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ABSTRACT. The paper shows that all and only a-additive Popper 
measures can be, indeed uniquely, represented by so called dimen- 
sionally well-ordered families of a-additive probability measures. 

Probabilities conditional on events having probability 0 can- 
not be defined within standard probability theory. Many 
considered this to be a serious defect and tried to do better. 
Essentially four ways to deal with this problem have emerged. 

One method is due to Carnap; it consists in imposing his 
regularity condition on probability measures (cf. Carnap 
(1971, 1980), Section 7 and 21). However, this does not 
solve the problem; it is only a way of  avoiding it as far as 
possible within standard probability theory. But the problem 
is unavoidable for measures on uncountable o-fields. 

The second method is the standard one within mathe- 
matics. It consists in generalizing the concept of  conditional 
probability, i.e. in defining probabilities (and expectations) 
conditional on e-fields (cf., e.g., Lo~ve (1960), w w 24, 25). 
This method meets most of  the needs of  applied mathe- 
matics and should make us aware of  the fact that the 
problem is a rather theoretical one. However , the probabil- 
ities conditional on oYfields are determined only almost 
uniquely (in the technical sense). Thus, I think, this method 
does not count as a fundamental solution of  our problem. 

Another method is to do probability theory within the 
framework of nonstandard analysis (cf. Loeb, 1979). With- 
in this framework division by infinitesimals is defined. 
Thus, if non-empty events get at least infinitesimal instead 
of  zero probability, probabilities conditional on them can 
also be defined. Without doubt, this method should be 
taken seriously. But nonstandard analysis is a very intricate 
matter, and I won' t  dwell upon this method here. 

The fourth method, developed independently by Popper 
and R~nyi, is the one I want to deal with. It consists in 
construing conditional probability not as a derived, but as a 
fundamental concept and in looking for a suitable set of  
axioms for it; absolute probabilities are then defined as 
probabilities conditional on the sure event. The simplest 
axiomatics that has emerged is comprised in the following 

definition: 

DEFINITION 1. Let ~2 be a non-empty set and S / ,  the set 
of events, a o-field of  subsets of~2. Then (~2, > U , . ~ ,  P)  is 
called a conditional probability space (e.p.s.} iff ~r the set 
of conditions, is a non-empty subset o f s U  \ { 0 }  a n d P  is a 
function from . W ' x ~  into the closed interval [0, 1]' such 
that the following holds: 

(a) for each B E ~ the function P( .  I B) is a o-additive 

probability measure on ~ / w i t h  P ( B  I B) -- 1, 
(b) for each A, B, C E ~ / w i t h  C, B n C E~-~:J we have 

P ( A  n B I C) = P ( A  I B n C) . P (B  I C).  

(fY, ~ / ,  . ~ ,  P)  is called an additive conditional probabil- 
ity spaee iff we have moreover: 

(c) i fA ,  B E  ~ ,  then alsoA u B E ~ 5  r. 
(~2, ~ - / , 2  ,P)  is a Popper space iff in addition to (a) 

and (b) we have 
(d) for each A C S ' ,  i f P ( A  [B)  > 0 for some B E ~ ,  

then A E 3 ~ .  
Finally, let's call ( ~ 2 , ~ , ~ , P )  a full conditional 

probability space iff in addition to (a) and (b) 

(e) . ~ T = . ~ \ ~  0}. 
The function P of a c.p.s, is called, respectively, a (additive, 
full} conditional probability measure (c.p.m.) or a Popper 
measure. 

Obviously, every full c.p.s, is a Popper space, and every 
Popper space is an additive c.p.s. 

Some history: The definition of  c.p.s.s is due to R~nyi 
(1955). It scarcely needs any explanation; the point of  
clause (b) is, of  course, to ensure the compatibility of  
probabilities with respect to varying conditions. The con- 
cept of an additive c.p.s, has also been invented by R6nyi; 
its role will become clear in Theorem 1 below. (This use of  
'additive' has nothing to do with the usual addititivity of  
measures.) Popper spaces have, of  course, been introduced 
by Popper; the axioms given by him in Popper (1959), 
new appendices *ii *v, have been simplified by Stalnaker 
(1970), Harper (1976), and van Fraassen (1976). I have 
taken the axioms stated by van Fraassen (1976), p. 420. 
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In full c.p.s.s finally, there is no restriction to condi- 

tionalization at all. 
I think the concept of  a c.p.s, is an essentially satisfying 

solution to our problem, but I won' t  argue this, since I have 
no new reason for thinking so. The four concepts of  a c.p.s. 
introduced above differ only in their demands on the set of  

conditions. I am not going to decide, which of  these is the 
most preferable. But it is clear that the larger the set of con- 

ditions the fuller the solution to our problem. 

C.p.m.s thus being useful and interesting, it is natural 

to ask how they relate to or may be constructed from usual 
(probability) measures. It is this question I want to deal 
with in this paper. For additive c.p.m.s, this question has 
been answered by Cs~szfir (1955); I shall reproduce his 
answer for introductory reasons as well as for the sake of 
completeness. With respect to Popper measures, I first 
thought that this question had been completely settled by 
van Fraassen (1976), so that nothing would be left to say 

about it. However, this is not quite so. 

Van Fraassen proves there that Popper measures may be 
represented by well-ordered families of  probability meas- 

ures. But his representation has two minor blemishes. First, 
the representation given by him is not unique; the closest to 

uniqueness he comes to is the representation by what he 

calls minimal families of  probability measures; but only 

Popper spaces which satisfY a rather restrictive condition 
and which he then calls dimensional can be represented by 

such minimal families (cf. van Fraassen (1976), p. 426). 
Secondly, the well-orderedness of  a representing family is 

not substantial; what is essentially embodied in the rep- 
resentation is only a linear ordering of such a family (cf. 

p. 427, lines 5 - 7 ,  and the theorem on p. 427). 

As will become clear, these blemishes are due to the fact 

that van Fraassen is more generally concerned with finitely 
additive Popper measures (where clause (a) of  Definition 1 is 
weakened to the effect that each P( .  I B)  is only finitely 
additive). Here every kind of measure will always be under- 
stood to be or-additive; and restricting ourselves in such a 
way, we are able to establish more elegant representations. 
It will also be clear that, despite these differences, the 
following has been strongly inspired by van Fraassen's 
paper. 

What might it mean to represent or to generate a c.p.s.? 

A first idea is given by 

DEFINITION 2. A family (Isi)i~ I of  measures on J~/(i .e.  
of  non-negative, or-additive set functions on ~ ,  possibly 
taking oo as value) is said to generate the c.p.s. ( ~2, y ,  3 ,  

P)  iff the following holds: 

(a) for each B E 2 there is a i @ I such that 0 < g i(B) < 
OO 

(b) for each A E ~-/, B E 3 ~ ,  and i E / w i t h  0 < Idi(B ) < 
oo we have 

?(A I B) = ~i(A n B)I~i(B). 

However, this notion of generation is still uninformative; 

trivially, each c.p.s, can be generated in such a way, as has 

already been observed by Cs~sz~r (1955), p. 340. Simply 

define for each B E ~ the measure #B by #B (A) = P(A [ B) 
fo rA C_ B and, else, vB(A) = 0% the family ( / I B ) B ~  then 

generates (f2, ~ , ~ ,  P ) .  In order to get more interesting 
representations, restrictions have to be imposed on generat- 
ing families: 

DEFINITION 3. The family (Idi)iE I of measures on ~r is 
called dimensionally ordered iff there is a linear ordering 
< on I such that for all A ~ J ~  / and i , ]El :  if i<]  and 

~i(A) < ~o, then #](A) = O. 

This is a severe restriction. In a dimensionally ordered 

family (/~i)i ~ z there is for each A C ~  at most one i E I  
with 0 < # i ( A ) < o o ;  if it generates the c.p.s. (U2, 5~r 

P), there is for each B E 2  exactly one i E I  with 0 <  
lai(B) <oo, and we then have t~](B) = 0 for each j > i 
and/as(B ) = co for each j < i. Cs~iszgr (1955), pp. 357f, has 

now proved the following 

THEOREM 1. For each c.p.s. (~2, ~ , 3 ,  P)  there is a 
dimensionally ordered family of  measures on ~ g e n e r a t i n g  

it, if and only if it can be extended to an additive c.p.s., i.e. 

if there is an additive c.p.s. (~2, J ,  ~ ' , P ' )  such that 
~:~C_ : ~  ' and P C_ p ' .  

This is a most satisfying representation result for c.p.s.s in 

general, and it explains the special role of  additive c.p.s.s. 
Of course, this result also applies to Popper spaces. But since 
Popper spaces have stronger properties, stronger representa- 
tion results should be, and indeed are, obtainable for them. 
To these we shall work up now. 

The first step is to strengthen the concept of  dimensional 
ordering. ( a ,  t3,7 , . . . ,  ~" will in the sequel be used as variables 

for ordinal numbers.) 

DEFINITION 4. The family (/~a)a < ~- of  measures on 5~r 
said to be dimensionally well-ordered (d.w.o.) iff the follow- 
ing holds: 

(a) if gt3(A ) < oo, then for all a </3 ~ ( A )  = 0, 
Co) if #~(A) = oo, then there is a a </3 with 0 </~a(A)  < 

OO. 
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Trivially, each d.w.o, family is dimensionally ordered. In 
fact, d.w.o, families have a rather special nature, which is 
not very perspicuous from Definition 4. The following 

reformulation will make this clear. Preparatory to this is 
the 

LEMMA 1. Let be ~ a ) ~  < ~- d.w.o. Then the finite part of  

each Pa is bounded,  i.e. for each a < ~" there is a real x such 
that for each A ~ ~ e i t h e r  #a(A)  < x or #a(A)  = 

Proof. Suppose that the finite part  ofg~ is not bounded. 
That is, there is a sequence Aa C A~ C ... in 5 ~ s u c h  that 
p3(An) .< oo for all n ~ N  (N being the set of  natural num- 

bers) and p~(A) = o~ for A = tA n e N  An. Clause (a) of  Defini- 

tion 4 now implies that for each a</3pa(An)=O for all 
n ~ N  and hence, by a-additivity, pa(A) = O. But this 

contradicts clause (b) of  Definition 4. Q.E.D. 

Now, the reformulation is this: 

DEFINITION 5. (rra)a< ~. is called a dimensionally well- 
ordered (d.w.o.) family o f  probability measures on 5~, iff 

each rrt~ is a probability measure on ~ f o r  which there is a 

C~ ~ 5~,~ such that rrt~(C~) = 1 and rra(Co) = 0 for all o~ </3. 

That this amounts to the same as Definition 4 is shown by 

THEOREM 2. Each d.w.o, family (~a)a<  ~ of  probability 
measures on 5a/ ,  together with a sequence ( x ~ ) a < f  of  

positive reals, defines a d.w.o, family (ga)a < ~" of  measures 

on 5 S i n  the following way: 

( , )  for all /3<~" and A ~ ~ 1~3(A)=x~'n[s(A), if 
zra(A) = 0 for all a </3, and #~(A) = oo otherwise. 

Conversely, each d.w.o, family of  measures on 5~ ? is, 
according to ( , ) ,  defined by some d.w.o, family of  probabil- 
ity measures on J~/ /and  a suitable sequence of  positive 
reals. 

Proof. Let (Pa)a < f be defined by ( , ) .  It is clear that 
each p~ is a measure on ~ .  If  p~(A) < ~ ,  then, according 
to ( , ) ,  for all c~ </3 rra(A ) = 0, i.e. pa (A)  = 0. I fp~(A)  = oo, 

then, according to ( , ) ,  there is a a </3 with rra(A ) > 0, i.e. 
with 0 < P a ( A )  < oo. Thus, (Pa)a<~" satisfies clauses (a) 
and (b) of  Definition 4. 

For the converse, let (Pa)a<~" be a d.w.o, family of  
measures on .-~/. Defining xa  = sup (Pa (A)  I Pa(A)  < oo), 
we know from Lemma 1 that xa  < oo for each a < ~. Hence, 

there is a sequence A~ C_A~ c_ ... in (A [ p a ( A ) < o o }  with 

l i m n - ~  l~a(An)=xc~. Now define C a = Un~ N An. Then, 
#a(Ca) =xa, and for each A with pa(A) <~  we have 

laa(A\Co~) = 0, i.e. /2a(A ) =/2a(A n Ca); otherwise, xa  
wouldn' t  be the specified supremum. So, we may define 
7ra(A) = IJa(A n Ca)/xa for all A E ~,/ .  It is then obvious 

that each rr a is a probability measure on ~'r ~'a(Ca) = 

1 and rr3(Ca) = 0 for /3 < c~ and that ( , )  holds for C a ) ,  
(rra) , and (xa).  Q.E.D. 

Thus, we may, and are well advised to, go on working with 
the simpler d.w.o, families of  probability measures. Note 
that two different d.w.o, families of  measures definable 
through ( . )  by the same d.w.o, family of  probability 
measures and therefore differing only in the appertaining 
sequence of positive reals generate the same c.p.s, according 
to Definition 2. Hence, we may transfer the concept of 

generation to d.w.o, families of probability measures: 

DEFINITION 6. The d.w.o, family (na)a<~" of probabil- 

ity measures on ~ / g e n e r a t e s  the c.p.s. (~2, SS',.Sc~,P), 
if and only if 2 = ( B E  5S1 there is a a < ~" with Ira(B ) > 
0} and for all A E  5 J a n d  BE.ff~ P(A[B)=~ro(AIB), 
where/3 = m i n ( a  [ rra(B ) > 0}. 

Thereby, we have reached our first aim: 

THEOREM 3. Each d.w.o, family of  probability measures 
generates a Popper space. 

Proof. Define 2 and P from (rra) a < ~ as in Definition 

6. Clause (a) of  Definition 1 is trivially satisfied. Clause (b) 

is also satisfied: Let A, B, C E  ~ / w i t h  C, B n C E ~ ,  and 

let 3' = m i n ( a  [ rra(C ) > 0} and /3 = m i n ( a  I ~ra(B n C) > 
0}. If  3 '</3, we have P(B[C)=P(A n B I C ) = 0 ;  and ff 
7 =/3, then the equation in clause (b) turns into the equa- 
tion rrT(A n B [ C) = rr~(A [ B n C) �9 7r.r(B [ C), which is a 
truth of standard probability theory. Finally, clause (d) 
is met,  too: Suppose that P(A [ B)  > 0 for some B E ~ ,  i.e. 
r,~(A [ B)  > 0 for/3 = m i n ( a  [ lra(B ) > 0}. This implies that 
lr~(A n B)  > 0 and, thus, zr~(A) > 0, i.e. A E.~r Q.E.D. 

This representation of Popper measures is indeed unique: 

THEOREM 4. Two d.w.o, families of  probability measures 
generating the same Popper space are identical. 

Proof. Let (~ra)a< ~- and (rr~,)a<~., generate the same 

Popper space (~2, ~ / ,  ~ .~ ,P) .  We'll show by transfinite 
t induction that 7r a = rr a for all a < ~" and that  ~" = ~". Thus, 

t suppose that t3 < ~', f '  and rr a = lra for all a </3.  We then 
t have to prove that 7r~ = rr~ : 

According to Definition 5 there is a C and a C '  such that 
rr~(C) = n'~(C')= 1 and zra(C ) = ' ' ' ' ~r~(c )  = 7r~(c  ) = ~r~(c  ) = o 

for all ~ </3. Now, if Try(C) < 1, then P(CI C u C ' )  = n~(CI C u 
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C' )  < 1 and, contrary to that, P(C [ C u C')  = 7r#(C [ C u 

C' )  = 1. Hence, zr~(C)= 1. Thus, for eachA E2~/,  rr~(A) = 

~r'~(A n C) + ~r'~(A\C) = ~r'~(A I C) =P(A I C), and, similar- 
_ ly, ~r#(A) = P(A [ C) = Try(A). Finally, if ~" < f ' ,  there would 

be a C such that 7rb(C) = 1 and rr~(C) = 7ra(C) = 0 for all 

a < ~" and, hence, both C E .~r and not C E ~ .  ~" < ~" is 

impossible in the same way. So, ~" = ~". Q.E.D. 

Our second aim is, of course, to reverse Theorem 3. This 

is a bit harder to get. For the following auxiliary defini- 

tions and lemmata we shall assume some fixed Popper space 

LEMMA2. For all A, C E J  and B E ~  we have: if 

P(A [ B) > O, thenP(A u CI B u C) > O. 
Proof. If P ( C I B u C ) > O ,  then also P(A u C I B u  

C ) > 0 .  If P(CIBuC)=O,  then P ( B I B u C )  =1,  and, 

thus, P(A u CIB u C)>IP((A u C) n B[B  u C) =P(A u 
C [ B) �9 P(B [ B u C) > 0 according to clause (b) of Defini- 
tion 1. Van Fraassen (1976) has proved this lemma on 
p. 424. Q.E.D. 

Now we define an order relation for the events in J ~ :  For 
each A, B E 5S,  A ~ B is to hold, if and only if either 
A u BE...~;andP(B [A u B)>OorA,  B E ~ \  ~r.More-  
over, A ~ B iffA ~ B and B ~ A ,  and A --<B iffA ~--< B and 
not B ~ A .  (The idea to define these relations is contained 

in van Fraassen (1976), pp. 426f, and also in Cs~isz~ir (1955), 

p. 342.)~--~ proves to be a weak order in 6~ :  

LEMMA 3. ~--~ is connected, i.e. for all A, B E 5~, A ~  B or 

B ~ A .  (The proof is trivial.) 

LEMMA 4 . ~  is transitive, i.e. for allA, B, C E  5S: ifA~--~ 

B and B~----~C, then A~--~C. 
Proof. Again, the lemma is trivial, if A, B E 5ar ~ or 

B, CESr So suppose that P ( B I A u B ) > O  and 

P(CIB u C ) >  0. The first implies, by Lemma 2, that 

P ( B u C I A u B u C ) > O .  Thus we have P(CIAuC)>~ 
P(CIA u B u C)=P(CIB u C) . P(B u CIA u B u C ) >  
0 according to clause (b) of  Definition 1. Q.E.D. 

The immediate consequence is that ~ is an equivalence 
relation in 5~/. The equivalence classes generated by ~ are 
even well-ordered. This results from 

LEMMA 5. There is no infinite, strictly increasing sequence 

in ~ ,  i.e. no sequence A1--~A2 --< . . . .  
Proof. Suppose that for all m < n Am'CAn, i.e. P(Am I 

A m u A n) = 0, and let A = U n ~N An. Then P(A m [ A) = 0 
holds for all m E N, and this implies, by cr-additivity, that 
P(A [A) = 0, i.e. a contradiction. Q.E.D. 

The next two lemmata detail the structure of the equiv- 

alence classes generated by "-'. For that purpose, define 

for each AES~ ' /  S A  = { B E 6 S I B ~ A }  and Y.4 = 

{ B E ~ I B ~ A } ;  hence, {BE J I A  ~ B }  = ~ 4 \  J~'A. 
Remember that a e-ideal in 5 S  is a non-empty subset 

2 o f ~ s u c h t h a t B E ~  for a l l B C A ,  i f A E 3 , a n d  

Un ~N An E ~r , if An E 2 for all n EN.  

LEMMA 6. For each A E ~ ,  3~4 and 2~A are ~r-ideals in 

Proof. Suppose first that B E  3~4 and C C_B. This 
implies that B ~ A  and C ~ B  and, thus, by Lemma 4, 

C ~ A ,  i.e. C E  ~2 A . Next suppose that Bn E "-~A for all 
n E N  and B = U n ~ N B  n. This means that for all h E N  
P ( A I A u B n ) > O .  Since P ( B I B ) = I ,  there must be a 
m E N  with P(Bm [ B ) > 0 .  Lemma 2 yields P(A u Bm [ 
A u B) > 0. Therefore, we also have P(A I A u B) =P(A u 

Bm IA u B ) " P ( A I A  u B i n ) > 0 ,  i.e. B ~ A .  This shows 
that ~ A  is a e-ideal in ~ i  Since the equivalence classes 
generated by ~ are well-ordered, there must be some B such 

that J~A = ~2B ; thus, SPA is also a o-ideal. Q.E.D. 

In fact, for A E ~ 2 A is of a rather special character: 

LEMMA 7. For each A E ~ there is a C E ~r such that 

3~4 = {B E J I there is a B '  E ~ with B C_ C u B'}.  

Proof. First, we have inf{P(A I A ' ) I  A'  E ~2 A } > 0. 

For suppose there would be a sequence A1 C-A2 C_ ,.. in 

~ A  with limn--> oo P(A I A u An) = 0. Fo rA '  = Un~ N A n 
we would then have P(A I A u A ' )  = 0, i.e. A -~A ' ,  and also 

A'  E U a , since ~ 4  is a a-ideal; and that's a contradic- 

tion. Again, since -~PA is a a-ideal, there must be a C E ~2 A 
with P(A I C) = inf{P(A I A')[A '  E ~ . 4  }. Trivially, we 
then have B E ~ a  for B C C u B '  and B '  E ~'~A. For the 
converse, suppose B E 3 A .  Then P(A [ B u C) = P(A [ C) > 
0. Clause (b) of Definition 1 says that P(AIB u C) = 
P ( A I C ) ' P ( C I B u C ) .  Hence, P ( C I B u C ) = . I ,  i.e. 
P ( B \ C I B u  C ) = 0 ,  i.e. B\C.~C.  Thus, there is a B ' E  
.SPA with B C C u B '. Q.E.D. 

Summarizing all these lemmata, we may define a well- 

ordered sequence (~;~a)a<~'+l of or-ideals in 5r in the 
following way: 

9 ~ o = ~ / ,  . r  for some A E  
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a }, and, in case a is a limit number,  3r  = nt~ < ~ ~t~- 
For this sequence the following holds true: if/3 < a,  then 
, ~ a  C jc~?~; each equivalence class generated by ~" is o f  

the form ~;~2a\ /Yea + 1; ~ = J ~ \  ~ ;  and, finally, for 
each a < f there exists a C a E ~ a  such that ~ a  = (B  
J ~ ]  there is a B ' E  3r  l with BC_Ca u B '} .  Now our 

second aim is in reach: 

THEOREM 5. Each Popper space (~2, 5~ ,  ~ ,  P )  is 
generated by a d.w.o, family of  probability measures. 

Proof. Let the Ca be as just stated, and define for all 

A E ~ zra(A ) =P(AICa). Thus, each zra is a probabil- 
ity measure on ~ w i t h  zra(Ca) = 1. If/3 < a ,  then zro(Ca) = 

P(Ca[C~) = 0, since Ca "~ Ct3. Hence, the family (ha) a < 
is d.w.o. It also generates (g2, 5~,  2 ~ ,  P ) ,  as may be seen 
thus: First, it is obvious that for each B E S ~ / t h e r e  is a 
a<~"  with z r a ( B ) > 0 ,  if and only if B E c ~ a  for some 

< ~', i.e. if B E ~ .  Secondly, let B E . ~  and/3 = min ( a  [ 
lra(B ) > 0}. According to our definition of  the zra, this 

means that  /7 = m i n { a  [P(B [ Ca) > 0}. This implies that 
C~.~.~ B and B ~ C  a for all a </3, i.e. B ~ Ct~ , and thusB  E 

3r ,Wt~+ 1. This in turn implies that B\C~ ~ ~ + ~ ,  i.e. 
that P(B\C~ [ B) = 0 or, equivalently, P(B n C~ [B)  = 1. 

And from this we finally get for A E ~ t h a t  ~rt~(A [ B)  = 

en(A n B)Izr~(B) = P(A n B I C~)IP(B I C~) = P(A I B n 
on) = P(A t B). Q.E.D. 

A simple corollary to this is 

THEOREM 6. A c.p.s, is full iff it is generated by a d.w.o. 

family (rra) a < i" of  probability measures such that ~ is the 
only event A for which zra(A ) = 0 for all a < ~. 

This concludes our representation theorems for Popper 

measures. Retrospectively, it is quite clear why our o- 
additive Popper measures lend themselves to nicer representa- 

tions than the finitely additive Popper measures investigated 
by van Fraassen (1976). One crucial use of  a-additivity was 
in proving in Lemma 5 that well-orderings inhere in Popper 
spaces. The other crucial use was in Lemma 6 which then 
led to Lemma 7; and Lemma 7 proves a property corre- 
sponding to van Fraassen's dimensionality of  finitely 
additive Popper spaces which he had to presuppose for their 
representation by his minimal families. These are just the 
two points mentioned right before Definition 2. 

As a sort of  appendix, let me sketch the connection 
between this representation of Popper measures and con- 

ditional logic. That such a connection exists is to be ex- 
p e c t e d -  since conditionalization is essential both to  con- 

ditional logic and probability t h e o r y -  and in fact well 
known (cf., in particular, Stalnaker (1970), Section 2, and 

Harper (1976), Section II.2). With our representation, this 

connection may be made more perspicuous: 

The concept fundamental to conditional logic is this: 

DEFINITION 7. g is a selection function for ~2 (where ~2 
may be taken as the set of  possible worlds) iff g is a func- 

tion from the power set of  ~2 (i.e. the set of propositions) 

into itself such that for all A, B C_ ~2 : 

(a) g(A) c_ A, 
(b) i f g (A)  n Br theng(A n B)=g(A) n B, 
(c) i fA  C B and g(A) ~ O, then g(B) r 0. 

There is a realistic interpretation to g: B is true condi- 

tional on A (whatever this is to precisely mean) i f fg (A)  C 
B. Or a more easily graspable epistemic interpretation: 
B is believed conditional on A (by some person at a certain 
time) i f fg (A)  C_ B. 

Several concepts of  a selection function are in use, and 
it is well known that  nearly every semantics for conditional 

logic is based on some such concept. The concept fixed in 
Definition 7 is the right one for our context,  since there is 

a representation for it which, though being much simpler, 

resembles that of  a Popper measure: 

DEFINITION 8. (Ca)a<~-+l is a selection sequence for 
~2, if and only if (Ce)a < ~ + 1 is a strictly decreasing sequence 
of subsets of  ~2 (with respect to C_) and if Co = ~2. 

THEOREM 7. Each selection sequence (Ca)a < ~ + 1 defines 
a selection function g in the following way: g(A) = g), if 

A C_ Cf; otherwise,g(A)=A n C/3\Ct~+l,where/3 = m i n ( a  I 
A n Ca\Ca+ 1 v~ 0}. Conversely, each selection function is 

in this way defined by exactly one selection sequence. 

Sketch o f  proof. It is easily verified that the function g 
defined in this way is a selection function, conversely, 
define for a given selection function g by transfinite recur- 

sion: Ct~ = $2 \ U~<t3 g(Ca), and ~" = min{a  I g(Ca)  = 0 }. 
Then it is again easily verified that (Ca)a < f + 1 is a selection 
sequence and the only one defining the given g in the speci- 
fied way. Q.E.D. 

In fact, this theorem is well known, since it is the core of  
the equivalence of a seSection functions semantics and a 
similarity spheres semantics for conditionals (cf. Lewis 
1973, pp. 58f). 

Here, a selection sequence directly corresponds to the 
sequence of a-ideals defined just before Theorem 5. Thus, 
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the rather straightforwardly demonstrable fact that the 

selection functions familiar from conditional logic, if 

adapted to the algebraic framework of  u-fields, capture the 

O-l-structure of Popper measures is made immediately 

evident by these representations. 
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