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1. Introduction 

Everybody agrees that the distinction between direct 
and indirect causation is important. And it seems easy to 
draw, i f  an analysis of causation in general is available. 
The causal influence of one event on another is direct, if 
it is not mediated by other events in between; otherwise 
it is indirect. The trouble is with the proviso. Indeed, I 
contend that the order  of analysis must be reversed 
because the distinction is required for a successful 
analysis of causation. Such an analysis perhaps proceeds 
best in two steps: the first analyses direct causation, and 
the second extends the analysis to indirect causation and 
thus to causation in general. Such a strategy is at least 
plausible. For  direct causation is a very special case 
and so may be supposed to be more easily explicable. 
Then, one might say that the relation "A is a cause of B" 
is just the transitive closure of the relation "A is a direct 
cause of B", thus completing the full analysis of causa- 

tion. 1 The complete story is not so simple; but the idea 
will turn out to be right. In (1983a), I dealt mainly with 
the first step - -  direct causation. Here,  I deal mainly with 
indirect causation. 

Section 2 introduces the conceptual machinery re- 
quired throughout the paper. Section 3 recapitulates my 
1983 explication of direct causes. Section 4 considers 
the circumstances of direct causal relations in greater 
detail. Section 5 presents the main difficulties with 
indirect causes. Section 6, finally, proposes a strategy 
for dealing with these difficulties and shows that it will 
work. 

The whole enterprise is subject to two major con- 
straints. First, I shall discuss only causation of single 
events. The hope, of course, is that it will emerge from 
knowledge of causation in the single case what causal 
laws are. This procedure seems to me to be more likely 
to succeed than the reverse strategy endorsed by several 
philosophers$ though I shall not argue the point here. 

Secondly, I am concerned here only with probabilistic 
causation because this is the context in which all the 

problems dealt with here have been raised and have 
been discussed most extensively. It should be men- 
tioned, however, that each consideration, definition, and 
theorem of the present paper can routinely be extended 
to deterministic causation with the help of the theory of 
ordinal conditional functions (OCFs) I proposed in 
(1988); only some marginal adjustments may be needed. 
This follows because deterministic conditional inde- 
pendence defined for OCFs obeys essentially the same 
laws as probabilistic conditional independence. 3 It is 
thus possible to unify the deterministic and the proba- 
bilistic approach. 4 

2. The conceptual and formal framework 

Each discussion of probabilistic causation proceeds 
from an explicitly given probability space: let I be a 
non-empty set of variables or factors. Each variable i 
I is associated with a set f2 i of at least two possible 
values i may take. The cross product f2 of all the ~ ,  is 
the set of all functions a) defined on I such that, for each 
i E /, (2) i ~ ~"~i; intuitively, each o) represents a possible 
course of events --  a possible world in philosophers' 
talk, or a possible path in the mathematician's termi- 
nology. /, each ~ ,  and hence s are assumed to be 
finite. This severe restriction has several advantages. 
One of these is that there is no need to worry about 
measurability because each subset of f2 may be assumed 
to represent a state of affairs or an event in the mathe- 
maticians' sense, but not the philosophers'. Moreover,  
we assume a probability measure P assigning a proba- 
bility to each state of affairs, i.e. to each subset of f2. 
This completes the description of the underlying proba- 
bility space. 

This explicitness has an important philosophical 
consequence: namely, that everything said about causa- 
tion is relative to the descriptive frame given by the set I 
of variables. Many discussions of examples suffer, I 
think, from an inadequate recognition of this relativiza- 
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tion. It is essential because the causal relations may 
indeed vary with the frame. Consider, e.g., a series of 
throws of a die by a machine: relative to a coarse 
probabilistic description which contains only variables 
representing the throws, no throw will be causally 
relevant to the next one. Relative to a finer description, 
however, which, for each time, allows for variables 
representing the mechanical state of the whole system 
(but which may still be probabilistic, say, because of 
neglect of air resistance), each throw will be causally 
relevant to the subsequent ones. tOne is, perhaps, 
inclined to think of causation as an absolute notion. 
However,  from the current starting point the only way 
to get rid of the relativization is via the most fine-grained 
descriptive frame embracing all variables whatsoever. I 

am not sure whether such a move makes sense; it is at 
least philosophically problematic. Here, I will be con- 
tent with the relativized notion of causation. 

The relativization of causes is even more apparent in 
the distinction between direct and indirect causation. A 
state of affairs which is a direct cause relative to a coarse 
descriptive frame not mentioning the mediating links 
may well turn out to be an indirect cause relative to a 
more complete descriptive frame. 

If time is continuous and if variables are associated 
with points and not with intervals of time, then, pre- 
sumably, direct causes either do not exist or are 
simultaneous with their direct effects. In either case, the 
strategy of explicating causation via direct causation 
would not work because, in either case, causation would 
certainly not be the transitive closure of direct causa- 
tion. So the strategy of analysis here demands a descrip- 
tive frame with discrete time. The idea is that the results 
obtained for discrete time may be generalized to contin- 
uous time in a fashion similar to the way in which the 
theory of stochastic processes has been extended, and 
the hope is that this will raise only well-known mathe- 
matical, but not new conceptual or philosophical prob- 
lems. 1 shall not attempt here, however, any such gener- 
alization. 

I assume a weak order  5 ~< on the set I of variables 
which represents the order  of the times at which the 
variables are realized; < is to denote the corresponding 
irreflexive order  relation. Since I is finite, time is bound 
to be discrete. By assuming the order  to be weak, 
simultaneous variables are in general allowed; the few 
exceptions will be explicitly noted. However,  I shall not 
consider simultaneous causation; I am not sure whether 
this would be desirable. 6 And I plainly exclude back- 

wards causation; it will be clear that this is vital to the 
theory to be proposed here. 

An analysis of causation faces a number of well- 
known and unsolved problems relating to variables 
which have more than two possible values. 7 One may 
evade these problems by considering only binary 
variables. But there is a hitch to this restriction. The 
causal theorems to be proved essentially derive from the 
laws of conditional probabilistic independence, and 
there is one such law peculiar to binary variables (see 
Theorem 2(f) below) which may have unforeseen and 
undesired consequences, s Therefore,  variables will be 
assumed to be binary only when required, and the 
problems with variables with more then two values will 

be neglected. 
Finally, I shall assume that the probability measure P 

is strictly positive, i.e. that P({to}) > 0 for all to ~ if2; 
hence, the conditional probability P(BIA) is defined for 
each A ~ tO. Since f2 is finite, this assumption is 
unproblematic. The reason for it is that all probabilistic 
theories of causation run into serious trouble with the 
limiting probabilities 0 and 1.9 

How are probabilities to be understood in the 
present context? Any way you like. For  instance, if one 
takes probability objectively, preferably in a propensity 
interpretation, then the definitions below attempt to 
explicate causation as it objectively is. If, however, 
probabilities are understood epistemically as those of a 
certain subject at a certain time, then these definitions 
account for the causal conception of that subject at that 
time. 

For  philosophical reasons, I prefer the second 
understanding of probability. There are two main 
reasons. First, objective probability is the much more 
problematic notion, and it seems to be heavily inter- 
twined with causality, j~ The most promising attempt to 
understand it is, I think, via subjective probability. 1~ 
This suggests to me that the appropriate order  is to start 
with subjective probability, to explicate causation within 
the subjectivistic framework, and then to try to objec- 
tivize both. 

Secondly, I have general reservations about too 
realistic an understanding of causation. There is a need 
for explaining the most pervasive and prominent 
epistemological role which the notion of causation 
plays. If one takes causation simply as a constituent of 
the real world, then the only explanation one can give 
seems to be this: "Causation is, of course, a fundamental 
and pervasive trait of reality; thus it is small wonder that 
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the notion of causation plays a fundamental and 
pervasive role in our picture of reality". However, the 
same argument would hold, say, for quarks or electro- 
magnetic forces. Thus, this kind of explanation assimi- 
lates the epistemological role of the notion of causation 
to that of our notions of other important things like 
quarks or electromagnetic forces. This seems to me to 
be a distortion; according to the views of Hume, Kant, 
and other philosophers, 12 the notion of causation has 
not only an important, but a peculiar epistemological 
role which cannot be sufficiently explained from a 
realistic point of view. However, this essay is deliber- 
ately neutral with respect to these deep and crucial 
philosophical issues. Its focus is on the logic of causa- 
tion, and it is intended to inform the philosophy of 
causation. 

The following notation will be used throughout: 
variables, i.e. elements o f / ,  will be denoted by i, j, k, and 
l, subsets of I by J, K, L, M, and N (with or without 
subscripts). (i, J) refers to the open interval between i 
and j,  i.e. to { k ~ I ii < k < j}, and [i, j] to the closed 
interval{k G I l l  ~ k ~ j} ;{<j}  denotes the past of j, 
i.e.{k G1] k < j} ,and { < j  - K  / the past o f j e x c e p t  K, 
i.e. {<j} - K. ~3 Instead o f { < j  -{i~ . . . . .  i~}} we simply 
write {< j' - i I . . . . .  i,,}. 

Possible paths, i.e. elements of ~ ,  will be denoted by 
v and to, states of affairs, i.e. subsets of Q, by A, B, C, 
D, and E. We often have to refer to partial paths or, 
rather, to the set of their completions, which are states 
of affairs: for each to G f2 and J ___ I we define ~J = { v 
G if2 I v(i) = to(i) for all i G J}, 14 and I write ~ instead 
of ~{i}. In general,states of affairs which are concerned 
only with variables in some set J are called J-mea- 
surable states or simply J-states; mathematicians also 
call them J-cylinders. The formal definition is that A is a 
J-state iff, for all v and to agreeing on J, v G A  iff toGA. 
Thus, A is a J-state i f fA = U {~oJ] toGA}; and in parti- 
cular each ~J is a J-state. 

The laws of conditional probabilistic independence 
lie at the bottom of the whole inquiry and therefore 
need at least to be stated. 

DEFINITION 1. The states of affairs A and B are 
independent conditional on C, i.e. A 2, B/C, iff P(A N 
B I C) = P(A I C) P(BI C). And the sets K and L of 
variables are independent conditional on the set M of 
variables, i.e. K 2, L/M,  iff, for all K-states D, L-states 
E, and to G ffS, D 2, E/~M. I shall often mix the two 
notations, i.e., more precisely: K, A J_ L, B/M, C is to 

mean that, for all K-states D, L-states E, and t o g  fS, A 
N D_I_ B N  E / C A  ~M. 

The independence of states of affairs obeys 

T H E O R E M  1. 
(a) I fA 2, B/C, then B • A/C;  
(b) if P(C) # 0 and C ___ A, then A 2- B/C; 
(c) if A and A '  are disjoint and A 2, B/C, then A U 

A' • B /C i f fA"  • B/C; 
(d) i r a  2, C/D, thenA 2, B N  C / D i f f A  J_ B / C A  D. 

The independence of sets of variables obeys 

T H E O R E M  2. 
(a) I f K  2- L/M, thenL 2, K/M; 
(b) if K c M, then K _1_ L/M;  
(c) i lK 'C_  K U  M , L ' C _  L U M, M C M ' C K U  

L U M, a n d K s  L/M, thenK'  2, L ' /M' ;  
(d) if J3_ K / L  U M a n d J  2- L/M, thenJ_l_ K U L/M; 
(e) if K and L are disjoint, J I K / L  U M, and J A_ 

L / K  U M, then J _1_ K U L / M  -- provided P is 
strictly positive; 

(f) if i is a binary variable, K 2- L/M,  and K I L / M  
U {i} , thenK U /i} I L / M o r K  2" L U {i}/M. 

For proofs see, e.g., Dawid (1979) or Spohn (1980). 
In particular Theorem 2(e) will be important; this is a 
further reason for assuming a strictly positive proba- 
bility measure. 15 This list of properties of conditional 
independence is not complete, 16 but Geiger, Pearl 
(1988) present a number of interesting partial com- 
pleteness results. 

Concerning causal notation, three things must be 
observed. First, the causal relata are always states of 
affairs which are states of a single variable and thus are, 
so to speak, logically simple; I do not see the need to 
consider logically complex states of affairs as causes or 
effects. 17 Second, whether A is a cause of B depends, of 

course, on the given world or path; there may well be 
two worlds such that A causes B only in one world, but 
not in the other. This path-relativity will be made 
explicit in the notation. Third, only facts can be causes 
or effects; A can cause B in to only if A and B obtain in 
to, i.e. if to G A O B. 

A ~o ~ B is to mean that A is a direct cause of B in 
to; and A ~-,~B is to mean that A is a (direct or 
indirect) cause of B in to. This notation, and all the 
notation to follow, always carries the presupposition 
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that to ~ A N B and that there are variables i and j 
such that A is an /-state, B is a j-state, and i < j. A 
similar notation for counter-causation, causal relevance 
and irrelevance, etc. will be introduced later on. 

3.  D irec t  c a u s e s  

A is a cause of B iff A precedes B and raises the 
epistemic or metaphysical rank of B under the obtaining 
circumstances. This is the basic conception of causation 
which has found the widest agreement. In the deter- 
ministic case, it covers regularity theories and counter- 
factual approaches as well as analyses in terms of 
necessary and/or  sufficient conditions which all differ 
on the relevant meaning of "raises the epistemic or 
metaphysical rank". My proposal is still different, 
namely to explicate this phrase in terms of OCFs. In the 
probabilistic case, however, there is only one interpreta- 
tion of this phrase, that is, that A raises the probability 
of B. 

The phrase "the obtaining circumstances" is also 
unclear; it is, in a sense, the subject of the whole paper. 
For  direct causation, however, there is a particularly 
simple definition. This indeed is the main reason for 
splitting the account of causation into two steps. As I 
have argued in (1980), pp. 79ff., (1983a), pp. 384ff., 
and (1983b), pp. 80ff., each fact preceding the direct 
effect B and differing from the direct cause A is to 
count among the obtaining circumstances of the direct 
causal relation between A and B; whenever judgment 
about that relation is based on less, it may be just the 
neglected facts which would change the judgment. This 
means that the obtaining circumstances consist of the 
whole past of B with the exception of A. I shall turn this 
into a formal definition and briefly compare it with 
other proposals. 

DEFINITION 2. Let A be an/-state ,  B a ]'-state, i < j, 

and to ~ A N B. Then, A is a direct cause of  B in to, 
i.e. A ~ B, iff P ( B I A N ~  - i}) > P(Bl ,zTn  
~{ < j  - i}). 18 A is a direct counter-cause of  B in to, i.e. 
A ~ , B, iff P ( B I A N ' O { < j  - i}) < e(BIZn ~{<j 
-- i}). A is directly causally relevant to B in to, i.e. 

A . . ~ o B ,  iff A - ~ B or A o,, B. Finally, A is 
directly causally irrelevant to B in to, i.e. A ~' ~ B, iff 
not A ~' e B. 

In a way, Definition 2 proposes a radical solution to 
Simpson's troublesome paradox. If one conditionalizes 

on the whole past of the effect, there is no further 
subdivision of that past which could change the condi- 
tional probabilities. Of course, this is true only relative 
to a fixed descriptive frame; but this only emphasizes 
the importance of relativization. 

Suppes (1970), pp. 41f., moves from his own defini- 
tion of prima facie causes toward Definition 2 by 
acknowledging the legitimacy and usefulness of rela- 
tivizing his definitions to some background information. 
However, he does not expand on this suggestion. One 
may think that one need not mention the background as 
long as it is constant. But according to Definition 2, 
different direct causal relations refer to different back- 
grounds, to different obtaining circumstances. So it is 
mandatory to make the reference explicit. 

When discussing Simpson's paradox, Suppes (1984) 
doubts that the problem posed by it is solvable abso- 
lutely. He says, for example, that "there is no end to the 
analysis of data in a practical sense" (p. 56). I agree. But 
surely there is a natural end to the analysis of data within 
a fixed descriptive frame, a point with which Suppes, in 
turn, seems to agree (p. 57). This is captured by 
Definition 2. 

Good's  theory (1961) differs from Definition 2 in 
several ways, but the crucial point is that in defining the 
tendency of A to cause B Good  considers other 
conditional probabilities. He conditionalizes on the 
whole past of the cause and on all true laws of nature, ~9 
whereas I conditionalize on the whole past of the direct 
effect. I have not found a clear argument for the appeal 
to the true laws. 2~ Indeed, as far as I am concerned, it 
spoils much of the philosophical interest of the whole 
enterprise; for, the hope is that a better grasp of laws 
of nature will emerge from the analysis of singular 
causation. 

The main question is whether to conditionalize on 
the past of the cause or on the past of the effect. 
Definition 2 would obviously be inadequate as a general 
account of causation, and one might therefore favor 
Good's  account. My theoretical reasons for not doing so 
will emerge later on. The basic objection, however, is 
provided by a simple example: 

Take a two-person game; each of the players makes a 
choice, and the outcome is determined accordingly. 
So the outcome is caused by both of the choices, but 
these choices, let us suppose, are causally independent 
of each other. Indeed, we may assume that their 
temporal order  is totally irrelevant to the whole set-up. 21 
What is the causal efficacy of the choice of the first 
player to the outcome? On Good's  account, it varies 
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with the temporal order: if the second player makes his 
choice first, that choice must be conditionalized on, 
otherwise not. This seems unacceptable because the 
causal set-up is not really changed by changing the 
temporal order. On the other hand, if the choices are 
taken as direct causes of the outcome, Definition 2 
judges the causal efficacy of one choice by considering 
the probabilities conditional on the other irrespective of 
their temporal order. 

One might point out that there is no difference 
between Good's  conditionalization proposal and mine if 
direct causes immediately precede their direct effects, 
i.e. if there are no temporally intermediate variables in 
the given descriptive frame. And one might think that it 
would indeed be reasonable to assume that direct causes 
immediately precede their direct effects. 22 At the pre- 
sent stage, however, this assumption is quite unreason- 
able. It is a strong assumption which implies that, in case 
I is linearly ordered by ~<, the given probability space is 
so well-behaved as to form a Markov chain. But 
attention should not be confined just to Markov 
processes; there are many examples of causal processes 
which can at present not be modelled as Markovian. 
Indeed, from a theoretical point of view, it would be 
disastrous to start by assuming well-behaved causal 
processes. What is needed is a general account of 
causation in terms of which the virtues of the various 
forms of well-behaved causal processes can be charac- 
terized. Hence, the strong assumption should be investi- 
gated at a later stage. 

Cartwright (1979) is interested in causal laws rather 
than in singular causation. Nevertheless, it is instructive 
to compare her views with Definition 2. She argues that 
all the variables influencing B but not influenced by A 
constitute the obtaining circumstances of the causal 
relation between A and B and that conditionalization 
with respect to them tells us whether A is a cause of B. 
Though I conditionalize on much more, the conflict is 
less important than it seems. Cartwright rightly insists 
that one must not conditionalize with respect to 
variables mediating between cause and effect; indeed, if 
their values are given, the cause cannot be expected to 
be positively relevant to the effect. But in the special 
case of direct causation there are no mediating vari- 
ables; and the difference is then reduced to the fact that 
I conditionalize also with respect to all variables which 
precede, but do not influence the effect, whereas she 
does not. 

I think that the more extensive conditionalization 
proposal is harmless, but she does not. She says on p. 

432 that "partitioning on an irrelevancy can make a 
genuine cause look irrelevant, or make an irrelevant 
factor look like a cause" and goes on to illustrate this 
alleged possibility. Eells and Sober (1983), who also 
conditionalize on irrelevant factors, argue on p. 42 that 
this illustration does not support Cartwright's restricted 
form of conditionalization; and I agree with them. 

Maintaining Definition 2 has an important conse- 
quence. The upshot of Cartwright's paper is that there is 
no non-circular characterization of causation in proba- 
bilistic terms. But if I am right, this is certainly not 
true of direct causation. Hence, there is hope that 
Cartwright's skeptical view is not true of causation in 
general. 

4. The circumstances of direct causes 

The foregoing defense notwithstanding, it must be 
admitted that Definition 2 does not embody the only 
possible explication of obtaining circumstances. There 
are five further explications; and it is important to clarify 
them and to see the extent to which they are equivalent. 

Definition 2 was based on the observation that each 
fact preceding the direct effect B and differing from the 
direct cause A is relevant as a circumstance. Here, 
"relevant" was used in the widest possible sense, namely 
as "possibly relevant solely on the basis of temporal 
relations", which is fixed in 

DEFINITION 3a. Let  to, A, B, i, and j be as in Defini- 
tion 2. Then the temporally possibly relevant circum- 
stances of (the direct causal relation between) A and B 
in to are defined as ++ C~ (A, B) = ~'{ < j  - i}. 

This widest sense of "relevant" yields, as is to be 
expected, the narrowest circumstances. But there is a 
stricter sense of "possibly relevant". Whether a variable 
is relevant to the relation between A and B may also 
depend on the probabilities involved. To specify this 
idea, we will need 

DEFINITION 4. Ro,(B ) is to denote the set of all 
variables directly causally relevant to B in to, i.e. R~(B) 
= {k ~ { < j / I  not B _1_ k/~ <j  - k}}. And R(B)is  to 
denote the set of all variables directly causally relevant 
to B in some world, i.e. R(B) ~ U o, ~ R~(B) = {k 
{ < j } l n o t B  / k/{< j - k } } .  

These sets will play an important role. A first crucial 
observation is 
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T H E O R E M  3. R(B) is the smallest subset R of {<]} 
s uch tha tB  3- { < j - - R } / R .  

By Definition 4, we have k ~ { < j  - R(B)} iff B 1 
k/{ <j - k}; and from this Theorem 3 follows with the 
help of Theorem 2(e). Thus, R(B) is the minimal set of 
variables preceding B which screens off all the other 
preceding variables from B; i.e. given their values, B is 
probabilistically independent of all the rest of the 
possible past of B. This yields another sense of "rele- 
vant", namely, "possibly relevant on the basis of tem- 
poral relations and probabilities alone": 

DEFINITION 3b. The probabilistically possibly relevant 
circumstances of (the direct causal relation between) A 
and B in to are defined as C+(A, B) = ~(R(B) - {i}). 

What one usually has in mind, however, is not 
possible, but actual relevance; intuitively, it should 
suffice to consider only the actually relevant circum- 
stances. Here is a first attempt of explication: Definition 
2 can be interpreted metalinguistically as giving the 
truth conditions of the sentence "A is a direct cause of 
B", i.e. as specifying when this sentence is true in a 
world to. Viewed in this way, it seems plausible to say 
that the actually relevant circumstances of A's being a 
direct cause of B just consist in the fact that A is a direct 
cause of B, i.e. in the set of all the worlds which relate A 
and B in this way; likewise for "direct counter-cause" 
and "direct causal irrelevance". To render this idea 
precise we need the signum function for reals defined as 
sgn(O) = 0 and sgn(x) = x/Ix] for x # 0. 

DEFINITION 3c. The actually relevant circumstances 
of (the direct causal relation between) A and B in w in 
the widest sense 23 are defined as C"~(A,B) ~ {vl 
sgn[P(BlA n v{<j  _ i}) - P(BIA N v{<j  _ i})] -- 
sgn[P(BI A n o~{ < j  _ i}) - P(BI ~zTn ~'{ < j  - i})]}. 

The deterministic analogue of this definition is not 
uninteresting, but the probabilistic concept is quite 
useless because it is not generally true that sgn[P(B]A 
n C",,(A, B))-- P(BI~,N C"~(A, B))] = sgnIP(BIA N 
~{<j  - i}) - P(BIA n o~{<j _ i})]; that is, if one 
conditionalizes on the circumstances in this widest 
sense, one may even get different causal conclusions. So 
the widest sense is too wide. 

Here  is a modification: The inadequate proposal 
holds that the actually relevant circumstances of A's 
being a direct cause of B just consist in the fact that A is 
a direct cause of B. Now it seems that they rather consist 
in the fact that A is a direct cause of B in the way it 
actually is - -  where this additional clause refers to the 
specific numerical change of the probability of B which 
is actually due to A. The idea is captured in 

DEFINITION 3d. The actually relevant circumstances 
of (the direct causal relation between) A and B in to in 
the wide sense are defined as C'~(A, B) = { v l for each 
A' ~ {A, A} P(BIA" n "{< j  - i}) -- P(BIA' N 
" { < j -  i})}. 

As can be easily shown, for. each / < j  -- i /-  
measurable D ~ C'~(A, B), P(BIA' N D) = P(BIA' 
O ~ l {<j - - i } /A '  N D f o r A '  

{A, A}; in fact, C'~(A, B) is the largest / < j  - i}- 
measurable set for which this is true. Thus, C'~(A, B) 
represents the widest circumstances such that condi- 
tionalization on them agrees with conditionalization on 
any more narrowly taken circumstances of necessity and 
not by accident because of lucky averaging. 24 This 
strongly indicates that we have hit upon a reasonable 
explication. 

So let me study C'~(A, B) a bit more closely. One 
valuable piece of information concerns which cylinders 
are subsets of C'~(A, B). It is given by 

T H E O R E M  4. Let  w, A, B, i, and j be as in Definition 
2. For  each v ~ C'~(A, B) and K ___ { < j  -- i} we then 
have v{ < j _  K U { i } } _  C'~(A, B) i f fB  3- K/A'  n 
v { < j - K  U {i}}foreachA'~{A,A}. 

For  proof  it is sufficient to consider Definitions 1 and 

3d. 
The theorem points to a useful distinction in C'~(A, 

B). Each v ~  C'~(A,B) differs from to on some 
variables. The only interesting differences are in {< ]  -- 
i}, because outside { < j  -- i} the members of C'~(A, B) 
may vary arbitrarily, anyway. Thus, let K = { k E { < j  - 
i} ] v(k) ~ w(k)}. Now the distinction is this: one case 
is that v is in C'~(A, B) because all variations of to on K 
are in C'~(A, B), i.e. because o~{ < j  _ K U {i}} c C'~(A, 
B) or, equivalently, B 3_ K/A'  N 0,{ < j  _ K U {i}} for 
A '  ~ {A, A}. The other case is that these conditional 
independencies do not hold. In this case, v is, in a sense, 
only accidentally in C~(A,B), i.e. not because the 
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variables in K do not matter to B given ~{ < j  - K U 
{i}} and A or 7~. Rather, the variables in K do matter; it 
is only that in some particular realizations of K the 
relevant conditional probabilities come out the same as 
for to and that v represents one such realization of K. 

This suggests that the actually relevant circumstances 
of A and B in to should be conceived a bit more 
narrowly, namely as comprising only all the arbitrary 
variations of to in C'~(A, B). 

conditional on the ideal circumstances may well differ 
from those conditional on the circumstances in the 
senses accepted so far. How can this happen? This is 
made clearer by a more positive result: 

T H E O R E M  6. CO,(A, B) c_ C*o(A, B), and the identity 
h o l d s i f f f o r K = { k ~ { < j - - i } l B  • k / o , {< j - k } }=  
{ < j -  Ro,(B ) U {i}} w e h a v e B  k K/A" N o,{<]- K 
U {i}}foreachA'~{A,X}. 

DEFINITION 3e. The actually relevant circumstances 
of (the direct causal relation between) A and B in to in 
the narrow sense are defined as C~,(A, B) = U {o,{ < j  - 
K U {i}}1 Re_ { < j - - i f  a n d B l  K/A' n " {< j - -K  
U {i}}foreachA'~{A,A}}. 

It will soon become clear why this is the preferred sense 
of the obtaining circumstances of a direct causal rela- 
tion. 

The five concepts of "obtaining circumstances" intro- 
duced so far are related in the following way: 

T H E O R E M  5. ++ _ _ _ Co, (A, B) c C+(A, B) c Co(A ' B) c 
C~,,(A, B) ~ C~(A, B); and if D and D '  are any of 
these circumstances except C"O,(A, B), then P(BIA' N 
D)=- P(BIA' n D ' ) f o r e a c h A '  E{A,~T}. 

One may object that the most obvious suggestion has 
been ignored. Isn't it very natural to think that the actual 
circumstances of the direct causal relation between A 
and B are just all of the other actual direct causes and 
counter-causes of B? Indeed. This is precisely the 
proposal of Cartwright (1979) restricted to direct 
causes; Mellor (1988), p. 234, explicitly endorses it, too; 
and it seems to be a natural "actualization" of Definition 
3b where the circumstances of A and B in to that are 
possibly relevant in the probabilistic sense are defined 
as the conjunction of all the facts in to which are 
possibly directly causally relevant to B. This suggestion 
is fixed in 

DEFINITION 3f. The ideal circumstances of (the direct 
causal relation between) A and B in to are defined as 
C*(A, B) = N {DID is a k-state for some k r i and 
D " oB} = ~(R~,(B)--{i}). 2s 

For the moment "ideal" means something bad. The 
basic trouble is that we cannot prove that CO,(A,* B) c 
C'~,(A, B). This means that the relevant probabilities 

Again, the proof essentially requires writing out the 
appropriate definitions. The theorem says that the 
identity holds if and only if the variables which are 
individually independent of B given the rest of the 
actual past of B are also collectively independent of B 
given A and the rest of the actual past of B as well as 
given .~ and the rest of the actual past of B. Both aspects 
of this condition are easily violated, but it will suffice to 
exemplify this for the aspect relating to A and A- (and 
not for the one about collective independence): 

Suppose A precedes D, D precedes B, A N D N 
B ={tot, P(B]A N D) = 0.9, P(B]A N / ~ ) = 0 . 9 ,  
P(B[AN D) = 0.1, and P(BI2TN /~) = 0.5. Here is a 
dream: there is hardly anything more delicious than red 
orange juice, but it is not offered in the deli-shops. So I 
thought that this was a way to become rich (B) and 
started a red orange juice enterprise. But what should I 
charge? Either $2.99 (D) or S1.99 (/~) per half a gallon; 
the prices in between are taboo, and higher or lower 
prices would be disastrous. In my dream I was lucky; 
nobody had the same idea (A). But then it is quite 
plausible to assume that it does not matter how I fix the 
price. If I fix the price to be high, I sell less with a larger 
profit per unit; otherwise, I sell more with a smaller 
profit per unit. My prospects of B are equally favorable. 
Thus, according to the numbers and Definition 2, D is 
directly causally irrelevant to B in to. If there were 
competitors (A), however, the price would of course 
make a big difference. Now look at the relation between 
A and B. A is a direct cause of B in to, and also in A N 
D n B; the fact that I have a monopoly is in any case 
advantageous to B. What are the circumstances of 
A o, , B? The crucial comparison is that CO,(A, B) = 
D, but * = Co,(A, B) Q. Thus, we face here the strange 
fact that D is directly causally irrelevant to B, but 
relevant t o A  o, > B. 

This possibility is, I think, responsible for quite some 
perplexity found in the literature. One may explain it 
away by resorting to a finer causal analysis in which D 
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turns out to be indirectly causally relevant to B; but it is 
an open question whether this strategy always works. 
One may take it as constituting an objection against 
Definition 2; but this does not invalidate the other 
reasons for our explication. Maybe there are other ways 
to deal with the problem, but I think the possibility must 
be admitted that the two causal roles of D fall apart, i.e. 
that D's being relevant to the direct causal relation of 
other facts to B does not coincide with D's itself being 
directly causally relevant to B. However,  if such behav- 
iour is considered an anomaly, I propose to state an 
assumption excluding it. Then one can study how causal 
structures behave in general and how much more nicely 
they behave when this assumption is satisfied. Indeed, 
this assumption will play an important role later on. 

What is the assumption? It was already stated in 
Theorem 6; it is the identity of Co(A, B) and C*(A, B). 
This explains why I have called * C~(A, B) the ideal 
circumstances of A and B in to; it specifies how the 
circumstances ideally are, but need not be. Finally this is 
the deeper  reason why Co(A, B) is the preferred 
explication of the actually relevant circumstances; 
among all the otherwise equally acceptable explications 
this is the only one which lends itself to a statement of 
the assumption of ideal circumstances. 

5. The difficulties with indirect causation 

It is now time to tackle the explication of indirect 
causation and hence of causation in general which, as 
the literature shows, is a difficult matter. Why? The 
general reason is that, even within our parsimonious 
framework, there is a bewildering plethora of plausible 
conditions for causation which cannot be simultane- 
ously satisfied. The main purpose of this section is to 
present and untangle these conditions. Three kinds of 
conditions will be dealt with extensively and two others 
mentioned. A secondary goal is to show that the 
difficulties with these conditions are largely independent 
of the particular definition of direct causation one 
adopts. Therefore,  little use of Definition 2 is made in 
this section; the synthesis is undertaken only in the final 
section. 

The first condition is rather a matter of faith: namely 
that an explication of causation be simple. This sounds 
quite airy because simplicity ratings often diverge. But it 
helps to avoid the manifest danger of lapsing into the 
strategy of trying to solve difficulties by piling up clauses 

and provisos, each of them plausible, but all together 
unintelligible. 

The second condition is that there must be a good 
overall fit between an explication and the many more or 
less problematic examples found in the literature. 
Obviously the whole story necessary to show that a 
given explication satisfies this condition is long, indeed 
too long for this essay. But I have reservations about 
abbreviating the story. There is some tendency to focus 
on this or that problematic type of example as the 
central touchstone of any theory of causation. But this 
would be too narrow an attitude; there are too many 
types of examples to be considered, and intuitions about 
examples are not fixed enough to constitute an unshak- 
able reference point. As I said, a good overall fit is to be 
achieved, even if this standard opens a door  to vague- 
ness and subjectivity. Moreover,  examples are in a sense 
theoretically barren. We do not understand them as long 
as we have no theoretical structure enabling us to 
integrate them and to explain why they are examples for 
this or against that; and staring at them probably is bad 
heuristics for arriving at that structure. This is why I 
concentrate here on three further kinds of conditions of 
a theoretical nature. 

The third kind of condition consists in structural 
conditions concerning the formal structure of causal 
relations. The fourth kind consists in Markovian condi- 
tions: there is a strong intuition that causal chains are 
Markov chains; and of course an indirect cause should 
be connected to its indirect effect by some causal chain. 
The fifth kind consists in positive relevance conditions: 
there is also a strong intuition that a cause is in some 
sense positively relevant to its effect; it is, indeed, 
embodied in the basic conception of causation cited in 
the very first sentence of section 3, and Definition 2 also 
relies on it. 

There are alternative ways of specifying each kind of 
condition. It will turn out that the most plausible 
candidates are mutually incompatible. Recognition of 
this fact is important to the explanation of a number of 
examples and confusions. Let us look at these condi- 
tions in more detail. 

Structural conditions. The first structural condition 
for the relation o ~ of being a (direct or indirect) 
cause in to is trivial, but should be made explicit: 

(SO) Lower bound: I fA  o �9 B, t h en A  ~ B .  

I shall continually use (SO) without mention. The next 
condition sets an upper  bound: 
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($1) Upper bound: If A ~-~ B, then A stands to B in 
the transitive closure of ~' > . 

This condition is not acceptable for continuous time. 
But given discrete time, (S1) seems compelling; I cannot 
imagine how indirect causation could extend farther 
than what is allowed by direct causal steps. The next all- 
important condition is 

($2) Transitivity: If A , 0  B and B ~ ,  C, then 
A ~ - ~ C .  

(SO), (S1), and ($2) entail that '~ ~ is the transitive 
closure of ~ > . Thus, as mentioned in the introduc- 
tion, these conditions yield a definition of causation in 
general. So where is the snag? It lies in the fact that all 
Markovian and positive relevance conditions violate 
transitivity. This will become fully clear below. But the 
gist is easily summed up: 

Though transitivity looks very natural, one would 
expect transitivity to ensue from a general definition of 
causation. If it is the other way around, naturalness is 
tarnished. Now, if deterministic causes are defined as 
sufficient and/or  necessary conditions, transitivity fol- 
lows immediately --  at least when such conditions are 
explained in terms of logical or nomological entailment. 
This is certainly the strongest source of the intuition of 
transitivity. But even in the case of deterministic causa- 
tion the issue is not clear. If such conditions are 
explained in terms of the subjunctive conditional, 
transitivity fails because the subjunctive conditional fails 
to be transitive. 26 Thus, even in this case a conflict 
arises. Lewis (1973b) resolves it by axiomatically 
accepting transitivity, at the cost of renouncing the 
general equation between causation and sufficient and/  
or necessary conditions and taking transitivity as a 
primitive property. 

In the case of probabilistic causation, the issue is even 
less clear. Here, a direct causal impact has, so to speak, 
no necessitating force, but is only weak and imperfect. 27 
Hence, it seems plausible that such a weak impact is not 
preserved over long causal chains, but fades sooner or 
later. For instance, given our very coarse and only 
probabilistic meteorological models, each day's weather 
may be granted to causally influence the next day's 
weather. But does the weather, say, at the turn of the last 
century still influence today's weather? It does not seem 
so; somewhere in between the influence has faded 
completely, even though it may be difficult to tell 
precisely when or where. If this is plausible, the intuition 

of transitivity totters. Indeed, this intuition is not 
generally respected by theorists of probabilistic causa- 
tion. For  example, Suppes (1970), p. 58, dryly states 
that all causal relations he has defined fail to be 
transitive as long as the limiting probabilities 0 and 1 are 
not involved. 28 

Thus, a profound uncertainty about this issue may be 
observed, and there is reason for looking for alter- 
natives to transitivity. Here  is a possible approach: 
Certainly, each indirect cause and effect should be 
connected by a causal chain. Everything then depends 
on how causal chains are characterized, and they may 
indeed be characterized in several, apparently non- 
equivalent ways: 

DEFINITION 5. 
(a) (A 1 . . . .  , An) is a weak causal chain in to iff 

AI ~ > A 2  ~ ~ . . .  ~o > A n  . 

(b) (A 1 . . . . .  An) is a connected causal chain in to iff it 
is a weak causal chain in to and, for all r and s with 
1 ~ r <  s <. n ,A ,  ~'~A,.. 

(c) (A~ . . . .  , An) is a strict causal chain in to iff it is a 
connected causal chain in to and, for no r and s 

wi th r  < s ,A r ~ ,  A~+I. 
(d) (A~ . . . . .  An) is an effective causal chain in to iff it 

is a weak causal chain in to and, for all r > 1, 

A I W ~ A  r. 

(e) (A 1 . . . .  , An) is an affective causal chain in to iff it 
is a weak causal chain in to and, for all s < n, 
A~ w .  A n. 

Of course, (a), (b), and (e) are the more promising 
definitions; the reason for introducing also (d) and (e) 
will be clear in due course. Note the difference between 
(b) a n d ( e ) : i f A  -~-> B ,0> C a n d a l s o A  _o, > C -  

a situation which has in no way been excluded so far --,  
then (A, B, C) is a connected, but not a strict causal 
chain in to. Correspondingly, there are five structural 
conditions for ~' ~ : 

($3) Structural chain conditions: Whenever A '~ ~, B, 
but not A '0 > B, then there are Ca . . . . .  Cn(n >>- 

1) such that (A, Ca, �9 �9 �9 Cn, B) is an (a) weak, (b) 
connected, (c) strict, (d) effective, (e) affective 
causal chain in to. 

It might be tempting to reverse ($3), in particular part 
(b), i.e. to take the fact that in a series of states starting 
with A and ending with B all causal relations except the 
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one from A to B obtain to imply that A also causes B. 
Formally: 

(S3b') Reversed  chain condition: if there is a con- 

nected causal chain (C1 . . . .  , C~) in to such that 
(A, C 1 . . . . .  C,,) is an effective causal chain in to 
and (C1 . . . . .  C,, B) is an affective causal chain 
in to, then A ~' ~ B, i.e. (A, G ,  �9 . . ,  C~, B) is 
also a connected chain in to. 

Another  idea is that: by assuming transitivity the 
causal relation ~ ~ is boosted to its maximal extension 
within the upper  bound (S1). Thus, if transitivity is 
dropped,  the effective range of a state A in to, i.e. the set 
of its effects in to, may comprise less than all states 
which can be reached from A via weak causal chains. 
How much less? It is hard to say. But in any case, it 
seems impossible that the effective range of A extends 
farther than the effective ranges of all its immediate 
causal successors: 

(S4a) Local  effective m a x i m u m :  whenever A , o  ~ B, 

but not A ~> B, then there is a C with 
A ~ ~ C -"~ ~B.  

The same consideration holds, of course, for the 
affective range of A, i.e. the set of its causes: 

(S4b) Loca l  affective m a x i m u m :  whenever B 0, ~ A, 
but not B ~ ' > A ,  then there is a C with 

B -~ '>~C ~' >A.  

These suggestions demonstrate  the ease with which 

further conditions may be invented. But there is no 
point in doing so. More  interesting is the relation 

between the conditions stated so far. This is given 

completely by 

T H E O R E M  7. 

(a) Upper  bound ($1) and transitivity ($2) are equiva- 
lent to the assertion that '~-,, is the transitive 
closure of ,o > . 

(b) Upper  bound (S1) and the reversed chain condition 
(S3b') are also equivalent to this assertion. 

(c) Given (S1), transitivity ($2) implies the connected 
chain condition (S3b); but the reverse does not 
hold. 

(d) The connected (S3b) and the strict ($3c) chain 
condition are equivalent. 

(e) The connected chain condition (S3b) implies the 
effective (S3d) and the affective (S3e) chain condi- 

tion; but even jointly, (S3d) and (S3e) do not imply 

(S3b). 
(f) Local effective maximum (S4a) is equivalent to the 

affective chain condition (S3e). 

(g) Local affective maximum (S4b) is equivalent to the 
effective chain condition (S3d). 

(h) Each of (S3d) and (S3e) imply the weak chain 
condition (S3a); but the reverse does not hold. 

(i) Upper  bound (S1) is equivalent to the weak chain 
condition (S3a). 

PROOF:  
(a) is trivial. 

(b) For  the direction ( ~ )  suppose that it has been 
shown for all r < n that we have CI ,o ~ Cr for each 

weak causal chain (C l . . . . .  C~) in to of length r. Now, let 

( Cj . . . .  , Cn) be a weak causal chain in to of length n. 
Because of the supposition the premises of (S3b') are 
satisfied, and so we may infer that Cl ~ , ~  Cn. Hence,  

the existence of a weak causal chain in to from A to B 
already ensures A ,0 ,~ B. With upper  bound (S1) this 

implies the desired result. The other direction ( r  is 
trivial. 

(c) The direction ( ~ )  is trivial. Concerning the re- 
verse, imagine t h a t A  , 0 , B  ~ >C, b u t n o t A  o,,,C. 

This situation satisfies (S3b), but not transitivity ($2). 
(d) Each strict causal chain is connected; thus ($3c) 

implies (S3b). On the other hand, suppose that (At . . . . .  
A,,) is a connected causal chain in to. Let A~ ---- Bj; B 2 = 

A r, where r is the maximal index for which A~ ~' > At; 
B 3 = A s, where s is the maximal index for which 

A r ~ ~ As; etc. Thus, for some m B m = A,,. Obviously, 
(B 1 . . . . .  Bin) is a strict causal chain in to. This shows that 
each connected causal chain has a strict causal subchain 
with the same start and end. Hence,  (S3b) also implies 

(S3c). 
(e) The direction ( ~ ) is trivial. That  the reverse does 

not hold, may be seen in the following way: Take a weak 
causal chain (A~ . . . .  , As) in to with 5 members,  and 
suppose that Ar ,o ~ As for all r < s with the excep- 
tion of r = 2 and s = 4. Moreover,  assume states B and 

C such that both, ( A ,  B, A4) and (A2, C, As) ,  are 
effective and affective causal chains in to, but neither 
AI ~ ~ C n o r  B o~ , A 5  holds. In this situation, there 
is an effective and affective causal chain from each D to 
each E for which D o~ ~, E, but there is no connected 
causal chain from A~ to A 5. 

(f) For  the direction ( ~ ) ,  suppose that A ~ - B ,  
but not A ~ > B. According to (S4a), there is a C~ with 
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A ~ , C l  ,O,,B. Now, i f C  1 ,o >B, we are finished. 
If not, we again apply (S4a) and find a C 2 with 
C~ o~ ~ C2 ~ ~ B. And so on. In the end, this process 
yields an affective causal chain in to from A to B. The 

reverse direction ( ~ )  is trivial. 
(g) This is perfectly symmetric to (f). 
(h) and (i) are trivial. [] 

The fact that some reverse inferences are not valid is 

perhaps a little surprising. In any case, Theorem 7 
exhibits clearly the differing strengths of the various 

conditions. 
It is not yet the time to decide which structural 

conditions are the most plausible ones. But one conclu- 

sion is quite obvious: if one should give up the transi- 
tivity of ' ~  and decide to settle for something 

weaker, one gets onto a slippery slope, at least from a 
purely structural point of view. For  instance, it is an 
unpleasant fact that then one has to cope with various 
non-equivalent concepts of a causal chain. However,  if 

transitivity is assumed, each weak causal chain is also 
effective, affective, and connected, and, thus, no ambi- 
guity would arise. A further point is that, intuitively, it 
may be not so clear which chain condition direction to 

endorse. The reverse direction - -  stated in (S3b') in its 
weakest form - -  may also seem plausible; but it implies 

transitivity according to Theorem 7(b). Thus, in the light 
of structural considerations alone, transitivity ($2) has a 

clear preponderance over the alternatives. So, let us 
look more closely at the reasons against transitivity. 

M a r k o v i a n  condi t ions .  There is a strong intuition that 
indirect effects are screened off from their indirect 
causes by the mediating links, i.e. that the indirect causal 
efficacy of a state is completely contained in the 
mediating links, or, in other words, that, if the inter- 

mediate members  of a causal chain are realized in some 
way or other, then the past of the chain is irrelevant to 

its future. This intuition is commonly expressed in the 
Markovian way; indeed, it is often said that Markov 
chains have no memory,  that they are characterized by 
the absence of after-effect. The central concept is: 

D E F I N I T I O N  6. (i I . . . .  i,) is a ( f ini te)  M a r k o v  chain  iff 
i t+, 3_ lil . . . . .  i r _ l } / i  r for all r = 2 . . . . .  n -- 1. 
Moreover,  (i I . . . .  , in) is a causa l  M a r k o v  chain  in to 
iff it is a Markov chain and a weak causal chain in 

to (where (i I . . . . .  in) is a weak causal chain in to iff 
('~ . . . . .  '~ is). 

Unfortunately, there are various choices for render- 
ing precise the Markovian intuition. Is it intuitively a 
necessary condition for a causal chain to be a causal 

Markov chain? Or  a sufficient condition that it be both a 
Markov and a strict causal chain? This is not easy to 
decide. Let us look at one attempt a bit more closely: 

(M1) M a r k o v  chain  condi t ion:  suppose that A = ~ and 
B = ~  T h e n A  ~ B i f f t h e r e e x i s t  k~ . . . . .  k, 

(n /> 0) such that (i, kl, . . . ,  k,,, j )  is a causal 
Markov chain in to. 

(M1) is a biconditionai and thus bolder than ($3). But 
it rests on the same basic idea, namely, that indirect 
causation must be mediated by a causal chain; and it 
adds a particular explication of causal chains. Indeed, 

(M1) provides an explicit definition of ~' ~ according 
to which it behaves thus: 

T H E O R E M  8. The Markov chain condition (M1) 
implies the strict chain condition ($3c), but it does not 

imply transitivity ($2). 

PROOF:  The first part  follows from the well-known fact 
that, if (il, . . .  , i,,) is a Markov chain, then any sub- 

sequence (Jl . . . . .  J'm) of (i 1, . . .  , i,) is also a Markov 
chain. The failure of transitivity is due to the fact that the 
serial connection of two or more  Markov chains will not 

generally result in one large Markov chain. [] 

Hence, the Markov chain condition does away with 
the unwelcome splitting up of the structural charac- 
terizations of causal chains. Apparently,  it is a serious 
alternative to the assumption of transitivity. But there 
are, on the contrary, also clearly disconcerting features. 

First, it is easy to see that according to (M1) there 
may be connected causal chains which are not Mar- 

kovian. Suppose that A = ~'i, B = ~j, C = ~ and D = 

~l, a n d t h a t A  ~'> B ' ~  D , A  ~ > C ~'> D, and 

A ~ ~D.  Then both, (A, B, D) and (A, C, D),  are 
connected causal chains in to. But in order to satisfy 
(M1) only one of (i, j, l) and (i, k, l) needs to be a 
Markov chain; there is nothing so far to guarantee that 
the other is so, too. If (i, j, l) is the Markov chain, should 
then the other, (i, k, l), be denied to be a genuine causal 

chain? Or  should one stipulate that such a situation does 
not arise, i.e. that not only some, but all connected 
causal chains leading from one state to another are 
Markovian? No; a more  trenchant conclusion is called 
for. 

Consider an illustration of the very common abstract 
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situation just described. At a signal of the romantic lover 
(A), a fiddler (B) and a mandolin player (C) strike up a 
sweet melody in order  to tenderly wake the beloved (D). 
Here  we have, as required, two causal chains running 
from A to D, one through B and the other through C. It 
is plausible in this case, and easily done, to distribute the 
probabilities in such a way that, given B alone, A is still 
probabilistically positively relevant to D (via C, so to 
speak), and also given C alone; the situation is sym- 
metric with respect to B and C. This, however, means 
that, contrary to (M1), no causal chain between A and 
D is Markovian and thus that (M1) somehow fails to 
capture the Markovian intuition. 

A well-known move for coping with such problems is 
to generalize the concept of a Markov chain to that of a 
Markov field. 29 In these terms, the case exemplifies a 
Markov field characterized by the conditional inde- 
pendence l 1 i/{], k} which says that D is screened off 
from A only jointly by B and C. In principle, I fully 
endorse this strategy, 3~ but not at the present stage 
where it seems to me to overshoot the mark. If one 
adopts this strategy, the conceptual key role is taken 
over by the notion of a Markov field and the corre- 
sponding causal notion of a causal net, which are more 

complex notions and more difficult to grasp. The 
structural and the Markov conditions would then have 
to be expressed in these more complex terms. And 
causal chains become derivative entities definable only 
as certain parts of causal nets. This seems to be the 
wrong direction of analysis; we should build up com- 
plexities from simpler units already understood. 

Indeed, a less radical move will do; a slight, though 
basic conceptual modification will save the old strategy. 
In explicating direct causes, the positive correlation 
between direct cause and effect was considered not in 
isolation, but embedded in the given past course of 
events. Similarly, the members of a Markov chain 
should be taken not in isolation, but rather as embedded 
in a given setting. Thus, I propose: 

DEFINITION 7. (il . . . . .  in) is an to-Markov chain iff 
i 1 < . . .  < i n a n d i f , f o r a l l r = 2  . . . . .  n -  1, i r+l _1_ 
{ il . . . . .  it_ ~} / it, ~'{ < ir +~ - il . . . . .  it}; this means that 
the conditional independence characteristic of a Mar- 
kov chain holds only given the rest of the past of i r + 1 in 
to. Moreover,  (il . . . . .  in) is a causal to -Markov chain iff 
{i 1 . . . . .  in) is an to-Markov chain and a weak causal 
chain in o9. 

Let us modify (M 1) correspondingly: 

(M2) to-Markov chain condition: Suppose that A = ~ 
and B = ~'/'. Then A o~ ,, B iff there exist k l , . . . ,  
kn (n I> 0) such that (i, kl . . . . .  kn,/') is a causal 
w-Markov chain. 

This amendment takes care of the example of the 
romantic lover; there, ( i,/, l) and ( i, k, l) both plausibly 
are to-Markov chains. Indeed, I think that (M2) reflects 
the Markovian intuition better than (M 1). Generally, the 
expectation should be that a more proximate cause 
screens off the effect from a more remote cause only 
given the circumstances and not unconditionally. The 
structural properties have not changed, however: 

T H E O R E M  9. The w-Markov chain condition (M2) 
implies the strict chain condition ($3c), but it does not 

imply transitivity ($2). 

PROOF: It is easily shown that, if (il . . . . .  in) is an 
to-Markov chain, then any sub-sequence ~ j l , . . . ,  ]m) of 
( i I . . . . .  in} is also an to-Markov chain. This immediately 
entails the first part. Again, the serial connection of two 
or more to-Markov chains will in general not result in 
one large to-Markov chain. Thus, transitivity need not 

hold. [] 

I conclude that (M2) is a viable alternative to transi- 
tivity ($2). But the matter is still open, and the evidential 
basis should be further augmented. 

Positive relevance conditions. A third important 
theoretical constraint is introduced by the conception 
that a cause is in some sense positively relevant to its 
effects. The account of direct causation above is based 
on that conception; and theoretical unity seems to be 
best preserved by further relying on it. This sets the task 
to extend section 4 and to determine the circumstances 
also of indirect causal relations, which is in fact so 
intricate that it can only be started, but not completed 
here. 

Recall first Cartwright's circularity problem. In the 
case of direct causation, it could be argued that the 
whole past of the effect may be taken as obtaining 
circumstances. But, for indirect causation, obviously this 
will not do. Precisely because of the Markovian intui- 
tion, some causal intermediates must be excluded from 
the circumstances in this case; and the problem is to say 
which ones. However,  we need not yet worry about the 
threat of circularity because we are now after plausible 
conditions only and not after definitions. 

A useful perspective on the problem is gained when 
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we think of the relativity of the direct/indirect- 
distinction to the given descriptive frame. The core of 
the idea of positive relevance is, I think, the expectation 
that what is an indirect cause in the given descriptive 
frame should be a direct cause in some reduced 
descriptive frame. The advantage of putting the core 
idea in this way is that it avoids reference to a specific 
explication of direct causal relevance (though I shall 
employ the account of section 3 later on). The problem 
takes then the form of determining which reduced frame 
to consider. There are, prima facie, several options: 

(P) Positive relevance conditions: Let A be an /-state 
and B a j-state. Then A " ~, B holds relative to 
the descriptive frame given by I iff A ,o > B 

holds relative to the descriptive frame given by 
I - -J  
(1) f o r s o m e J  _ (i , j) ,  

(2) for some, or (3) for each, J = { k 1 . . . . .  kn} - 
(i, j )  such that (i, kl, . . . ,  k,, j )  is (a) a weak, 
(b) a connected, (c) a strict causal chain in w, 
(d) a causal Markov chain in w, (e) a causal 
w-Markov chain, 

(4) for J = { k ~  (i, j )  ik  is a member of (a) a 
weak, (b) a connected, (c) a strict causal chain 
in ~o, (d) a causal Markov chain in w, (e) a 
causal w-Markov chain running from i to j}, 

(5) for J = (i, j). 

As a sufficient condition for A ,0 ~,B, (P1) is 
certainly too weak. But taken as a necessary condition, 
(P1) seems to be the inalienable minimum of the 
positive relevance idea. However, even this minimum 
need not be satisfied in the light of the theory proposed 
below. 

(P5) is, as noted above, the version favored by Good 
(1961). The example of the two-person game in section 
3 may also be used to cast doubt on (P5). Suppose that 
the choice A of the first player is negatively relevant to a 
certain outcome C, given the later, but independent 
choice B of the second player. On the current account, 
A is then a counter-cause of C. But it is easily imagin- 
able that averaging over the choice of the second player 
makes A unconditionally positively relevant to C; just 
assume that C is sufficiently unlikely given X and B.. 
According to (P5), A would then be a cause of C. This 
seems inadequate. 

(P4) is the best approximation to the position of 
Cartwright (1979), though which version of (P4) she 
would prefer is not clear. Is (P4) plausible? If there is 

only one causal chain running from i to L then (P2), 
(P3), and (P4) coincide. But if there is more than one 
chain, the three conditions may diverge almost arbi- 
trarily; only the versions of (P3) are guaranteed to be 
stronger than the corresponding versions of (P2). In 
view of this divergence, it is hard to say which condition 
is preferable. 

But we know some things. An important observation 
is that each version of (P) violates transitivity ($2), at 
least if Definition 2 is presupposed. One numerical 
example covers all versions. Suppose that A n B N 

C -- {w}, P ( B I A )  = 0.8, P (BIA )  ---- 0.4, P ( C I A N  
B) = 0.6, P(CI A n B)  = 0.1, P(CI A n  B) = 0.9, and 
P ( C I A n B )  = 0.4. Then A O~>B -. ~ > C holds 
according to Definition 2; but we have P(CI A N B)  < 

P ( C I A  n B) and P ( C [ A )  = 0.5 < 0.6 -- P(C IA) .  

Thus, according to all versions of (P) we cannot have 
A ~' ~ C. Generally, structurally good behavior may at 
most be expected from the (d) and (e) versions of (P2) 
and (P3) which incorporate Markovian elements. 

Of course, it is rather the harmony between Mar- 
kovian and positive relevance conditions which is hoped 
for. This hope is based on the following well-known 
result: 

T H E O R E M  10. Let (i I . . . . .  in) be a Markov chain of 
binary variables and A r = '~ for r = 1 . . . . .  n. Then, if 
P(Ar +1 I Ar) - P(Ar +1 ]A-~) ---- x, for r --- 1 . . . . .  n - l, 
P(Anl AI) -- P(Anl ~ )  = xl " . . . " x ,_  1. This implies in 
particular that, if each A~ is positively relevant to A~ + 1, 
then AI is positively relevant to An. 31 

However, Theorem 10 does not achieve the desired 
harmony. If additional variables are dispersed between 
i I . . . . .  i n, then, according to Definition 2, the positive 
relevancies assumed in Theorem 10 need not indicate 
direct causal relations. Moreover,  the theorem refers 
only to the Markovian chain condition (M1). If, how- 
ever, the right strategy is to replace Markov chains by 
r chains, then the theorem does not apply; and 
there is no corresponding theorem about w-Markov 
chains. 

So the situation is, in fact, as bad as I have indicated. 
All Markovian and positive relevance conditions are 
incompatible with the favourite structural condition of 
transitivity; and the preferred Markovian condition 
need not preserve positive relevance in any of the ways 
considered. 

Suppes (1984), pp. 55ff., devotes a whole section to 
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"conflicting intuitions" concerning causality, and Salmon 
(1988b) appreciatively adopts this phrase though he 
has, in part, different things in mind. It is my experience 
that, given the current parsimonious framework and no 
further notions or distinctions bearing on causality, the 
intuitions and conflicts described in the present section 
are central to the discussion of probabilistic causation. 
Is there any way to resolve these conflicts? The final 
section suggests one such way. 

DEFINITION 8. Let A be an/-state ,  B a j-state, i < j, 
and w ~ A f q B .  Then A is a cause o f  B in w,  i.e. 
A ~' ,, B, iff A stands to B in the transitive closure of 

o~ > . A is a counter-cause o f  B in o9, i.e. A ~' ~ B, iff 
A ~ <B or for some D A o , , , D  o~ , B .  A is 

causally relevant to B in o9, i.e. A ~ ~, B, iff A stands 
to B in the transitive closure of ~<> . Finally, A is 

causally irrelevant to B in w,  i.e. A ~'~ B, iff not 
A ~ , B .  

6. Causation 

For a long time, Suppes' remark (1970, p. 58) that 
transitivity is not to be expected in the case of proba- 
bilistic causation held me in its grip. All proposed 
plausible explications so clearly failed to yield transi- 
tivity that it seemed crazy to cling to that structural 
property. The task could thus only be to reconcile the 
other intuitions and conditions; and Theorem 10 
seemed to point the way. Eells and Sober (1983) 
obviously had the same idea in mind when investigating 
the lucky circumstances under which the causal relation 
defined on the basis of the positive relevance idea is 
transitive. 

Moreover,  when faced with several options, it is 
always a wise policy to choose the weakest explication 
possible. The various strengthenings can then be intro- 
duced and studied afterwards. Were one, on the 
contrary, to start with a stronger notion, all the weaker 
ones would simply drop out of theoretical considera- 
tion. But Theorem 7 has revealed transitivity to be a 
particularly strong structural condition; it implies all the 
other conditions, given the unassailable (SO) and (S1). 
So, again, it appeared better to ignore transitivity. 

However, the consideration does not apply the right 
measure of strength. What counts is not structural 
strength, which was seen to be accompanied by weak- 
ness concerning other kinds of conditions. What counts 
is conceptual  strength. And the fact is that the transitive 
closure of direct causation is the weakes t  poss ible  not ion 

of causation in general; it yields the causal relation with 
the widest possible extension, if the upper bound 
condition (S1) is presupposed; whenever A is a cause of 
B in any other feasible sense, A is also a cause of B in 
this sense. 32 So, I shall settle for the minimal notion of 
causation, even if the price to be paid is what Lewis 
(1973b) had to pay, too, namely, that transitivity is a 
primitive property. 

This definition of counter-causation is, I think, the 
most plausible one. If counter-causation is to be allowed 
at all, then the counter-causal influence stops with the 
realization of the counter-effect and does not extend 
beyond. At least, I would firmly claim this for deter- 
ministic causation (where there may be counter-causa- 
tion, too) and thus also for probabilistic causation, 
though less firmly. 33 For  the unconvinced there is also 
the concept of causal relevance which comprises causa- 
tion, counter-causation, and much more. 

Definition 8 covers all kinds of weird cases. First, to 
repeat, causal chains need not be Markov chains. Also, a 
cause need not be positively relevant to its effect under 
admissible conditionalization. The numerical example 
in the foregoing section demonstrating the incompati- 
bility of (P) and ($2) is a case in point; according to 
Definition 8, A ~O~Cholds  in this case. A ~0 < C 
holds also; indeed, this is essential to its construction. 
This means that a state of affairs may at once be a cause 
and a counter-cause of another state of affairs, if at least 
one of these causal relations is indirect. Though this may 
appear counter-intuitive, it seems to be exactly the right 
thing to say in many cases --  for instance in the famous 
thrombosis example of Hesslow (1976): the woman's 
taking a contraceptive is a cause as well as a counter- 
cause of her thrombosis, mediated by different chains. 
Otte (1985), pp. 122f., has drawn this conclusion, also. 

The counterpart may also happen: A is a cause of B, 
and if A had obtained, A would have been a cause of B, 
too. This is the case when causal preemption occurs or a 
back-up system is installed. Consider, e.g., the equally 
famous case of the desert traveller introduced by Hart, 
Honor6 (1959), pp. 239ff. One enemy of the traveller 
pours poison into his water keg; later, but independ- 
ently, the other drills a hole into the keg. The latter fact 
is a cause of the traveller's death. But if the hole had not 
been drilled, the lack of the hole would also have been a 
cause of his death, because it would have caused the 
poison to stay in the keg. In other words, the set-up can 



D I R E C T  A N D  I N D I R E C T  C A U S E S  139 

be such that  a var iable  has only a relay function; it can 
turn on different chains which all lead to the same effect. 

Never theless ,  this relay funct ion must  be  conceived  as a 
causal function. The  list of  such oddities could easily be  
extended.  

Settling for  the weakes t  not ion is only a start. The  
essential step consists in showing how to build s t ronger  
concept ions  upon  the weak base.  Thus,  the task is to 
specify condit ions under  which Defini t ion 8 does  justice 
to the Markov ian  and posit ive re levance intuitions. A n d  
it will not do  to find just any sufficient conditions; that 

would p re sumab ly  be  easy. These  condit ions must  be  
specified solely in causal terms;  only then do we know 

which causal situations satisfy our  causal p reconcep-  
tions. To  this task I now and finally turn. 

The  Markov ian  par t  is the easier one. First some  
terminology.  Since Defini t ion 8 entails that the four  
kinds of  causal chains given by Defini t ion 5(a), (b), (d), 
and (e) coincide,  I shall now talk of  causal chains 

simpliciter; only strict causal chains in the sense of 
Definit ion 5(c) have to be  distinguished. Addit ionally,  

we need 

D E F I N I T I O N  9. (A l, . . .  , A~) is a chain o f  causal 
relevance in to iff Al  ~ A2 % . . .  o~ o A ~ ; a n d i t i s  

a strict chain o f  causal relevance in to iff it is a chain of  
causal re levance in to and,  for  no r and s with r + 2 
s ~< n, A~ o, <~ A~. Moreove r ,  (it . . . .  , in) is a (strict) 

chain of  causal  re levance in to iff (~ ~i,,) is. 

A first we lcome  result is 

T H E O R E M  11. The  following two assert ions are 

equivalent: 
(a) for  each to ~ Q, all chains (il . . . .  , in) of  causal  

re levance in to are strict; 
(b) for  each to ~ r ,  all chains (i I . . . . .  in) of  causal  

re levance in to are t o -Markov  chains. 

P R O O F :  (a) ~ (b): Suppose  (b) is false, i.e. there are 

i l , .  � 9  in, and to such that  (i 1 . . . . .  i~) is a chain of  causal  
re levance in to, but  not  an to -Markov  chain. Thus,  there  

is an s ~< n such that  i,+1 3_ {i, . . . . .  is-x}~ i,, '~ is+ , 
- i I . . . . .  i,} does  not  hold. Several  appl icat ions of  
T h e o r e m  2(e) yield that  there  is an r < s for  which i~ + 1 

• i r / { i , , . . . ,  ir_~, i r + ~ , . . . ,  is},'~ - - i l  . . . . .  is}iS 
not  true. A n d  this means  that  there  is an v ~ ~ agree-  
ing with to outs ide { il . . . . .  i,} such that  ~ir ~ ~i,+1. 

(b) ~ (a): Suppose  (a) is false, i.e. there are i 1 . . . . .  in, 
and to such that (il . . . . .  in) is a chain, but  not  a 

strict chain of  causal re levance in to. Thus,  we have 
tOlr. .aJ o ~'t s" + ~ for  some  r and s with r < s. This  
immedia te ly  entails that  (i~ . . . . .  i,) is not  an to -Markov  
chain. [] 

This is a persp icuous  theorem.  It says that, if causal 
re levance spreads  strictly in stages in all worlds  so that  
in no world there  obtain direct  as well as indirect  causal 

relations be tween  any states, then all these chains are 
to-Markovian,  i.e. they have the p re fe r red  Markov ian  

proper ty .  However ,  the o rde r  of  the quantifiers is not 
the desired one. The re  is no reason  to expect  that all 
possible  worlds  are causally wel l -ordered  in this way. 

Hence ,  what  is needed  is a universal  equivalence rather  
than an equivalence of universal  s tatements .  Here ,  at 
last, section 4 comes  into play; the assumpt ion  that  the 
actual c i rcumstances  are ideal will be  required in 

T H E O R E M  12. Let  i I . . . .  , i, be  binary variables and 

( i l , . . . ,  i,) a chain of  causal re levance in to. Assume  that 
r  " t O '  for  all r < n C~,( tr, ~tr+l)  = C~o(~ir, tr+l). Then  

(i l . . . .  , in) is an to -Markov  chain iff it is a strict chain of  
causal re levance in to. 

P R O O F :  ( ~ ) :  Suppose  that  (il . . . . .  in) is not  a strict 
chain of  causal re levance in to, i.e. there  exist r < s with 

~Oir ,o o '~ s +1. Again,  this entails that  (i~ . . . . .  i,) is not 
an to -Markov  chain. 

( ~ ) :  Suppose  that (il, . . .  , i,) is a strict chain of  
causal re levance in to and cons ider  any s < n. Then  for  
all r < s  '~ r " , t O i , + l ,  i.e., since the variables are 

binary,  is+ 1 • i r / ~ { < i , + l  -- it}. Thus,  if K ---- {k 

{ < i s + 1 - ( ~ } l i ~ + ,  • k / ' ~  . . . . .  
is_ 13 c_ K. With the assumpt ion  abou t  the c i rcum- 
stances and T h e o r e m  6 we also have  is+l I K/is, 
,o{ < i, +l - K t.J {is} 3" A n d  this implies that (i, . . . .  , i,) is 
an to -Markov  chain. [] 

Of  course,  T h e o r e m  12 in par t icular  applies  to causal 
chains. These  theo rems  are mathemat ica l ly  trivial, but  
conceptual ly  nice; and I do not  see how they can be  
improved  upon  much.  The i r  content  is certainly plausi- 
ble; intuitively, it is just the existence of  direct  bypasses  

to causal chains which violates the Markov ian  intuition. 
Concern ing  posit ive relevance,  suppose  that  A r = 

~~ r ( r  ---- 1 , . . . ,  n) and that  ( A 1 , . . . ,  A , )  is a causal  chain 
in to. Somehow,  A 1 should then be posit ively relevant  to 
An. But  how? If (ij . . . . .  in) were  a M a r k o v  chain, 
T h e o r e m  10 could be  applied.  But  it has turned out that  
to -Markov  and not  M a r k o v  chains are the ones relevant  
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to our enterprise. So if (il . . . .  , in) is assumed to be an 
~o-Markov chain, the trouble is that the characteristic 
conditional independencies refer for each i~ to a dif- 
ferent condition, and therefore Theorem 10 is not 
immediately applicable. But perhaps the different con- 
ditions can be equalized and the grounds for Theorem 
10 thus prepared. This is the basic idea which will be 
worked out in the sequel. 

A very simple example illustrates all of the essential 
aspects of that idea. Suppose that there are only four 
binary variables i < j < k < l, A = ,0 i, B = ,o j, C = ,0 k, 
D = ~ I , A  " >B ,0> D, a n d ( i , j , l )  is an ~o-Markov 
chain. In probabilistic terms this means that 

(1) P(BIA) > P(BIA),  
(2) P(nlA N BA C) > P(DIA n BN C),and 
(3) P(D]ANB'N C) -~ P(D]AAB'N C) for each 

One would like to infer that, if B is omitted, A is 
positively relevant to D. Here, C may be taken as given 
or not. Thus, there are two alternatives for expressing 
this positive relevance: 

(4a) P(DIAN C) > P(DIAN C),or  
(4b) P(D]A) > P(D[A). 

Obviously, neither follows from (1)--(3), because (2) 
and (3) conditionalize on C, but (1) does not; that is the 
trouble with a~-Markov chains. The idea is to equalize 
the conditions in (1)--(3). Again, there are two alterna- 
tives. One may keep (2) and (3) and assume 

(la) P(BIANC) > P ( B I A N C )  

instead of (1); then (4a) can be inferred with the help of 
Theorem 10. Or one may keep (1) and assume 

(2b) P(D]ANB) > P(D]ANB) and 
(3b) P(DIAN B') -~ P(DLAN B') for each B ' ~  {B, 

instead of (2) and (3); then (4b) can be inferred with the 
help of Theorem 10. However, (la), (2b), and (3b) do 
not yet have causal form. The question thus is which 
causal assumptions allow them to be derived from (1)-- 
(3). The answer differs for the two alternatives. 

Look first at (la). ( la)  obviously follows from (1) 
together with 

(5a) P(BIA' 0 C) = P(BIA') for each A'  ~ {A, A}; 

and since P is strictly positive, this is equivalent to 

(6a) P(CIA'AB) = P(CIA'NB) for each A '  
{A,X}. 

Thus, (4a) may be derived from (1)--(3) by additionally 
assuming (6a). And (6a) has causal form; it says that B is 
directly causally irrelevant to C, whether A obtains or 
not. 

Now consider (2b) and (3b). They obviously follow 
from (2) and (3), if 

(7b) P(DIA" n B' n c) -~ P(DkA' N B' n c) for each 
A" ~ {A,A}andB' ~ {B,B}. 

And (7b) already has causal form; it says that C is 
directly causally irrelevant to D, whether A and B 
obtain or not. 

So at least two simple alternative causal conditions 
are available which guarantee positive relevance of the 
indirect cause to the indirect effect in this example. 
When is neither condition satisfied? When and only 
when B is causally relevant to C in some world and C is 
causally relevant to D in some world. But in this case 
there are two paths of causal influence running from A 
to D (though not necessarily in one world); so it is not 
surprising that an account of how causal influence is 
transmitted through single causal chains is inapplicable 
to such a case. 

These observations are valid in general. In the 
general case we deal with a causal a~-Markov chain 
(il, . . .  , in), where again A, = ~~ (r = 1 . . . . .  n). The 
strategy of equalizing conditionalization then amounts 
to finding some set M of variables such that for all r -- 2, 
. . . ,  n the positive relevance of Ar_ ~ to A~ as well as the 
characteristic ~-Markov independencies hold also 
conditional on ~M, thus enabling the inference of the 
positive relevance of A l to A n conditional on oM. 

Which properties should M be expected to have? Of 
course, the basic property is that /2 . . . .  , in-1 do not 
belong to M. Two further properties are suggested by 
the above example. Alternative (b) makes it clear that, if 
a variable is directly causally relevant to i ,  then it must 
not be deleted from M. In other words, ~M has to 
preserve the circumstances of Ar in some suitable sense 
(Theorem 14 below will refer to the probabilistically 
possibly relevant circumstances, Theorem 16 to the 
ideal ones). The condition that that much information 
about A~ must be retained is certainly plausible. Now, 
by omitting i~ from M we delete the most direct 
information about At. But it seems that we must as well 
delete any indirect information about A~ which exceeds 



D I R E C T  A N D  I N D I R E C T  C A U S E S  141 

the information provided by its circumstances; if such 
indirect information were retained, the averaging with 
respect to ir --  which is needed for calculating P(An ]AI 
N ~ -- may be biased in an undesirable way. This is 
what emerges from alternative (a) in the above example, 
in particular from (5a). 

In sum, for each r ---- 2 . . . .  , n, ~'M must include the 
circumstances of A~ and must not contain any further 
information about Ar. The fact that ~'M then suits the 
desired equalization of conditions is the intuitive 
content of the theorems we are after. They are supple- 
mented by two auxiliary theorems providing a way of 
expressing the exclusion of such further information in 
causal terms. 

For this purpose let us define: 

DEFINITION 10. The variables i and ] are causally 
connected in o) within J c I iff there are k~ , . . . ,  k n ~ J 
U { i, j} such that kl = i, k n -- ], and, for all r -- 1 . . . .  , 
n - l , ~ k ~  ~ ~kr+lOr~ 1 ~ A n d i f i  < j, 
I call i and j causally connected in r iff they are causally 
connected in w within (i, j)?4 

Causal unconnectedness in a lot of worlds implies a 
lot of probabilistic independence, at least if there are no 
simultaneous variables. 35 This is ascertained by the 
auxiliary 

THE ORE M  13. Suppose that I is linearly ordered by 
< and that i and ] > i are causally unconnected in all 
v ~ ,o{ < i}. Then there are disjoint K and L such that 
KUL=[i,j],i~ K,j~ L, andK j- L/~{<i}. 

This will turn out to be a special case of Theorem 15 
below. And it leads to a first result concerning the 
positive relevance of indirect causes: 

THE ORE M  14. Suppose that I is linearly ordered by 
<,  that (i~, . . .  , i,) is an w-Markov chain of binary 
variables. Ar -- ~ xr = P(Ar+I  ]At n ~'{< i~+l - -  ir}) 

I 

- -  P(Ar +, I Ar N ~'{ < ir +, -- i~}). and that M is a set of 
variables such that for all r = 1 . . . . .  n: 

(a) ir q~ M , 
(b) R ( A r ) - { i ~ _ l }  C_ M, 
(c) each j E M with ] > i r is causally unconnected with 

ir in all v E ~ N { < it}). 
Then (i I . . . . .  in) is a Markov chain conditional on ~'M, 
and hence P ( A n I &  n ' ~  -- P ( A n I - ~ N ~ M )  = 

X I  " " " " " X n -  1" 

The proof is given together with that of Theorem 16. 
Condition (b) includes variables into M, (c) excludes 
variables from M. Thus, (b) and (c) work in opposite 
directions and may be difficult to satisfy. This can be 
improved upon, but again at the price of assuming 
circumstances to be ideal. That assumption is used in 
the auxiliary 

THEOREM 15. Suppose that I is linearly ordered by 
<,  that { < i} _ U ___ { < ]}, that, for all v ~ 'oN and k, l 

�9 v " l )  [i ,]]withk < l,C,,( k, = Cv(~k, ~l),and that i and 
] are causally unconnected in all v ~ '~ Then there are 
disjoint K and L such that K tO L = [i, j], i ~ K, j ~ L, 
a n d K - N , ' ( K N  N) l L - - N , o ( L O  N ) / ~ { < i } .  

PROOF: Let K ---- {i} U {k ~ (i, ])] i and k are causally 
connected within (i, ]) in some v ~ ~ and L -- 7} U 
(i, ]) - K. Since causal connectedness within in a fixed 
set is transitive, this definition implies that each k ~ K 
is causally unconnected with each l ~ L within (i, j)  in 
all v ~ '~ In particular we thus have for all k ~ K, l 
L, and v ~ '~ 

(1) if k < l, then k ~ R~(~I); and if l < k, then l 
R,,('k). 

Now we shall inductively work up from i to ]. Suppose 
we have already shown for some i* E (i, ]) U {]} that 

(2) { < i*} n K -- N, ~({ < i*} n K n N) I {< i*} n 
L - - N , ~  *} N L n N ) / ~ { < i } .  

Let's assume that i* ~ L (for i* ~ K the corresponding 
reasoning applies). (1) and the ideality of the actual 
circumstances then imply 

(3) {<i*} N K j, i*/~{<i} N v({<i*} N L ) f o r  all 
v ~ ~N,i.e. 

(4) {< i*} N K J_ i , /o){< i} n ~ i*} N L n N), 
{<i*} n L - - N .  

(2) and (4) finally yield according to Theorem l(d) 

(5) {< i*} n / < - - N ,  ~'({< i*} n / <  n N) I ({ < i*} U 
{i*}) N L--N, '~({<i*} N L N N) /~  

For i* = ] this is the desired result. Note that for N = 
{<i} Theorem 15 reduces to Theorem 13. In this 
special case, (3) follows from (1) with the help of 
Theorem 2(e) alone and without the ideality of circum- 
stances. [] 

This leads to the second result concerning positive 
relevance: 
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T H E O R E M  16. Suppose that I is linearly ordered by 
< ,  that (i~ . . . . .  in), Ar, and x r are as in Theorem 14, and 

that M is a set of variables such that for all r ---- 1 . . . .  , n: 

(a) i~ ~ M, 

(b) R~o(Zr) - {i r_ 1} ~ M, 
(c) each j ~ M with ] > ir is causally unconnected 

with ir in all v ~ ~'M. 

Suppose further that for all v ~ ~ and k, I ~ [il, in] 
* v with k < l Co( k, Vl) = Cv(Ok, ~I). Then the same result 

obtains as in Theorem 14. 

PROOF: All that must be shown is that for all r -- 2 , . . . ,  

n , A ' ~  { A r _ t , A r _ l } , a n d  v ~ ~:  

(1) P ( A , ] A ' O  ~'{<ir -- i I . . . . .  i,_~} O v{il . . . . .  

ir--2}) "~ P ( A r I A ' O ' ~  . . . ,  r  
P(A,.[A" n '~ 

(1) says that all the probabilities showing that (i~ . . . . .  in) 
is a Markov chain conditional on ~ coincide with the 
corresponding probabilities showing that ( i l , . . . ,  in) is 
an o)-Markov chain. A direct application of Theorem 
10 then leads us to the desired result. To  show (1) 
suppose that M - {< i~} consists of ]'1 < . . .  <jq and 
that we have already shown for some p - 1 < q that 

(2) P ( A r l A ' N  ~{<i~ - i~_l} O ~ . . .  , Jp-t})) -- 

P(m,.[ A '  n "{ < i r -- i,._ 1}) 

holds for all v ~ ~ Since i r and ]p are causally 
unconnected in all v ~ ~ we may infer from Theorem 
15 and the ideality of the actual circumstances that there 
is a partition (K, L)  of [i~, ]p] such that i r E K, ip ~ L, 
and for M'  -- M n {<]p} 

(3) K - M ' , " ( K A M ' )  s L - - M ' , " ( L A M ' ) / ' { < i , . }  

for all v ~ ~ Alternatively, we get (3) from Theorem 
13 and the stronger uncolmectedness assumption (c) of 
Theorem 14 without the ideality of circumstances. (3) 
implies with Theorems 1 (d) and 2(c) 

(4) i r s jp /V{<ir}n  v{j I . . . . .  jp_l} foral l  v e ~ 

(5) ir s ] , , / A ' n " { < i r - - i r _ ~ } n " { j l  . . . . .  ]~_~}for 
all v ~ '~ M. 

(2) and (5) together imply that (2) holds for p, too, and 
thus also for q, i.e. that for all v ~ Q 

(6) P ( A ~ I A '  O ~ O v{<i r - - M  U { / r - l } } ) =  
P ( A r [ A '  O ~~ n {<ir}) n " { < i  r - M  U 

Next observe that 

(7) P(ArIA"  A '~  { < i r } ) ) = P ( A r l A '  n '~  
{ <ir}) n v { < i r - M  U {/r--l}}) 

holds for all A '  ~ {At_ 1, A t -  l} and v ~ f2 because of 
the assumption (b) about M and the ideality of circum- 
stances - -  which is not needed, if, alternatively, the 
assumption (b) of Theorem 14 is used. (7) says that the 
R.H.S. of (6) does not depend on v. Thus, the L.H.S. of 
(6) does not depend on v as well. This finally yields 

(8) P ( A r I A '  O ~  n '~ O {</r}) n 

" { < i , . - M  U {/r--l}}) 

for all v ~ f~, and this is even somewhat stronger than 
the desired (1). [] 

A careful analysis of the two proofs will show several 
steps which do not require the full strength of' the 
premises. Thus, there certainly are weaker and maybe 
nicer conditions under which the consequence of these 
theorems still holds. But I wonder  whether there are 
much weaker or much nicer conditions subject to the 
constraint that they be expressed in causal terms. 

When does a set M exist as required by Theorem 16 
(a)--(c)? I have not found an informative and more 
perspicuous sufficient condition. But there is a simple 
necessary condition: 

T H E O R E M  17. A set M satisfying clauses (a)--(c) of 
Theorem 16 exists only if in all v E '~ (il . . . .  , in) is 
the only chain of causal relevance leading from i~ to i n. 

PROOF: Suppose that for some v E ~'M there is an- 
other chain of causal relevance from il to i n which may 

be assumed to be of the form (il, ]1, �9 �9 �9 , Jp, ir, �9 �9 �9 , in, 
where jp # i r_ ,. Hence, clause (b) demands that fp E M. 
But i I and jp are causally connected in v. Hence, jp ~ M 
and thus a contradiction is entailed by clause (c). [] 

Since there may be causal connections between earlier 
members and direct causal antecedents of later mem- 
bers of (il . . . . .  i,) which are not chains of causal 
relevance --  a situation which again excludes the 
existence of an appropriate M --,  Theorem 17 may not 
be strengthened to a bi conditional. 

Theorem 17 limits the scope of Theorem 16 to cases 
where causal influence is transmitted through a single 
causal chain. More powerful theorems are therefore 
required for dealing with the transmission of causal 
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i n f l u e n c e  t h r o u g h  m o r e  c o m p l e x  c a u s a l  ne t s .  E e l l s  a n d  

S o b e r  ( 1 9 8 3 ) ,  pp .  49ff . ,  s h o u l d  b e  o f  h e l p  h e r e  in  a 

s i m i l a r  w a y  as T h e o r e m  10 h a s  g u i d e d  T h e o r e m  14 a n d  

16.  

B u t  it is c l e a r  t h a t  th i s  is o n l y  t h e  b e g i n n i n g  o f  a m u c h  

fu l l e r  t h e o r y  o f  c a u s a t i o n .  F o r  i n s t a n c e ,  I h a v e  n o t  

r e t u r n e d  to  t h e  v e r y  f i r s t  c h a r a c t e r i z a t i o n  o f  c a u s a t i o n  in 

s e c t i o n  3 a n d  t r i e d  to  say  w h a t  t h e  c i r c u m s t a n c e s  o f  a n  

i n d i r e c t  c a u s a l  r e l a t i o n  a re .  T h e o r e m  14 a n d  16 sugges t  

t h a t  '~  f o r  a m i n i m a l  M sa t i s fy ing  ( a ) - - ( c )  o f  T h e o r e m  

14  o r  16,  p r o v i d e s  s u c h  c i r c u m s t a n c e s .  H o w e v e r ,  t h i s  

s u g g e s t i o n  is n e i t h e r  g e n e r a l  n o r  w o r k e d  out .  

Still,  I h o p e  to  h a v e  d e v e l o p e d  t h e  p r o g r a m  fa r  

e n o u g h  to  jus t i fy  t h e  i m p r e s s i o n  t h a t  t h e  r i gh t  d i r e c t i o n  

t o w a r d s  a p r o s p e r o u s  t h e o r y  h a s  b e e n  f o u n d .  In  p a r -  

t i cu la r ,  t h e o r e m s  11,  12,  14,  a n d  16 e x p l a i n  h o w  t h e  

t h r e e  b a s i c  i n t u i t i o n s  h e r e  d i s c u s s e d  c o m e  to  b e  he ld ,  

e v e n  t h o u g h  t h e y  a r e  n o t  g e n e r a l l y  c o m p a t i b l e .  T h i s  

e x p l a n a t i o n  is as p l a u s i b l e  as  t h e  a s s u m p t i o n  t h a t  t h e  

c o n d i t i o n s  w h i c h  h a v e  b e e n  s h o w n  to  g u a r a n t e e  a g r e e -  

m e n t  b e t w e e n  t h e  i n t u i t i o n s  a r e  t a k e n  f o r  g r a n t e d .  A n d  I 

t h i n k  th i s  a s s u m p t i o n  is n o t  t o o  i m p l a u s i b l e .  36 

Notes 

* I am indebted to the University of California at Irvine for giving 
me the opportunity to presen t much of the material during a visiting 
professorship during the Winter term 1988, to Maria Carla 
Galavotti for giving me another opportunity at Bagni di Lucca in 
October 1988, to Nancy Cartwright and Brian Skyrms for discussion 
and encouragement, and to Karel Lambert and Hans Rott for very 
carefully checking the manuscript and considerably improving style 
and content. 

This is precisely how Lewis (1973b) proceeds. 
2 For instance by Cartwright (1979), Giere (1980), and all those 
who take probability in causal contexts as a statistical property of 
event types or classes or the like. However, Cartwright herself 
attacks the reverse strategy in her (1988). See also Davis (1988) for 
a discussion of this point. 

Compare Theorem 2 below with section 6 of Spohn (1988). 
Cf. section 7 of Spohn (1988). 

5 This means that ~< is transitive and complete. 
6 In (1980) I allowed for simultaneous causation in a way which 
preserved continuity with the restricted case. I am not sure whether 
the same procedure would work here. 
v What is discussed with respect to more-than-two-valued variables 
is usually only Causal relevance simpliciter and not positive or 
negative causal relevance. An exception is Suppes (1970), pp. 60ft., 
but it has not been further discussed, as far as I know. 
s Within the theory of OCFs there is no such peculiar law and thus 
no technical difference between binary and other variables. 

This is clearly displayed by Otte (1981) who criticized Suppes 
(1970) essentially on this account. I have argued in (198(1), pp. 92f., 
that the trouble-maker is essentially the fact that in standard 
probability theory there are no conditional probabilities for condi- 
tions having probability 0. The problem evaporates in the unification 
mentioned at the end of the introduction. 
~0 Cf., e.g., Salmon (1988a) who argues that propensities are best 
understood as probabilistic causes and that other objective proba- 
bilities are derived from propensities. 
I I Here, I refer to Lewis (198(/) and Skyrms (1984), ch. 3; see also 
Spohn (1987). 
~2 The most eloquent at present is Putnam who repeatedly argues 
against a naturalistic conception of causation, e.g. in (1983), ch. 12. 
~ The hyphen denotes set theoretic difference. 

~4 1 choose this notation because the restricted domain needs to be 
more salient than the path itself. 
~5 Theorem 2(f) does not hold for ordinal conditional functions. If 
their range is restricted to natural numbers, they satisfy the laws (a)-- 
(e) without further qualification. Cf. Spohn (1988), sect. 6. 
~' Studeny (1989) and Geiger, Pearl (1988), sect. 6, mention further 
properties, and there are still more. 
~7 This is so because causes in the intuitive sense are partial causes 
as opposed to total causes and because I want to account directly for 
causes without considering total causes. Particularly in the context of 
deductive-nomological explanation philosophers have been attracted 
by the idea that, conversely, the notion of a total cause is the central 
one which has to be explicated first. This strategy, I think, has been 
rejected for good reasons. 
~ X denotes the complement of A relative to Q. 
~9 Cf. Good (1961), pp. 308f., and (1988), p. 27. 
z0 In Good (1988), he only argues on p. 27 that his way of 
conditionalization yields the desired result that a falling barometric 
reading has no tendency at all to cause a storm. But this result may 
already be obtained by conditionalization with respect to the past of 
the spurious cause; no reference to laws of nature is required for this 
example. 
2~ Thus, even if one player chooses first, the other does not know. 
Though many examples have the same structure, the irrelevance of 
the temporal order seemed to me to be particularly perspicuous in 
this game-theoretic case. 
22 Good (1961) indeed makes a similar assumption on p. 45 when 
he requires neighbors in causal chains to be contiguous in space and 
time. 
2~ It is now "circumstances", not "relevance" which is taken in its 
widest sense. 
2~ Equivalently we may say in Skyrms' terms (1980, part IA) that 
C'~,(A, B) makes the probability of B given A or A maximally 
resilient over the rest of the past of B. 
25 This identity follows from the fact that for k ~ R,,,(B) N ID] D is 
a k-state and D ~ ~ B} = ~'k. 
26 Cf. Lewis (1973a), pp. 32--34. 
,_7 One might well find this idea and thus probabilistic causation 
unintelligible; many have done so. But in the light of the last remark 
in the introduction the present discussion should be illuminating for 
them, too. 
2~ Eells, Sober (1983) take up another remark of Suppes on that 
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page and investigate under which special circumstances transitivity 
of probabilistic causation is preserved. 
29 Cf., e.g., Lauritzen (1982). 

3o The theory of Markov fields is indeed utterly illuminating for the 
causal theorist; cf., e.g., Kiiveri, Speed, Carlin (1984) or the rich 
material presented in Pearl (1988), ch. 3. 
31 For a proof cf., e.g., Good (1980). Eells, Sober (1983), pp. 49ff., 
prove a more general result about the propagation of positive 
relevance in particular Markov nets. Theorem 10 shows, by the way, 
that the meteorological example for the fading of probabilistic causal 
influence and thus for the failure of transitivity is not really con- 
vincing. If the meteorological models would explain the weather as a 
Markov process (I doubt that they actually do), then the theorem 
says that even the weather at the turn of the last century makes a 
probabilistic difference for today's weather, though an almost 
infinitesimally small one. 
32 I owe this point to Karel Lambert; it became really clear to me in 
a long conversation with him. 
33 Good (1961), p. 311, Axiom 10, and Humphreys (1980), pp. 
308f., seem to be guided by the same conception. 
34 This restriction of the connecting sequence to the interval 
between i and j does certainly not conform to the standard usage of 
"causally connected", if there is any. Note that despite this restriction 
causal connectedness is still weaker than causal relevance. A chain of 
causal relevance from i to j is always future-oriented, whereas a 
sequence causally connecting i and j may arbitrarily change its 
temporal direction. 
35 This is rather a technical restriction needed in the proofs below. 
However, it is not obvious how to avoid it. 
3~ In fact, I believe that there is a deeper explanation for the 
conditions that actual circumstances are ideal, that causal chains are 
strict, and the like; these conditions are crucial to an objectivization 
of our causal picture. This conjecture would emerge more clearly in 
the unwritten deterministic counterpart of this paper; but it certainly 
cannot be part of this inquiry. 
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