield (¢) with the help of (S5).

Now let k£ be an even index, K = {k,k+2,...,k + 2m} for some
m, L ={k+2m+2,...,k—2} the set of the remaining even indices,
t =k —1,and 7 = k 4+ 2m + 1. The next step 1s to show that

) KLL/j.

This can be seen in the following way: foreach! € L,wehavel l[+2/7
becauseof (e)and I L{l +4,... .k —2} UK/{l+ 2, j} because of (d)
(weakened by (G3)). These two independencies imply [ L{l + 2,...,
k—2} U K/7 with the help of (G5)and thus [ L K/{7,[+2,..., k -2}
with (G4). Repeated application of (G5) to this for cach [ € L yields
(D).

Finally, we can infer tor K, L, 7, and 7 as just specified:
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(g) KLL.

For, (a) implies i Lj/K U L with (G3+G4), (d) implies K LL/{t,j;
with (G3), and (f) says that K 1 L/j and, by reversing the roles of 2
and 7, also that K LL/i. All this entails (g) with the help of (S5).
Since (g) holds for each even index k, the even numbered variables are

completely independent. The same reasoning applies, of course, to the
odd indices.
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NOTES

' The precise nature of the ohjects of probability, whether objectively or subjectively
interpreted, is a deep and philosophically highly important issue which is still very open.
Here it is irrelevant, and so I use ‘event’ and ‘proposition’ interchangeably.

2 As Studeny (1989a) has noted, (G3—-G35) may be integrated into one property: J LK U
L/Miff JLK/L UM and JLL/M.

3 This is proved in Dawid (1979) and (1980), and in my (1980) where strict positivity
is replaced by a slightly weaker condition and wherc extensions to infinitely many
variables may be found.

* This is the label which T originally used in my (1988) in order to avoid false associations.

More suggestive terms are ‘disbelief function® (Shenoy, 1991) and ‘ranking function’

(Goldszmidt and Pearl, 1992).

5 In (1988) I allowed the range to consist of ordinal numbers and thercfore talked of
ordinal conditional functions; bul this generality is not needed here.

5 Setting «(#) = oo is a reasonable convention. But oo should not be assigned ta
possibilities and consistent propositions in my view because it causes all rules of belief
revision (o fail.

7 ~ A of course denotes the complement of A relative to §2.

5 A fuller motivation and explanation of this concept and the ensuing theory may be

found in my (1988).
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? See my (1988), Section 7, and my (1990a), Theorem 2.

0 For proof see my (1988), Section 6, and Hunter (1991).

"' For instance, the various forms of idealism stand and fall with a (in my view still
lacking) satisfying explanation of what ‘dependent’ precisely means in their slogan ‘the
world is mind-dependent’.

12 This view is an old one, of coursc. It was Hume’s revolutionary thesis that causation
is an epistemological notion, which he so convincingly elaborated in his (1739), Book
[, Part 3. The importance of conditionalizing was emphasized at least by Mill who
explicitly rclativized causal statements to the obtaining circumstances or ceferis paribus
clauses; ¢f. his (1843), Vol. 1, Book III, Ch. 5.

13 Cf. in particular my (1990b). One may say that causal dependence is rather a kind
of conditional metaphysical dependence. 1 do not object, but I think the proper view is
the following: causal dependence as conceived by a given subject 1s definable 1n terms
of conditional epistemic dependence according to the epistemic state of that subject;
and objective causal dependence can be best understood as an objectification of that
epistemic dependence; cf. my (1993).

4 This importance is well demonstrated in the remarkably rich statistical theory of
causal inference and prediction presented in Glymour et al. (1991) and Spirtes ef al.
(1992), who build their theory on just two properties of causal dependence, the screening
off and the common cause principle, generalized later on to the Causal Markov and the
Causal Minimality condition (cf. Glymour ef al., 1991, pp. 1361f., and Spirtes et al.,
1993, pp. 531f.). Starting one step earlier, namely from the definition of direct causal
dependence mentioned below, one may derive both the screening off and the common
cause principle; c¢f. my (1994), Section 4. Spirtes ez al. do not take that step, 1 think,
because the conscquences are safer than the definition from which they are denved.

15 This view is to some extent elaborated in my (1991), Section 3.

16 Cf, Pearl (1988), Section 3.3.

' The usual term is ‘causal list’. Here I prefer to speak of lists of total causes, because,
according to the explication given later on, this is what they are in contrast to the lists
of direct causes introduced below.

'* To be precise: Geiger and Pearl (1990) showed for this special case that conditional
probabilistic independence is completely characterized by so-called d-separability, a
notion applying to directed acyclic graphs, itis notintroduced here, but it 1s utterly useful
tor graphically presenting and computationally managing conditional indcpendence; cf.
Pearl (1988), pp. 11941, and Spirtes et al. (1993), pp. 71tt. And Verma and Pearl (1990)
showed that for a given list ol total causes the relation of d-separability 1s 1dentical
with the semi-graphoid generated by the list. For an alternative characterization of
d-separation see also Lauritzen ef al. (1990).

' In his proof, Hunter (1991) also proceeds via the equivalence of semi-graphoids
and d-separability in this case; but the rest of the proof 1s quite ditferent, because the
probabilistic construction used by Geiger and Pearl (1990) does not carry over to NCFs.
“ Theorem 8 follows only from Theorem 7 and not from Theorem 6. 1f we look at
the proof of the latter by Geiger and Pearl (1990), we find that the probability measure
which they construct in order to prove their existence claim is not strictly positive so that
its independence relation is not a graphoid. Spirtes er al. (1993) have another proof of
Geiger and Pearl’s theorem in which they construct a suitable strictly positive measure,
i.e. joint multivariatec normal distribution; cf. their Lemma 3.5.7., pp. 390ff. So this
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yields a probabilistic way to Theorem &.
21 1 the case of /, the obvious move to get rid of that relativization is to consider the

ill-defined set of all variables whatsoever. Mathematically, this can be approximated by
studying and comparing the causal relations within smaller and larger sets of variables.
Verma and Pearl (1991), Pearl and Verma (1991), and Spirtes et al. (1993), Ch. 6, 10,
and 11, have found several remarkable results about the way in which statistical data
about a smaller set can be indicative of causal relations within a larger set of variables.
22 In my (1990b) I proceeded on the more fundamental level of events or states of affairs
on the basis of which the causal relations between variables can be defined.

23 Cf. my (1990b).

2 Cf. my (1988), Section 7.

25 Remcmber the old polemics of Russell (1912/13),

26 Cf. my (1993).

27 Where ‘cause’ is now short for ‘potential causal dependence’.

28 Apart from the fact already mentioned that one should not apply the term ‘cause’ to
variables.

2 1f 1 do not want to discuss special probability measures and their independence
relations, why am I considering strictly positive probability measures? Because they
are not very special and because they have a distinguished role with respect to both
purposes motivating the search for the properties of conditional independence. 1f we
are interested in causal independence, then, as already mentioned, only strictly positive
measures are suitable for a probabilistic theory of causality; and if we consider the wider
epistemological purposes, strictly positive measures are particular suitable as well, as
is clear at least since Carnap (1950) postulated strict positivity in his regularity axiom.
% In his auxiliary Lemma 1 (p. 380) Studeny (1992) constructs suitable models with the
help of measures which are not strictly positive. Therefore, his proof of Theorem 10
does not show that it holds also for conditional independence w.r.t. strictly positive
measures. For the same reason it does not seem to carry over to NCFs.

31 Srudeny (1993), Section 5, mentions two further properties:

If JI1K/L,JLL/K, JLK/M,and LLM,thenJ LK U L; and
if JLL/K, KLL/J, JLK/M,and LLM,then JU K LL.

These are clearly weakenings of (G6), but in contrast to {(G6) they hold for all probability
measures.
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COMMENTS BY PATRICK SUPPES

Wolfgang Spohn has given a thorough discussion from many angles
of the current analyses of conditional independence, as well as inde-
pendence in the usual probabilistic sense. I shall not comment on the
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additional analysis he gives of what he calls natural conditional func-
tions, for I am not yet persuaded that they are really needed for epistemic
purposes.

The positive results summarized at the end of the paper in Theorem 9,
and the remarks following this theorem, give what 1s in many respects
as satisfactory a characterization as can be expected of independence or
conditional mdependence for finite sets of random variables, although
some complications are mentioned below. What 1s particularly nice is
that Theorem 11 eliminates the need for condition (S3) which constitutes
an axiom schema for increasingly large finite sets of variables.

[ just have two comments to make.

Finite Axiomatizibility of Independence for Events. Following in the
tradition of my earlier referee’s report, I am still skeptical that we are
able to give a finite axiomatization in first-order logic of independence
for events. I would gather from the statement following Theorem 1
that Spohn also 1s still of an unsettled mind about this. It was not real-
ly the aim of his paper to discuss the conditions for independence of
events and so I shall not say more about 1t here, I was, however, a little
surprised that he did not mention the thorough discussion in Terrence
Fine’s Theories of Probability (1973).

Various Senses of Independence. When we turn from events to ran-
dom variables, as Spohn does, we enter a much larger arena for the
discussion of independence. As a simple example of this literature, I
mention the various concepts of dependence introduced in Lehmann
(1966), which were discussed in some detail in my 1970 monograph on
causality. I recall here that three notions of dependence, and therefore
associated notions of independence, in order of increasing strength are
quadrant dependence, regress dependence and positive likelihood ratio
dependence. There is a large statistical literature on these matters pub-
lished 1n the last 20 years. What is interesting to note is that the material
Spohn draws on from the literature on the related concepts of uncertain-
ty, probabilistic causality, and the like in artificial intelligence is rather
separate from the statistical literature on various measures of strength
of dependence. Both kinds of research are desirable. They both show
how rich 1s the notion of dependence, either in a probabilistic sense or
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in a causal sense, and in fact really how pluralistic the subject can be
made by introducing plausible concepts of weaker or greater strength.
Generalizations to cover these other cases would be of interest.

REFERENCES

Fine, Terrence: 1973, Theories of Probability, New York, Academic Press.

Lehmann, E. L.: 1966, ‘Some Concepts of Dependence’, Annals of Mathematical
Statistics, 37, 1137-1153.

Suppes, P.: 1970, A Probabilistic Theory of Causality, Amsterdam, North Holland.

ZOLTAN DOMOTOR

QUALITATIVE PROBABILITIES REVISITED

ABSTRACT. Granted a de Finetti style qualitative comparative probability relation
on a Boolean algebra, necessary and sufficient conditions are given for the existence
of an agreeing probability measure on the algebra in finite, countable and arbitrary
situations. Partially ordered linear spaces and order-preserving linear functionals are
used in proving the results and in explaining why the axiomatization of qualitative
probability relations is bound to be complex. The inherent technical difficulites can be
overcome by relying on nonstandard representations that are also provided., Extensive
work done by Suppes in this area is also discussed, in conjunction with the problem
of uniquencss and simplicity. The central aim of this work is to provide a more
holistic setting for the axiomatization of comparative probability and its associated

representational methodology.

1. INTRODUCTION

The principal object of this paper is to provide axioms for a de Finetti
style qualitative probability relation, necessary and sufficient for the
existence of an agreeing probability measure in arbitrary Boolean alge-
bras. I take this contribution to be a continuation of the works of
Scott (1964), Suppes (1969), and Suppes and Zanotti (1976), mainly in
bringing development of the theory of comparative belief more nearly
abreast with that of representational measurement theory. In the course
of expounding the necessary probabilistic apparatus, I comment amply
on what I take to be Suppes’s pivotal ideas and results in comparison
with related literature. |

In 1964 Dana Scott published his widely known paper on finite mea-
surement models, in which he applies vector space separation theorems
to great effect — to obtain several measurement representation results in
general, and to characterize finite qualitative probability structures in
particular.

My starting point is the familiar ‘Scott condition’ for qualitative
probabilities in finite Boolean algebras, which was quickly included
also in Suppes (1967) for its remarkable power and simplicity. But first
let me state briefly how I became aware of the issues surrounding the
‘measurement’ of subjective probability.
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